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Abstract: In recent years, fractional partial differential equations (FPDEs) have been viewed as
powerful mathematical tools for describing ample phenomena in various scientific disciplines and
have been extensively researched. In this article, the hybrid explicit group (HEG) method and the
modified hybrid explicit group (MHEG) method are proposed to solve the 2D advection-diffusion
problem involving fractional-order derivative of Caputo-type in the temporal direction. The considered
problem models transport processes occurring in real-world complex systems. The hybrid grouping
methods are developed based upon a Laplace transformation technique with a pair of explicit group
finite difference approximations constructed on different grid spacings. The proposed methods are
beneficial in reducing the computational burden resulting from the nonlocality of fractional-order
differential operator. The theoretical investigation of stability and convergence properties is conducted
by utilizing the matrix norm analysis. The improved performance of the proposed methods against
a recent competitive method in terms of central processing unit (CPU) time, iterations number and
computational cost is illustrated by several numerical experiments.
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1. Introduction

In the past few years, fractional calculus (FC) has acquired utmost importance as one of the most
hot topics of scientific research, and its applications have been widely observed in physics, chemistry,
bioscience, signal processing, financial markets, continuum mechanics, control theory, chaotic
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systems, rheology, electrical engineering and so forth.
As a matter of fact, numerous researchers from various scientific and engineering fields have

recently focused their efforts on the theory and applications of FC. Among the most important
features of fractional-order derivatives are the universal and historical dependence properties, which
make them attractive for modelling a wide range of complex real-world phenomena. For instance,
Javaid et al. [1] established a mathematical model under the Riemann-Liouville fractional derivative
to describe the mechanical behavior of a Burgers fluid through rotating cyllinders. Anwar et al. [2]
used the Caputo-Fabrizio fractional approach to investigate the thermal properties of the unsteady
magnetohydrodynamic flow of an Oldroyd-B fluid. Xu et al. [3] proposed a financial crisis contagion
model based on the Caputo-type fractional derivative to analyze the Hopf bifurcation dynamical
phenomenon. Ahmed et al. [4] presented a new fractional order Darwinian particle swarm
optimization defined in the Grunwald-Letnikov sense. The authors showed that the fractional order
Darwinian particle swarm optimization surpasses the traditional particle swarm optimization
technique because it estimates the electrical parameters of photovoltaic cells precisely. In addition,
many fractional-order epidemiological models analyzing various pandemics and health issues such as
COVID-19 outbreak [5, 6], Ebola virus [7], dengue fever [8], and childhood infections [9] can be
found in the literature.

FPDEs have been a subject of significant importance as a tool of FC. FPDEs are considered as
mathematical extensions of integer-order partial differential equations and have drawn the attention of
many researchers in recent years. The integer-order time derivative in the classical advection-diffusion
model can be replaced with a fractional-order derivative which leads to the so-called time-fractional
advection-diffusion equation (TFADE). The aforementioned equation has the ability to well describe
transport processes occurring in complex systems and controlled by anomalous diffusion, which justify
its successful usage for modeling various phenomena including heat transfer processes, describing
biological systems, air pollution and others [10, 11].

In this work, we point our attention to the TFADE in two dimensional space with the following
general form: 

C
0 Dγ

t u(x, y, t) = k1
∂2u(x, y, t)

∂x2 + k2
∂2u(x, y, t)

∂y2 − v1
∂u(x, y, t)

∂x

− v2
∂u(x, y, t)

∂y
+ f (x, y, t), (x, y) ∈ Ω ⊂ R2,

u(x, y, 0) = g(x, y), (x, y) ∈ Ω,

u(x, y, t) = h(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T,

(1.1)

where k1, k2 are the diffusion coefficients while v1 and v2 are the advection coefficients. f (x, y, t),
g(x, y) and h(x, y, t) are given functions. Ω and ∂Ω denote bounded space domain and its boundary,
respectively. C

0 Dγ
t u(x, y, t), 0 < γ ≤ 1 represents the fractional-order derivative of Caputo-type which is

given by

C
0 Dγ

t u(x, y, t) =

 1
Γ(1−γ)

∫ t

0
(t − ξ)−γ ∂u(x,y,ξ)

∂ξ
dξ, 0 < γ < 1,

∂u(x,y,t)
∂t , γ = 1.

The advection-diffusion model is utilized to illustrate the description of several quantities such as
heat, mass and energy, which makes it an applicable tool for modeling various types of real-life
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phenomena. The list of applications includes pollutant transport in rivers and atmosphere, water
transport in soils, dispersion of disseminated salt and materials in underground water and estuaries,
heat transfer processes and fluid flow phenomena, see [12] and the other cited references. The fluid
flow phenomenon is one of the most attractive areas of research due to its wide spectrum of
applications in different sciences such as physics, biology, medicine and engineering. A substantial
class of fluids known as nanofluids was introduced for the first time in 1995 by Choi and
Eastman [13]. The nanofluid was obtained by disseminating ultra-fine nanoparticles in a conventional
fluid such as oil and water to enhance the thermos-physical characteristics of fluids. Later, an
improved version of nanofluid called hybrid nanofluid was introduced by adding two distinct
nanoparticles that have higher thermal conductivity to continuous phase liquid. In recent years, the
applications of nanofluids/hybrid nanofluids have witnessed exponential growth in various disciplines
that range from pharmaceutical processes, microelectronics, fuel cells and hybrid-powered engines to
engine cooling. As a result, many researchers have constructed differential equations-based
mathematical models to account for the flow nature of nanofluids, see [14–19]. FC is a generalization
of classical calculus where the orders of differential and integral operators are extended from the set
of integer numbers to the set of real and even complex numbers. In the last few years, the utilization
of FPDEs for modeling numerous problems has thrived in diverse fields such as viscoelastic
materials, economic processes, control problems, biological systems and image processing [20].
Therefore, fractional modeling is of utmost importance, particularly for problems in which memoy
has a significant role. Fractional advection-diffusion equations have been successfully applied for
modelling problems in hydrology, chemistry, entropy and engineering [21]. Hence, it is worthwhile to
solve fractional advection-diffusion problems. Since equations that contain fractional derivatives are
mostly difficult to handle analytically, numerical techniques have been widely employed to solve the
advection-diffusion problems of fractional orders. For more details, the interested reader may refer
to [10, 22–32].

Numerical schemes based on the discretization of differential operators with fractional and integer
orders are the vast majority in literature, see [33] and the references therein. These numerical solution
algorithms such as finite difference discretizations implemented for time FPDEs will result in large
and sparse linear systems to be solved. In such a case, iterative solvers are more efficient in solving
these linear systems due to the sparsity of the coefficients matrix. However, numerical simulations
of fractional-order differential models introduce considerable challenges because of the non-locality
of the time evolution process. For instance, numerical schemes with iterative solvers for time FPDEs
require total computational cost of O(N2) and storage requirement of O(NMs), where N and Ms are
the temporal steps and spatial grid points, respectively. This ultimately leads to time and memory-
intensive simulations, particularly for high-dimensional fractional problems [34–37]. Therefore, the
development of fast and accurate numerical methods becomes more and more essential. As a matter
of fact, several techniques including parallel computing [38], preconditioning technology [39] and
short memory principle [40] have been suggested to improve the computational efficiency of numerical
methods in solving FPDEs. This shows that the constant development of numerical algorithms with
computational merits is of great importance in the literature. Recently in [41], a Laplace transformation
approach is utilized for approximating the fractional-order derivative of Caputo-type and converting the
TFADE (1.1) into its corresponding partial differential equation (PDE), and then an implicit difference
scheme with an iterative solver is proposed to solve the obtained PDE with less computing effort. In
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details, the authors proved that their method, namely hybrid standard point (HSP) iterative method
has a linear computational workload of O(N) and an effective storage of O(MS ). This study aims to
introduce new enhanced numerical iterative methods for solving Eq (1.1) that are superior in terms of
computational efficiency to the HSP method presented in [41].

In recent years, explicit group difference schemes in conjunction with iterative solvers have caught
the attention of researchers for solving several types of PDEs that are used to describe various
phenomena in the fields of science and engineering [42–46]. The ability of grouping methods to
generate fast simulations with low computing effort makes them a superb choice for solving
FPDEs [47–51].

In this article, we propose fast and accurate hybrid group iterative methods for handling the
TFADE of Dirichlet-type boundary conditions (1.1). The developed methods are based upon the
Laplace transform technique presented in [52] and a pair of explicit group finite difference
approximations constructed on different grid spacings. The main merits of our methods include that
they require less iteration count, computational workload as well as CPU timing in comparison to the
HSP iterative methods suggested in [41]. Moreover, our methods can be implemented on parallel
computers. It is well understood that the non locality of fractional-order differential operator is
inherited by its discretiztions. Therefore, many researchers strive for the design of fast and accurate
numerical algorithms to treat the computational complexity in solving FPDEs, which assert the
significance of these formulations in the literature, see [53–56]. In this line of thought, we propose
our work.

In the literature, several techniques such as the Fourier transform method and the exponential-
sum approximation technique can be utilized to reduce the computational complexity of solving time-
fractional problems from O(N2) of direct methods to O(N log(N)) and O(N log2(N)), respectively [57–
59]. In other words, the techniques described here can reduce the computational workload from a
quadratic expression to an almost linear expression with respect to N. Salama and Ali [41] developed
a fast hybrid method with linear computational complexity of O(N) for solving the TFADE. The main
goal of this paper is to construct new numerical algorithms for solving the TFADE that outperform the
HSP method [41] in aspects of CPU timing, iteration count, and computational workload. To the best
of our knowledge, the development of efficient numerical schemes which are faster than O(N) methods
is quite scarce in the literature, and herein lies the motivation of this work.

To summarize, we study the TFADE in two space dimensions (1.1) to account for its numerical
solutions. For the purpose of less computational complexity, we develop two new hybrid group iterative
methods to solve the mentioned equation. In addition, we provide a detailed and rigorous analysis to
demonstrate the unconditional stability and convergence properties with regard to arbitrary step sizes.
Furthermore, numerical simulations are implemented to highlight the applicability and efficiency of the
established solution algorithms. Overall, we show that our methods provide a reliable and efficient tool
for simulating the TFADE. As far as we know, there are no such similar works for the problem (1.1) in
literature.

The content of the article is outlined as follows. In the next section, the existing HSP method [41]
for the numerical solution of Eq (1.1) is briefly described. Section 3 thoroughly explains the
construction of the proposed numerical methods. In Section 4, the theoretical aspects of the
unconditional stability together with the convergence properties are investigated via the technique of
matrix norm. In Section 5, numerical experiments are conducted to report on the applicability,
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accuracy and efficiency of the proposed methods. Finally, the current work is briefly concluded in
Section 6.

2. Existing HSP method

In this section, the HSP method presented in [41] is briefly described. Because fractional
differential operators are non-local, numerical solutions of all historical time steps must be stored in
order to simulate the physical problem at the current time step. This results in numerical simulations
with enormous computational costs and storage requirements. To optimize the computational
complexity, the Laplace transformation technique proposed in [52] was utilized to approximate the
fractional differential operator of Caputo-type and reduce the TFADE (1.1) into its corresponding
PDE. Afterwards, the approximating PDE can be solved with less effort to generate numerical
solutions that are close to the exact solutions of the TFADE.

The Laplace transform of the Caputo time-fractional derivative is given as [52]

L{C0 Dα
t u(x, y, t)} = sαu(x, y, s) − sα−1u(x, y, 0)

= sα[u(x, y, s) − s−1u(x, y, 0)],
(2.1)

where u(x, y, s) is the Laplace transform of u(x, y, t). In this work, we have 0 < α < 1, so the term sα is
linearized as [52]

sα ≈ αs1 + (1 − α)s0 = αs + (1 − α). (2.2)

Substituting (2.2) into (2.1), we get

L{C0 Dα
t u(x, y, t)} ≈ [αs + (1 − α)][u(x, y, s) − s−1u(x, y, 0)]

= αs[u(x, y, s) − s−1u(x, y, 0)] + (1 − α)[u(x, y, s) − s−1u(x, y, 0)].
(2.3)

By applying the inverse Laplace transform, the follwing expression is obtained

C
0 Dα

t u(x, y, t) ≈ α
∂u(x, y, t)

∂t
+ (1 − α)[u(x, y, t) − u(x, y, 0)]. (2.4)

By considering Eq (2.4), the TFADE (1.1) is approximated by the following PDE

∂u(x, y, t)
∂t

= K1
∂2u(x, y, t)

∂x2 + K2
∂2u(x, y, t)

∂y2 − V1
∂u(x, y, t)

∂x
− V2

∂u(x, y, t)
∂y

− (L − 1)u(x, y, t) + (L − 1)g(x, y) + L f (x, y, t), (x, y) ∈ Ω ⊂ R2,

u(x, y, 0) = g(x, y), (x, y) ∈ Ω,

u(x, y, t) = h(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T,

(2.5)

where K1 = k1
γ

, K2 = k2
γ

, V1 = v1
γ

, V2 = V2
γ

, L = 1
γ

and Ω = [0, L] × [0, L]. For the discretiztion of the
above equation, we define τ = T

N as the time increment and h = L
M as the space step size in both x and

y coordinates, where N and M are positive integers. Then we define uniform space and time partitions
xi = ih, y j = jh, 0 ≤ i, j ≤ M and tn = nτ, 0 ≤ n ≤ N. Let un

i, j be the numerical solution at the
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mesh point (xi, y j, tn). It is illustrated in [41] that a backward and central differences in time and space,
respectively, give the rise of the following implicit difference scheme for the PDE (2.5):

un+1
i, j =

1
(1 + (L − 1)τ + 2M1 + 2M2)

[
(M1 −

N1

2
)un+1

i+1, j + (M1 +
N1

2
)un+1

i−1, j

+ (M2 −
N2

2
)un+1

i, j+1 + (M2 +
N2

2
)un+1

i, j−1 + un
i, j + (L − 1)τu0

i, j + Lτ f n+1
i, j

]
,

(2.6)

whereM1 = K1τ
h2 ,M2 = K2τ

h2 , N1 = V1τ
h and N2 = V2τ

h . This scheme has been proven to be stable without
restriction conditions and accurate with convergence order of O(τ + h2). By using an iterative solver
for the difference scheme (2.6), the HSP iterative method proceeds by generating iterations at each
time step on all mesh points utilizing Eq (2.6) until predetermined convergence criteria are met, before
moving to the following time step. The iteration process carries on as far as the targeted time level is
not reached.

The aforementioned solution algorithm is beneficial in producing accurate numerical solutions for
Eq (1.1) while reducing the computational effort significantly when compared to the conventional finite
difference schemes. For more details, we can see [41]. In order to further improve the computational
efficiency, the next section reports on the proposed HEG and MHEG methods.

3. Construction of the hybrid group methods

3.1. The four-point hybrid explicit group (HEG) method

Consider the approximation formula (2.6) demonstrated in the previous section. Figure 1 highlights
the computational molecule of the HEG method. It can be seen that the mesh points are arranged into
four-point blocks to facilitate the formulation of the HEG method. The Eq (2.6) can be applied to any
four-point block depicted in Figure 1 which leads to a (4 × 4) system written as,


q1 −q2 0 −q4

−q3 q1 −q4 0
0 −q5 q1 −q3

−q5 0 −q2 q1




un+1
i, j

un+1
i+1, j

un+1
i+1, j+1

un+1
i, j+1

 =


Ri, j

Ri+1, j

Ri+1, j+1

Ri, j+1

 , (3.1)

where

q1 = (1 + (L − 1)τ + 2M1 + 2M2), q2 = (M1 −
N1

2
),

q3 = (M1 +
N1

2
), q4 = (M2 −

N2

2
), q5 = (M2 +

N2

2
),

Ri, j = q3un+1
i−1, j + q5un+1

i, j−1 + un
i, j + (L − 1)τu0

i, j + Lτ f n+1
i, j ,

Ri+1, j = q2un+1
i+2, j + q5un+1

i+1, j−1 + un
i+1, j + (L − 1)τu0

i+1, j + Lτ f n+1
i+1, j,

Ri+1, j+1 = q2un+1
i+2, j+1 + q4un+1

i+1, j+2 + un
i+1, j+1 + (L − 1)τu0

i+1, j+1 + Lτ f n+1
i+1, j+1,

Ri, j+1 = q3un+1
i−1, j+1 + q4un+1

i, j+2 + un
i, j+1 + (L − 1)τu0

i, j+1 + Lτ f n+1
i, j+1.
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Figure 1. Mesh points included in the 2D domain of the HEG method with M = 10.

The last system can be rewritten in the following form,
un+1

i, j

un+1
i+1, j

un+1
i+1, j+1

un+1
i, j+1

 =
1
I


I1 I2 I3 I4

I5 I1 I4 I6

I7 I8 I1 I5

I8 I9 I2 I1



Ri, j

Ri+1, j

Ri+1, j+1

Ri, j+1

 , (3.2)

where

I =(1 + (L − 1)τ + 2M1 + 2M2)4 − 2(1 + (L − 1)τ + 2M1 + 2M2)2(M1 −
N1

2
)(M1 +

N1

2
)

− 2(1 + (L − 1)τ + 2M1 + 2M2)2(M2 −
N2

2
)(M2 +

N2

2
) + (M1 −

N1

2
)2(M1 +

N1

2
)2

− 2(M1 −
N1

2
)(M1 +

N1

2
)(M2 −

N2

2
)(M2 +

N2

2
) + (M2 −

N2

2
)2(M2 +

N2

2
)2,

I1 =
1
4

(1 + (L − 1)τ + 2M1 + 2M2)(N2
1 + N2

2 + 12M2
1 + 12M2

2 + 32M1M2 + 16M1 + 16M2

+ 16(L − 1)τM1 + 16(L − 1)τM2 + 4(L − 1)2τ2 + 8(L − 1)τ + 4),

I2 =
−1
8

(N1 − 2M1)(N2
1 − N

2
2 + 12M2

1 + 20M2
2 + 32M1M2 + 16M1 + 16M2 + 16(L − 1)τM1

+ 16(L − 1)τM2 + 4(L − 1)2τ2 + 8(L − 1)τ + 4),

I3 =
1
2

(1 + (L − 1)τ + 2M1 + 2M2)(N1 − 2M1)(N2 − 2M2),

I4 =
1
8

(N2 − 2M2)(N2
1 − N

2
2 − 20M2

1 − 12M2
2 − 32M1M2 − 16M1 − 16M2 − 16(L − 1)τM1

− 16(L − 1)τM2 − 4(L − 1)2τ2 − 8(L − 1)τ − 4),

I5 =
1
8

(N2 + 2M2)(N2
1 − N

2
2 + 12M2

1 + 20M2
2 + 32M1M2 + 16M1 + 16M2 + 16(L − 1)τM1
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+ 16(L − 1)τM2 + 4(L − 1)2τ2 + 8(L − 1)τ + 4),

I6 =
−1
2

(1 + (L − 1)τ + 2M1 + 2M2)(N1 + 2M2)(N2 − 2M2),

I7 =
1
2

(1 + (L − 1)τ + 2M1 + 2M2)(N1 + 2M1)(N2 + 2M2),

I8 =
−1
8

(N2 + 2M2)(N2
1 − N

2
2 − 20M2

1 − 12M2
2 − 32M1M2 − 16M1 − 16M2 − 16(L − 1)τM1

− 16(L − 1)τM2 − 4(L − 1)2τ2 − 8(L − 1)τ − 4),

I9 =
−1
2

(1 + (L − 1)τ + 2M1 + 2M2)(N1 − 2M1)(N2 + 2M2).

Assuming M is even, the application of the HEG method entails the iterative evaluation of solutions
at any time level on both grouped and non-grouped mesh points. More specifically, the solutions on
each group of four points are iterated by utilizing Eq (3.2) while the solutions on the residual non-
grouped mesh points are iterated with the help of Eq (2.6) until a predetermined convergence test is
achieved. Thereafter, the attained solutions are used as an initial approximate in order to initiate the
iterative process at the following time level. As far as the targeted time step is not reached, the iteration
process is repeated.

3.2. The four-point modified hybrid explicit group (MHEG) method

For the formulation of the MHEG method, a new implicit difference approximation based on a
uniform mesh with spatial step size 2h = 2L

M is derived. Applying backward difference in time and
central difference approximations for the remaining derivatives in Eq (2.5), the 2h-spaced fully discrete
scheme can be formulated as written as,

Un+1
i, j − Un

i, j

τ
= K1

Un+1
i+2, j − 2Un+1

i, j + Un+1
i−2, j

h2

 + K2

Un+1
i, j+2 − 2Un+1

i, j + Un+1
i, j−2

h2


− V1

Un+1
i+2, j − Un+1

i−2, j

2h

 − V2

Un+1
i, j+2 − Un+1

i, j−2

2h

 − (L − 1)Un+1
i, j

+ (L − 1)U0
i, j + r f n+1

i, j + O(τ + h2),

(3.3)

where Uk
i, j is the exact solution of Eq (2.5) at the location point (i, j, k). Neglecting the remainder

O(τ+h2) in (3.3) and replacing Un
i, j by the relevant numerical approximation un

i, j, the following implicit
difference scheme with 2h spacing is obtained:

un+1
i, j =

1
(1 + (L − 1)τ +M1/2 +M2/2)

[
(
M1

4
−
N1

4
)un+1

i+2, j + (
M1

4
+
N1

4
)un+1

i−2, j

+ (
M2

4
−
N2

4
)un+1

i, j+2 + (
M2

4
+
N2

4
)un+1

i, j−2 + un
i, j + (L − 1)τu0

i, j + Lτ f n+1
i, j

]
.

(3.4)
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The MHEG method is formulated by applying Eq (3.4) to each four-point group illustrated in Figure 2
which results in the followinf system represented in matrix form,

p1 −p2 0 −p4

−p3 p1 −p4 0
0 −p5 p1 −p3

−p5 0 −p2 p1




un+1
i, j

un+1
i+2, j

un+1
i+2, j+2

un+1
i, j+2

 =


R∗i, j
R∗i+2, j

R∗i+2, j+2

R∗i, j+2

 , (3.5)

where

p1 = (1 + (L − 1)τ +M1/2 +M2/2), p2 = (
M1

4
−
N1

4
),

p3 = (
M1

4
+
N1

4
), p4 = (

M2

4
−
N2

4
), p5 = (

M2

4
+
N2

4
),

R
∗
i, j = p3un+1

i−2, j + p5un+1
i, j−2 + un

i, j + (L − 1)τu0
i, j + Lτ f n+1

i, j ,

R
∗
i+2, j = p2un+1

i+4, j + p5un+1
i+2, j−2 + un

i+2, j + (L − 1)τu0
i+2, j + Lτ f n+1

i+2, j,

R
∗
i+2, j+2 = p2un+1

i+4, j+2 + p4un+1
i+2, j+4 + un

i+2, j+2 + (L − 1)τu0
i+2, j+2 + Lτ f n+1

i+2, j+2,

R
∗
i, j+2 = p3un+1

i−2, j+2 + p4un+1
i, j+4 + un

i, j+2 + (L − 1)τu0
i, j+2 + Lτ f n+1

i, j+2.

The last system in Eq (3.5) can be rewritten as,
un+1

i, j

un+1
i+2, j

un+1
i+2, j+2

un+1
i, j+2

 =
1
J


J1 J2 J3 J4

J5 J1 J4 J6

J7 J8 J1 J5

J8 J9 J2 J1



R∗i, j
R∗i+2, j

R∗i+2, j+2

R∗i, j+2

 , (3.6)

where

J =(1 + (L − 1)τ +
M1

2
+
M2

2
)4 − 2(1 + (L − 1)τ +

M1

2
+
M2

2
)2(
M1

4
−
N1

4
)(
M1

4
+
N1

4
)

− 2(1 + (L − 1)τ +
M1

2
+
M2

2
)2(
M2

4
−
N2

4
)(
M2

4
+
N2

4
) + (
M1

4
−
N1

4
)2(
M1

4
+
N1

4
)2

− 2(
M1

4
−
N1

4
)(
M1

4
+
N1

4
)(
M2

4
−
N2

4
)(
M2

4
+
N2

4
) + (
M2

4
−
N2

4
)2(
M2

4
+
N2

4
)2,

J1 =
1

32
(2 + 2(L − 1)τ +M1 +M2)(N2

1 + N2
2 + 3M2

1 + 3M2
2 + 8M1M2 + 16M1 + 16M2

+ 16(L − 1)τM1 + 16(L − 1)τM2 + 16(L − 1)2τ2 + 32(L − 1)τ + 16),

J2 =
−1
64

(N1 −M1)(N2
1 − N

2
2 + 3M2

1 + 5M2
2 + 8M1M2 + 16M1 + 16M2 + 16(L − 1)τM1

+ 16(L − 1)τM2 + 16(L − 1)2τ2 + 32(L − 1)τ + 16),

J3 =
1

16
(2 + 2(L − 1)τ +M1 +M2)(N1 −M1)(N2 −M2),

J4 =
1

64
(N2 −M2)(N2

1 − N
2
2 − 5M2

1 − 3M2
2 − 8M1M2 − 16M1 − 16M2 − 16(L − 1)τM1

− 16(L − 1)τM2 − 16(L − 1)2τ2 − 32(L − 1)τ − 16),
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J5 =
1

64
(N1 +M1)(N2

1 − N
2
2 + 3M2

1 + 5M2
2 + 8M1M2 + 16M1 + 16M2 + 16(L − 1)τM1

+ 16(L − 1)τM2 + 16(L − 1)2τ2 + 32(L − 1)τ + 16),

J6 =
−1
16

(2 + 2(L − 1)τ +M1 +M2)(N1 +M1)(N2 −M2),

J7 =
1

16
(2 + 2(L − 1)τ +M1 +M2)(N1 +M1)(N2 +M2),

J8 =
−1
64

(N2 +M2)(N2
1 − N

2
2 − 5M2

1 − 3M2
2 − 8M1M2 − 16M1 − 16M2 − 16(L − 1)τM1

− 16(L − 1)τM2 − 16(L − 1)2τ2 − 32(L − 1)τ − 16),

J9 =
−1
16

(2 + 2(L − 1)τ +M1 +M2)(N1 −M1)(N2 +M2).

Taking note of Figure 2, the mesh nodes that we find the solution values at are formed of three kinds
of points, namely diamond-shaped �, square-shaped � and circle-shaped # mesh points. One can easily
verify that the evaluation of Eq (3.6) can be performed only on � points. Thus, the MHEG method is
implemented by generating iterations at each time step on the � points until certain convergence is
attained. Thereafter, the solution values on the residual mesh nodes are evaluated directly once by
utilizing the standard and rotated point approximation formulas. The MHEG solution algorithm is
outlined in Algorithm 1. As regards the implementation of the proposed methods, the application of
Eqs (3.2) and (4.3) to the mesh points of the solution domain will result in large and sparse systems of
linear equations. All linear systems will be solved by using the Gauss-Seidel iterative scheme.

Figure 2. Mesh points included in the 2D domain of the MHEG method with M = 10.
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Algorithm 1: The four-point MHEG iterative method
(1) Classify the mesh nodes into three different subclasses of �, � and #

as depicted in Figure 2.
(2) Arrange all the mesh points of type � into four-point groups.
(3) Set an initial guess for the numerical solution at the present time step.
(4) At each group of four points, iterate the intermediate solutions at � points using

ûn+1,k+1
i, j

ûn+1,k+1
i+2, j

ûn+1,k+1
i+2, j+2

ûn+1,k+1
i, j+2

 =
1
J


J1 J2 J3 J4

J5 J1 J4 J6

J7 J8 J1 J5

J8 J9 J2 J1



R∗i, j
R∗i+2, j

R∗i+2, j+2

R∗i, j+2

 ,
where R∗i, j,R

∗
i+2, j,R

∗
i+2, j+2andR∗i, j+2 are as specified before. Perform the Gauss-Seidel solver

un+1,k+1
i, j

un+1,k+1
i+2, j

un+1,k+1
i+2, j+2

un+1,k+1
i, j+2

 = ω


ûn+1,k+1

i, j

ûn+1,k+1
i+2, j

ûn+1,k+1
i+2, j+2

ûn+1,k+1
i, j+2

 + (1 − ω)


un+1,k

i, j

un+1,k
i+2, j

un+1,k
i+2, j+2

un+1,k
i, j+2

 ,
where ω is the relaxation factor and k is the iteration number.

(5) Check the convergence in the previous step. If the computed numerical solutions do converge,
go to the next step. Otherwise, go back to step 3.

(6) Compute the remaining solution values directly once with the following order:

(a) For the � mesh points, a new discretization scheme based on finite difference
approximations for Eq (2.6) is derived on rotated (skewed) mesh. Such rotated or skewed
mesh can be established by the 45◦ clockwise rotation of the x − y axes [60]. Here, the
solutions on the � mesh points are evaluated directly once using the rotated difference
scheme given as follows:

un+1
i, j =

1
(1 + (L − 1)τ +M1 +M2)

[
(
M1

2
−
N1

4
+
N2

4
)un+1

i+1, j−1 + (
M1

2

+
N1

4
−
N2

4
)un+1

i−1, j+1 + (
M2

2
−
N1

4
−
N2

4
)un+1

i+1, j+1 + (
M2

2

+
N1

4
+
N2

4
)un+1

i−1, j−1 + un
i, j + (L − 1)τu0

i, j + Lτ f n+1
i, j

]
.

(3.7)

(b) For the residual # mesh points, the implicit difference scheme (2.6) is utilized.
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4. Stability and convergence analyses

Here, it is worth pointing out that the HEG (3.2) and MHEG (3.6) equations are derived from the
same implicit difference scheme but with different spatial step sizes h and 2h, respectively. Hence,
the investigation of stability and convergence properties of the HEG and MHEG schemes could be
analyzed in an analogous fashion. Here, special attention is dedicated to study the theoretical analysis
of the MHEG scheme (3.6) via the technique of matrix norm. To this end, some useful remarks are
introduced as follows:

Remark 4.1 ( [61]). AM×M = [Ai, j]M×M is a strictly diagonally dominant (SDD) matrix if |Ai,i| > Ri(A),
1 ≤ i ≤ M in which Ri(A) is i-th deleted absolute row sum.

Remark 4.2 ( [62]). If AM×M is a SDD matrix, then it is invertible and the infinity norm of matrix
inverse has the following upper bound:

‖A−1‖∞ ≤
1

min1≤i≤M

{
|Ai,i| − Ri(A)

} .
4.1. Stability analysis

This subsection investigates the stability of the MHEG scheme defined in Eq (3.6). To simplify
our discussion, we assume that M1 = M2 = M = τ

h2 and N1 = N2 = N = τ
h . With this, the matrix

representation of Eq (3.6) is given by

Aun+1 = Bun + Cu0 + b, 0 ≤ n ≤ N − 1, (4.1)

where un is an (M−2)2

4 -dimensional block vector represented as

un = (un
1, u

n
2, . . . , u

n
(M−2)2

16

)T , un
p = (un

i, j, u
n
i+2, j, u

n
i+2, j+2, u

n
i, j+2)T , 1 ≤ p ≤

(M − 2)2

16
,

and

A =



J1 J2

J3 J1 J2
. . .

J3 J1 J2

J3 J1


,B =



H1

H1
. . .

H1

H1


,

C =



P1

P1
. . .

P1

P1


, b =



D1

D1
...

D1

D1


,

J1 =



Q1 Q3

Q2 Q1 Q3
. . .

Q2 Q1 Q3

Q2 Q1


, J2 =



Q5

Q5
. . .

Q5

Q5


,
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J3 =



Q4

Q4
. . .

Q4

Q4


,H1 =



I4

I4
. . .

I4

I4


,

P1 =



T1

T1
. . .

T1

T1


,D1 =



G1

G1
...

G1

G1


,

Q1 =


n11 −n22 0 −n22

−n33 n11 −n22 0
0 −n33 n11 −n33

−n33 0 −n22 n11

 ,Q2 =


0 0 0 −n33

0 0 −n33 0
0 0 0 0
0 0 0 0

 ,

Q3 =


0 0 0 0
0 0 0 0
0 −n22 0 0
−n22 0 0 0

 ,Q4 =


0 −n33 0 0
0 0 0 0
0 0 0 0
0 0 −n33 0

 ,

Q5 =


0 0 0 0
−n22 0 0 0

0 0 0 −n22

0 0 0 0

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

T1 =


(L − 1)τ 0 0 0

0 (L − 1)τ 0 0
0 0 (L − 1)τ 0
0 0 0 (L − 1)τ

 ,G1 = Lτ


fi, j

fi+2, j

fi+2, j+2

fi, j+2

 ,
with

n11 = 1 + (L − 1)τ +M, n22 = (
M

4
−
N

4
), n33 = (

M

4
+
N

4
).

The next theorem is about the stability of this scheme.

Theorem 4.3. The MHEG scheme given by Eq (3.6) is unconditionally stable.

Proof. Suppose the exact and numerical solutions of Eq (4.1) are denoted by un and ûn, respectively.
Let εn = un − ûn be the error defined at the time level n. From Remarks 4.1 and 4.2, we realize that A
is non-singular and thus Eq (4.1) can be written as

un+1 = A−1
Bun + A−1

Cu0 + A−1b, 0 ≤ n ≤ N − 1. (4.2)

From (4.2), we get the round-off error equation written as,

εn+1 = A−1
Bεn + A−1

Cε0, 0 ≤ n ≤ N − 1, (4.3)
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where

εn+1 =


εn+1

0
εn+1

0
...

εn+1
0

 , εn+1
0 =


ψn+1

1
ψn+1

2
...

ψn+1
(M−2)2

16

 , ψ
n+1 =


ψn+1

i, j

ψn+1
i+2, j

ψn+1
i+2, j+2

ψn+1
i, j+2

 ,
and ψn+1

i, j = un+1
i, j − ûn+1.

In order to prove the stability, we employ mathematical induction to show that ‖εn+1‖ ≤ ‖ε0‖ for all
0 ≤ n ≤ N − 1.

For n = 0, we get
ε1 = A−1

Bε0 + A−1
Cε0.

As the matrix infinity norm ‖A‖ and vector infinity norm ‖ε‖ are consistent, we get

‖ε1‖ = ‖A−1
Bε0 + A−1

Cε0‖

≤ ‖A−1
B‖‖ε0‖ + ‖A−1

C‖‖ε0‖

≤ ‖A−1‖‖B‖‖ε0‖ + ‖A−1‖‖C‖‖ε0‖

= (‖B‖ + ‖C‖)‖A−1‖‖ε0‖.

Here A is SDD matrix. Making use of Remarks 4.1 and 4.2, we obtain

‖ε1‖ ≤
(‖B‖ + ‖C‖)

min1≤i≤M

{
|Ai,i| − Ri(A)

}‖ε0‖

1 + (L − 1)τ
|1 + (L − 1)τ +M| − (| − n22| + | − n22| + | − n33| + | − n33|)

=
1 + (L − 1)τ
1 + (L − 1)τ

‖ε0‖ = ‖ε0‖.

∴ ‖ε1‖ ≤ ‖ε0‖.

Next, suppose that
‖εs+1‖ ≤ ‖ε0‖, s = 1, 2, . . . , n − 1. (4.4)

We will prove the above inequality for s = n. From (4.3) and (4.4), we have

‖εn+1‖ = ‖A−1
Bεn + A−1

Cε0‖

≤ ‖A−1‖‖B‖‖εn‖ + ‖A−1‖‖C‖‖ε0‖

≤ ‖A−1‖‖B‖‖ε0‖ + ‖A−1‖‖C‖‖ε0‖

≤
(‖B‖ + ‖C‖)

min1≤i≤M

{
|Ai,i| − Ri(A)

}‖ε0‖

=
1 + (L − 1)τ

|1 + (L − 1)τ +M| − (| − n22| + | − n22| + | − n33| + | − n33|)

=
1 + (L − 1)τ
1 + (L − 1)τ

‖ε0‖ = ‖ε0‖.

∴ ‖εn+1‖ ≤ ‖ε0‖.

This completes the proof.
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4.2. Convergence analysis

Here, we will prove the convergence of the MHEG scheme (3.6). At any time level, let the truncation
error on each group of four mesh points be expressed in the following form of the block vector:

Rn+1 = (Rn+1
1 ,Rn+1

2 , . . . ,Rn+1
(M−2)2

16

)T ,

Rn+1
p = (Rn+1

i, j ,R
n+1
i+2, j,R

n+1
i+2, j+2,R

n+1
i, j+2)T , 1 ≤ p ≤

(M − 2)2

16
.

Then from (3.3), there is a positive constant C∗ such that

‖Rn+1‖ ≤ C∗(τ + h2), 0 ≤ n ≤ N − 1. (4.5)

The subtraction of Eq (4.1) from the equation that generate the exact solution of Eq (2.5),

AUn+1 = BUn + CU0 + b + Rn+1,

will lead to the error equation of the following form:

Aξn+1 = Bξn + Cξ0 + Rn+1, (4.6)

where

ξn+1 =


ξn+1

0
ξn+1

0
...

ξn+1
0

 , ξn+1
0 =


φn+1

1
φn+1

2
...

φn+1
(M−2)2

16

 , φ
n+1 =


φn+1

i, j

φn+1
i+2, j

φn+1
i+2, j+2

φn+1
i, j+2

 ,
and φn+1

i, j = Un+1
i, j − un+1

i, j .

Theorem 4.4. The MHEG scheme defined in (3.6) is convergent, and the following estimate ‖ξn+1‖ ≤

Cn(τ + h2) does hold.

Proof. Mathematical induction will be used for the proof. For n = 0 and utilizing that ξ0 = 0, we get

ξ1 = A−1R1.

Noticing Remark 4.2 and using (4.5), then

‖ξ1‖ = ‖A−1R1‖ ≤ ‖A−1‖‖R1‖ ≤
1

min1≤i≤M

{
|Ai,i| − Ri(A)

}C∗(τ + h2)

=
1

1 + (L − 1)τ
C∗(τ + h2) = C0(τ + h2),

where C0 = C∗/(1 + (L − 1)τ).
∴ ‖ξ1‖ ≤ C0

(
τ + h2

)
.

Now, suppose that
ξs+1 ≤ Cs(τ + h2), s = 1, 2, . . . , n − 1. (4.7)
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We show that the last result does hold for s = n. From (4.6) and (4.7), we have

‖ξn+1‖ = ‖A−1
Bξn + A−1Rn+1‖

≤ ‖A−1‖‖B‖‖ξn‖ + ‖A−1‖‖Rn+1‖

≤
1

min1≤i≤M

{
|Ai,i| − Ri(A)

} [
Cn−1(τ + h2) + C∗(τ + h2)

]
=

1
1 + (L − 1)τ

(Cn−1 + C∗)(τ + h2)

= Cn(τ + h2),

where Cn = Cn−1 + C∗ as limn→∞ τ = 0.

∴ ‖ξn+1‖ ≤ Cn

(
τ + h2

)
, 0 ≤ n ≤ N − 1.

5. Numerical results

Some numerical simulations are provided in this part in order to illustrate the performance of the
numerical solution algorithms in dealing with the TFADE (1.1). For the sake of comparison, we test
the existing HSP method developed by Salama and Ali [41] together with the proposed HEG and
MHEG methods. The three methods are solved by Gauss-Seidel iterative solver and implemented
utilizing Mathematica 11.3 on a laptop with the configuration: Intel (R) Core (TM) i7-8550U and 8GB
of RAM. In all experiments, the infinity norm l∞ along with error tolerance ε = 10−5 are used for
the stopping criterion. It is well known that the computational complexity of an iterative algorithm is
mostly influenced by the number of iterations needed to attain convergence. As a result, an analysis of
the computational cost based on the count of arithmetic operations performed per iteration is presented
in Table 1. With this, the comparison between the tested methods are demonstrated in terms of elapsed
CPU time (S ec), average iteration number (η), maximum absolute error (Max Err) and total arithmetic
operations (T AO).

Table 1. The total arithmetic operations (T AO) of the HSP, HEG and MHEG methods (ρ =

M − 1).

Method Per iteration A f ter convergence T AO
HSP 15ρ2 ∗ η - 15ρ2η

HEG
(
18(ρ − 1)2 + 15(2ρ − 1)

)
η -

(
18(ρ − 1)2 + 15(2ρ − 1)

)
η

MHEG 4.5(ρ − 1)2η 3.75(3ρ2 + 2ρ − 1) 4.5(ρ − 1)2η + 3.75(3ρ2 + 2ρ − 1)

The following two numerical examples are considered:

Example 5.1 ( [63]).

C
0 Dγ

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 −
∂u(x, y, t)

∂x
−
∂u(x, y, t)

∂y

+ t(cos(x) + sin(x) + cos(y) + sin(y)) +
t1−γ(sin(x) + sin(y))

Γ(2 − γ)
,
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with the initial and boundary conditions,

u(x, y, 0) = 0, 0 ≤ x, y,≤ 1,
u(0, y, t) = t sin(y), u(1, y, t) = t(sin(1) + sin(y)), 0 < t ≤ 1,
u(x, 0, t) = t sin(x), u(x, 1, t) = t(sin(x) + sin(1)), 0 < t ≤ 1,

and the exact analytical solution is

u(x, y, t) = t(sin(x) + sin(y)).

Example 5.2 ( [28]).

C
0 Dγ

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 −
∂u(x, y, t)

∂x
−
∂u(x, y, t)

∂y
+ (πt2)(cos(πx) + π sin(πx) + cos(πy) + π sin(πy))

+
2t2−γ(sin(πx) + sin(πy))

Γ(3 − γ)
,

subject to the initial and boundary conditions,

u(x, y, 0) = 0, 0 ≤ x, y,≤ 1,
u(0, y, t) = t2 sin(πy), u(1, y, t) = t2 sin(πy), 0 < t ≤ 1,
u(x, 0, t) = t2 sin(πx), u(x, 1, t) = t2 sin(πx), 0 < t ≤ 1,

and the exact analytical solution is

u(x, y, t) = t2(sin(πx) + sin(πy)).

The initial and Dirichlet-type boundary conditions of the given numerical test problems can be
drawn from the exact analytical solutions. We present the numerical results of Examples 5.1 and 5.2,
which are solved by the HSP, HEG and MHEG iterative schemes at fixed time step τ = 0.01 with
respect to successively refined mesh sizes and different values of γ in Tables 2–5. From the tables
along with Figures 3 and 4, it is evident that the proposed HEG and MHEG methods cost lesser CPU
times than the HSP method. For instance, the CPU time in HEG method is reduced by
(30.96–39.99)%, (28.62–36.97)%, (13.90–37.57)% and (13.90–38.60)% as compared to the HSP
method in Tables 2 to 5, respectively. Similarly, the CPU time in the MHEG method is reduced by
(74.62–92.32)%, (71.50–92.22)%, (51.87–87.66)% and (51.87–86.76)% in comparison to the HSP
method in Tables 2 to 5, respectively. It follows based on all the tabulated results that the
improvement percentages in terms of CPU time compared to the HSP method are about
(13.90–39.99)% and (51.87–92.32)% for the HEG and MHEG methods, respectively. Likewise, it can
be observed that the numbers of iterations and arithmetic operations of the HEG method are declined
approximately by (0.25–41.17)% and (15.40–30.92)%, respectively, in comparison to the HSP
method. Similarly, the counts of iterations and executed arithmetic operations of the MHEG method
are decreased significantly by (75.00–87.50)% and (84.70–94.01)%, respectively, compared to the
HSP method. These reductions in iteration number as well as computational cost can be seen in
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Figures 5–8, which are consistent with the improvement in CPU timings portrayed in Figures 3 and 4.
These results illustrate the success of the proposed methods to simulate the considered model problem
with lower computing effort. By comparing the CPU times, iterations numbers and total arithmetic
operations, we indicate that the MHEG method is the most efficient among the three tested methods.
Figures 9 and 10 introduce the 3D plots for the maximum absolute errors of Examples 5.1 and 5.2,
respectively. Again,these testify the effectiveness and reliability of the proposed methods. It is worth
noting here that the accuracy of numerical solutions is dependent on the Laplace transform technique
discussed in [41]. The effect of the aforementioned technique on the accuracy of numerical solutions
is an intriguing line of future research. The tabulated and sketched results show that the proposed
methods can achieve acceptable accuracy for various values of fractional order γ. Considering the
proposed methods’ simplicity and computational efficiency, they can be a reliable approach that
achieves an acceptable accuracy for solving the problem under consideration.
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Figure 3. 2D plots CPU time for Example 5.1.
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Figure 4. 2D plots CPU time for Example 5.2.
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Figure 5. 2D plots iterations number for Example 5.1.

Table 2. The CPU time, iterations number, maximum errors and total operations of
Example 5.1 at γ = 0.1 and τ = 0.01.

h−1 Method S ec η Max Err T AO
HSP 0.859 16 3.1180E-03 6,000

6 HEG 0.593 11 3.1233E-03 4,653
MHEG 0.218 2 4.7176E-03 459

HSP 18.046 61 2.6121E-03 154,635
14 HEG 10.828 36 2.6943E-03 106,812

MHEG 1.953 12 3.1139E-03 9,771

HSP 90.531 122 2.2954E-03 807,030
22 HEG 56.828 73 2.5172E-03 570,495

MHEG 8.046 24 2.8194E-03 48,315

HSP 272.672 192 1.9199E-03 2,422,080
30 HEG 173.188 117 2.2979E-03 1,751,139

MHEG 20.953 40 2.6958E-03 150,795

Table 3. The CPU time, iterations number, maximum errors and total operations of
Example 5.1 at γ = 0.3 and τ = 0.01.

h−1 Method S ec η Max Err T AO
HSP 0.765 11 7.0109E-03 4,125

6 HEG 0.546 8 7.0164E-03 3,384
HMEG 0.218 2 8.4447E-03 459

HSP 12.546 42 6.6935E-03 106,470
14 HEG 8.406 25 6.7768E-03 74,175

MHEG 1.734 9 7.1581E-03 7,827

HSP 61.562 85 6.4074E-03 562,275
22 HEG 40.015 50 6.6223E-03 390,750

MHEG 6.265 17 6.9166E-03 35,715

HSP 193.422 135 6.0044E-03 1,703,025
30 HEG 121.906 81 6.4234E-03 1,212,327

MHEG 15.031 27 6.7921E-03 104,931
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Figure 6. 2D plots iterations number for Example 5.2

Table 4. The CPU time, iterations number, maximum errors and total operations of
Example 5.2 at γ = 0.7 and τ = 0.01.

h−1 Method S ec η Max Err T AO
HSP 0.453 8 2.6906E-02 3,000

6 HEG 0.390 6 2.6908E-02 2,538
MHEG 0.218 2 8.6102E-02 459

HSP 7.828 28 6.1030E-03 70,980
14 HEG 5.718 17 6.1995E-03 50,439

MHEG 2.218 7 2.0151E-02 6,531

HSP 33.484 56 3.0232E-03 370,440
22 HEG 22.453 33 3.2549E-03 257,895

MHEG 6.4531 12 9.1659E-03 26,715

HSP 98.312 91 1.7293E-03 1,147,965
30 HEG 61.375 54 2.1788E-03 808,218

MHEG 12.125 19 5.6006E-03 76,707

Table 5. The CPU time, iterations number, maximum errors and total operations of
Example 5.2 at γ = 0.9 and τ = 0.01.

h−1 Method S ec η Max Err T AO
HSP 0.453 8 2.6920E-02 3,000

6 HEG 0.390 6 2.6925E-02 2,538
MHEG 0.218 2 8.5452E-02 459

HSP 7.062 24 6.3499E-03 60,840
14 HEG 5.125 15 6.4284E-03 44,505

MHEG 2.203 6 2.0218E-02 5,883

HSP 30.328 49 3.2926E-03 324,135
22 HEG 19.796 29 3.5445E-03 226,635

MHEG 6.093 11 9.3556E-03 24,915

HSP 88.687 78 1.9995E-03 983,970
30 HEG 54.453 46 2.4626E-03 688,482

MHEG 11.734 16 5.8358E-03 66,123
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Figure 7. 2D plots total arithmetic operations for Example 5.1.
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Figure 8. 2D plots total arithmetic operations for Example 5.2.

(a) HEG (b) MHEG

Figure 9. 3D plots maximum absolute errors for Example 5.1 when γ = 0.3 and h = 1/30.
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(a) HEG (b) MHEG

Figure 10. 3D plots maximum absolute errors for Example 5.2 when γ = 0.7 and h = 1/30.

6. Conclusions

In this paper, the HEG and MHEG methods are developed for fast and accurate numerical
solutions of the 2D TFADE. In our methods, we borrowed the idea of the Laplace transform
technique [52] to convert the original fractional advection-diffusion problem (1.1) into its
corresponding PDE. Afterwards, two implicit difference schemes are used to discretize the resulting
PDE and construct the HEG and MHEG methods. The stability and convergence analyses are
investigated rigorously by the means of the matrix norm analysis, which shows that the proposed
methods are stable and convergent without any restricting conditions. Numerical test problems with
tabulated and sketched results are provided to verify the applicability, accuracy and efficiency of the
proposed methods. The obtained numerical results revealed that both HEG and MHEG methods
compare well with the exact solutions and require less iterations numbers, computational costs and
hence CPU times in comparison to the HSP method introduced in [41]. On average, the HEG method
decreased the CPU time and iterations number compared to the HSP method by 31.51% and 36.91%,
respectively. In addition, the MHEG method decreased the mentioned outcomes by 79.13% and
78.90%, respectively, compared to the HSP method. Moreover, the computational efficiency of the
MHEG method is shown to be optimal among all the tested methods. Hence, The power of the HEG
and MHEG methods to reduce the amount of computational complexity in solving the
advection-diffusion problem of fractional order is shown. As a future work, we recommend parallel
implementation of the proposed methods in this work.
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11. S. Savović, A. Djordjevich, Finite difference solution of the one-dimensional advection-diffusion
equation with variable coefficients in semi-infinite media, Int. J. Heat Mass Tran., 55 (2012), 4291–
4294. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.073

AIMS Mathematics Volume 7, Issue 9, 15854–15880.

http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.04.106
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.06.090
http://dx.doi.org/https://doi.org/10.3934/math.2022120
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.06.019
http://dx.doi.org/https://doi.org/10.3934/math.2022046
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111636
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.07.040
http://dx.doi.org/ https://doi.org/10.1016/j.aej.2021.04.070
http://dx.doi.org/ https://doi.org/10.1016/j.aej.2021.04.070
http://dx.doi.org/http://dx.doi.org/10.3934/math.2022254
http://dx.doi.org/https://doi.org/10.1002/num.22629
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.073


15877

12. H. Tajadodi, A Numerical approach of fractional advection-diffusion equation
with Atangana-Baleanu derivative, Chaos Soliton. Fract., 130 (2020), 109527.
https://doi.org/10.1016/j.chaos.2019.109527

13. S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, New
York: Argonne National Lab., 1995.

14. T. Hayat, M. Tamoor, M. I. Khan, A. Alsaedi, Numerical simulation for nonlinear
radiative flow by convective cylinder, Results Phys., 6 (2016), 1031–1035.
https://doi.org/10.1016/j.rinp.2016.11.026

15. S. Qayyum, M. I. Khan, T. Hayat, A. Alsaedi, Comparative investigation of five nanoparticles in
flow of viscous fluid with Joule heating and slip due to rotating disk, Phys. B, 534 (2018), 173–183.
https://doi.org/10.1016/j.physb.2018.01.044

16. M. Waqas, M. I. Khan, T. Hayat, M. M. Gulzar, A. Alsaedi, Transportation of radiative energy
in viscoelastic nanofluid considering buoyancy forces and convective conditions, Chaos Soliton.
Fract., 130 (2020), 109415. https://doi.org/10.1016/j.chaos.2019.109415

17. M. I. Khan, A. Alsaedi, T. Hayat, N. B. Khan, Modeling and computational analysis of hybrid class
nanomaterials subject to entropy generation, Comp. Methods Prog. Biom., 179 (2019), 104973.
https://doi.org/10.1016/j.cmpb.2019.07.001
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