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1. Introduction

We only consider associative Artinian rings with identity. A chain ring is a ring whose left (right)
ideals form a chain. A ring is a chain ring if and only if it is a principal local ring. Because commutative
principal ring is a direct sum of chain rings, the study of commutative principal rings is reduced to that
of chain rings. Finite commutative chain rings occur naturally in at least three different areas; in
Algebraic Number Theory (cf. p. 86 in [11]); in Commutative Algebra (cf. [6]); and in Geometry
(cf. [9]).

A good example of finite chain rings are the commutative rings Zpn [x] / (g (x)), where g (x) is a
monic polynomial of degree r over Zpn irreducible mod p. The maximal ideal of such a ring is the ideal
generated by p, where p is the characteristic of its residue field. Such a ring is uniquely determined by
p, n, and r, and its group of automorphisms is cyclic of order r. These rings have a lot in common with
Galois fields and are thus called Galois rings and denoted by GR(pn, r). They were first observed by
Krull (1924) (cf. p. 20 in [10]).

A commutative chain subring R0 of a local ring R is called a coefficient subring of R if R = R0 + J(R)
and R/J(R) u R0/pR0, where J(R) is the maximal ideal of R. The subring R0 plays an important role
in the structure of the local ring R. The coefficient subring of a finite local ring is its maximal Galois
subring (cf. [4]).
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Chain rings have been studied by several mathematicians. Wirt [17] describes the structure of a
finite chain ring as the quotient of a skew polynomial ring over a Galois ring by an ideal of special
form generated using Eisenstein polynomial; this conclusion was almost achieved by Nechaev [14],
who called them Galois-Eisenstein-Ore rings. Further, Fisher [6] described the structure of such a ring
as the quotient of a skew power series ring over a certain commutative complete discrete valuation
domain by an ideal of special form similar to the ideal involved in the construction in the study by
Wirt. Finally, Alkhamees, Singh, and Alolayan [1] generalize the construction of Wirt to the situation
of an Artinian chain ring in which the residue field is absolutely algebraic (algebraic over its prime
subfield).

The use of finite chain rings in coding theory may be traced back to the seminal work of
Preparata [15] in 1968; afterward, there was an increased interest in using finite chain rings in getting
more compact codes with higher capabilities of error-correction (see for example [12]). The role of
different types of matrices in coding theory is well known (for instance, cf. [3,7,16,18]). They are used
during the decoding process to expose and correct errors during transmission.

This paper aimed to describe the structure of a chain ring as a ring of square matrices over a Galois
ring using the companion matrix of a certain Eisenstein polynomial over a Galois ring (for the definition
of the companion matrix of a monic polynomial over a field, see Definition, p. 307 and problem 4,
p. 312 in [8]). Such a companion matrix generates the unique maximal ideal of the corresponding
matrix chain ring.

The use of matrices in coding theory mentioned above indicates that this construction may be useful
in the recent applications of finite chain rings in coding theory. This construction may also help in
implementing finite chain rings in coding theoretic environments.

2. Construction of a finite chain ring

Let R be a finite chain ring of characteristic pn, m the index of nilpotency of J(R), and R0

= GR(pn, r) = Zpn[η] a coefficient subring of R, where η is an element of R0 of multiplicative order
pr − 1. Then [5]:

(i) There exists a pair (π, σ) such that J(R) = Rπ and πa = aσπ for each a in R0, where π is an element
of J(R) and σ is an automorphism of R0. Additionally, σ is uniquely determined by R and R0 [1].
Thus, we call σ the associated automorphism of R with respect to R0. Let S 0 = GR(pn, s) be the
Galois subring of R0, where s = r /k′; i.e., S 0 = (R0)σ.

(ii) R = ⊕k−1
i=0 R0π

i as R0- modules.
(iii) πk = pΣk−1

i=0 uiπ
i, where u0 is a unit in R0 and the other ui are elements of R0; i.e., π is a root of

Eisenstein polynomial g(x) = xk − pΣk−1
i=0 uixi over R0.

(iv) There are R0-module isomorphisms:

R0π
i u R0 for i = 1, 2, ..., t − 1 and

R0π
i u R0/pn−1R0 for i = t, t + 1, ..., k − 1,

where 1 ≤ t ≤ k.
(v) σk = IdR0 if n > 1 and hence if k′ is the order σ then k′ divides k.

(vi) m = (n − 1)k + t.
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(vii) We call the integers p, n, r, k, k′, m invariants of R.

In the case that R is a finite chain ring, let R0, S 0, π, η, u0, u1, ..., uk−1, p, n, r, s, t, k, k′, m and σ retain
their meanings throughout the paper.

Proposition 2.1. Let R be a finite local ring. Then, R is a chain ring if and only if J(R) has the maximal
index of nilpotency.

This is Proposition 1 in [2].
Construction A:
Notation: Let R0 be a Galois ring of the form GR(pn, r), t , k be positive integers with 1 ≤ t ≤ k, and
σ be an automorphism of R0 of order k′ with k′ divides k if n > 1. Suppose that S 0 is a Galois subring
of R0 of the form GR(pn, s), u0, u1, ..., uk−2, uk−1 are certain elements of R0 such that u0, u1, ..., uk−2

are elements of S 0 with u0 is a unit and uk−1 is either an element of R0 if p2uk−1 = 0 or an element of
S 0 otherwise, where s = r / k′. Next, assume that CMk(R0) is the additive matrix group of all k × k
matrices of the form A =

[
αi j

]
, where [a0 a1 ... at−1 at ... ak−1] is the first row of A, a0, a1, ..., at−1 ∈ R0

& at, ..., ak−1 ∈ R0/pn−1R0, αi1 = pu0αi−1k for i > 1 and αi j is a function of αi−1 j−1 and αi−1k defined
by αi j = αi−1 j−1 + p u j−1 αi−1kfor i, j > 1. Clearly, there is a certain pattern of matrices in CMk(R0)
makes all the rows of them depend on their first row and the certain elements pu0, pu1, ..., puk−1; thus
each matrix A in CMk(R0) is induced (derived) from the first row [a0 a1 ... at−1 at ... ak−1] and hence let
us denote an arbitrary element A of CMk(R0) by A = D[a0 a1 ... ak−1], where a0, a1, ..., ak−1 are the
elements of the first row of A (see Example 2.1 below).

Let R0, S 0, CMk(R0), D[a0 a1 ... ak−1], u0, u1, ..., uk−1, p, n, r, s, t, k, k′ and σ retain their meanings
as in the last notation. Suppose that A = D[a0 a1 ... ak−1] and B = D[b0 b1 ... bk−1] are elements
of CMk(R0) and let us define the σ- skew multiplication A ∗ B in CMk(R0) in the same way as the
usual matrix multiplication AB except we put aibσ

i

j in stead of aib j for all i, j = 0, 1, ..., k − 1. The
multiplication A∗B makes sense by taking into consideration that pR0 may be considered as R0/pn−1R0-
module (in the case that the elements of the first t columns are involved in the multiplication when it is
needed) and R0/pn−1R0 may be considered as R0-module (in the case that the elements of the last k − t
columns are involved in the multiplication).

To make it easier to understand construction A, let us introduce the following example:

Example 2.1. Let R0 be a Galois ring of the form GR(pn, r) with n > 1, r an even positive number, σ
an automorphism of R0 of order k′ = 2, u0 and u1 are certain elements of R0 such that u0 is a unit in
the subring S 0 = GR(pn, s) of R0 and u1 is either an element of R0 or an element of S 0 according to
wether p2u1 is zero or not, where s = r/k′ = r/2 . Assume

CM2(R0) =

{(
a0 a1

pu0a1 a0+pu1a1

)
: a0 ∈ R0 and a1 ∈ R0/pn−1R0

}
. Then, there is a certain pattern

of matrices in CM2(R0) such that the second row of them depends on their first row and the certain

elements pu0, pu1 and so any matrix A =

(
a0 a1

pu0a1 a0+pu1a1

)
of CM2(R0) is induced (derived) from the

first row [a0 a1]; thus, let us denote an arbitrary element A of CM2(R0) by A = D[a0 a1], where a0 and
a1 are the elements of the first row of A. Suppose that A = D[a0 a1] and B = D[b0 b1] are arbitrary
elements of the additive matrix group CM2(R0) and let us define the σ-skew multiplication A ∗ B in
CM2(R0) in the same way as the usual matrix multiplication AB except we put aibσj instead of aib j for
i = 1 and for all j = 0, 1. Thus,

AIMS Mathematics Volume 7, Issue 9, 15824–15833.



15827

A ∗ B = D[a0 a1] ∗ D[b0b1]

=

(
a0b0 + pu0a1bσ1 a0b1 + a1bσ0 + pu1a1bσ1

pu0(a0b1 + a1bσ0 + pu1a1bσ1 ) a0b0 + pu0a1bσ1 + pu1(a0b1 + a1bσ0 + pu1a1bσ1 )

)
= D[a0b0 + pu0a1bσ1 a0b1 + a1bσ0 + pu1a1bσ1 ].

The multiplication A ∗ B makes sense by taking into consideration that pR0 may be considered as
R0/pn−1R0-module (in the case that the elements of the first column are involved in the multiplication
when it is needed) and R0/pn−1R0 may be considered as R0-module (in the case that the elements of
the second column are involved in the multiplication). Thus, A ∗ B ∈ CM2(R0). Now, it is trivial to see
that that CM2(R0) is a ring. Let J = {D[pa0 a1] : a0 ∈ R0 and a1 ∈ R0/pn−1R0}. It is easy to see that
CM2(R0) /J u GF(pr) and CM2(R0) is a local ring of order pmr, where m = 2(n− 1) + 1. Suppose that

Π = D[0 1] =

(
0 1

pu0 pu1

)
, then Π2 = pD[u0 u1]. This implies that Πm = Π2(n−1)+1 = pn−1ΠN(n−1)

2 = 0

N(n−1)
2 = 0 and Πm−1 = Π2(n−1) = pn−1N(n−1)

2 , 0, where N2 = D[u0 u1] is a unit in CM2(R0). Therefore,
Π has the maximal index of nilpotency and thus according to the last proposition CM2(R0) is a chain
ring with invariants p, n, r, k = k

′

= 2, m.

Assume that R is a finite chain ring with invariants p, n, r, k = k
′

= 2, m = 2(n − 1) + 1(t = 1) with
n > 1, r is even number, R0 = GR(pn, r) is a coefficient subring of R, σ is the associated automorphism
of R with respect to R0 of order k′ = 2 and J(R) = Rπwith π2 = pu0+ pu1π; i.e., π is a root of Eisenstein
polynomial g(x) = x2 − pu1x− pu0 over R0. Using ππ2 = π2π and π2 = pu0+ pu1π, we get that u0 is a
unit in the subring S 0 = GR(pn, s) of R0 and u1 is either an element of R0 or an element of S 0 according
to whether p2u1 is zero or not.

Let φ be a mapping from R to CM2(R0) defined by φ( a0 + a1π) = D[a0 a1]. Let a = a0 + a1π and
b = b0 + b1π be elements of R. Then,

φ(a + b) = φ((a0 + a1π) + (b0 + b1π)) = φ((a0 + b0) + (a1 + b1)π)) = D[a0 + b0 a1 + b1] = D[a0

a1] + D[b0 b1] = φ(a) + φ(b),
φ(ab) = φ((a0 +a1π)(b0 +b1π)) = φ(a0b0 + pu0a1bσ1 + (a0b1 +a1bσ0 + pu1a1bσ1 )π) = D[a0b0 + pu0a1bσ1

a0b1 + a1bσ0 + pu1a1bσ1 ] = D[a0 a1] ∗ D[b0 b1] = φ(a)φ(b).
Therefore, φ is a ring homomorphism. Now, it is easy to check that φ is an isomorphism. It is worth

noting that φ(π) = Π = D[0 1] =

(
0 1

pu0 pu1

)
, which is the companion matrix of a certain Eisenstein

polynomial g(x) = x2 − pu1x− pu0 over R0 mentioned above and has π in J(R) as its root.
Let us denote CMk(R0) with σ = IdR0 by CCMk(R0). In such a case, we notice that the σ-skew

multiplication A ∗ B in CCMk(R0) is the same as the usual matrix multiplication AB because σ = IdR0 .

Proposition 2.2. CCMk(R0) is a finite commutative chain ring with invariants p, n, r, k, m.

Proof. Assume that A = D[a0 a1 ... ak−1] = [αi j], B = D[b0 b1 ... bk−1] = [βi j] are arbitrary elements of
CCMk(R0) and C = AB =

[
ci j

]
. We want to prove that:

ci1 = pu0ci−1k for i > 1 and ci j = ci−1 j−1 + pu j−1ci−1k for i, j > 1. (2.1)
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For the 1st column, we notice that

ci1 =

k∑
e=1

αieβe1 = αi1β11 +

k∑
e=2

αieβe1 = pu0αi−1kβ11 +

k∑
e=2

(αi−1e−1 + pue−1αi−1k)pu0βe−1k

= pu0

k∑
e=2

αi−1e−1βe−1k + pu0 αi−1k(β11 +

k∑
e=2

pue−1βe−1k)

= pu0(ci−1k − αi−1kβkk) + pu0 αi−1k(β11 +

k∑
e=2

pue−1βe−1k)

= pu0ci−1k + pu0 αi−1k(β11 +

k∑
e=2

(βee − βe−1e−1) − βkk) = pu0ci−1k.

Now, let us find ci j for i, j > 1:

ci j =

k∑
e=1

αieβe j = αi1β1 j +

k∑
e=2

αieβe j = αi1β1 j +

k∑
e=2

(αi−1e−1 + pue−1αi−1k)(βe−1 j−1 + pu j−1βe−1k)

= αi1β1 j +

k∑
e=2

αi−1e−1βe−1 j−1 + pαi−1k

k∑
e=2

ue−1βe−1 j−1

+ pu j−1

k∑
e=2

αi−1e−1βe−1k + p2u j−1αi−1k

k∑
e=2

ue−1βe−1k.

But

k∑
e=2

αi−1e−1βe−1 j−1 = ci−1 j−1 − αi−1kβk j−1,

pu j−1

k∑
e=2

αi−1e−1βe−1k = pu j−1(ci−1k − αi−1kβkk),

p2u j−1αi−1k

k∑
e=2

ue−1βe−1k = pu j−1αi−1k

k∑
e=2

pue−1βe−1k = pu j−1αi−1k(βkk − β11)

Thus,

ci j =αi1β1 j + (ci−1 j−1 − αi−1kβk j−1) + pu j−1(ci−1k − αi−1kβkk) + pu j−1αi−1k(βkk − β11)

+ αi−1k

k∑
e=2

pue−1βe−1 j−1 = ci−1 j−1 + pu j−1ci−1k + pu0αi−1kβ1 j − αi−1kβk j−1 − pu j−1αi−1kβ11

+ αi−1k

k∑
e=2

pue−1βe−1 j−1 = ci−1 j−1 + pu j−1ci−1k + αi−1k(pu0β1 j − βk j−1 − pu j−1β11

+

k∑
e=2

pue−1βe−1 j−1).
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Using the following relations: βi1 = pu0βi−1k for i > 1 and βi j = βi−1 j−1 + pu j−1 βi−1 k for i, j > 1
which make all the rows of B = [βi j] depend on their first row and certain elements pu0, pu1, ..., puk−1.
It is a matter of routine calculations to deduce that pu0β1 j − βk j−1 − pu j−1β11 +

∑k
e=2 pue−1βe−1 j−1 = 0.

Hence,
ci j = ci−1 j−1 + pu j−1ci−1k

Now, it is easy to see that CCMk(R0) is a commutative ring with identity. Assume that M = {D[pa0

a1 ... at−1 at ... ak−1] : a0, a1, ..., at−1 ∈ R0 & at, ..., ak−1 ∈ R0/pn−1R0}. Then, it is easy to see that M is
an ideal in CCMk(R0), |M| = p(m−1)r, whereas |CCMk(R0)| = pmr. Clearly, CCMk(R0) /M u GF(pr);
subsequently, CCMk(R0) is a local ring. Suppose that

Π = D[0, 1, 0, ..., 0, 0] =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 0 . . 0
. . . . . . . .

. . . . . . . .

0 0 . . . 0 1 0
0 0 . . . 0 0 1

pu0 pu1 pu2 . . . puk−2 puk−1


is an element of CCMk(R0) in which the first superdiagonal consists entirely of ones and all
other elements above the last row of the matrix Π are zeros. Then, obviously Π2 = D[0, 0, 1, 0,
..., 0, 0], Π3 = D[0, 0, 0, 1, ..., 0, 0] and so on Πk = pD[u0, u1, ..., uk−1]. Using Πk = pD[u0,
u1, ..., uk−1], then one can deduce that Πm = Π(n−1)k+t = pn−1ΠtN(n−1)

k = 0 N(n−1)
k = 0 and

Πm−1 = Π(n−1)k+t−1 = pn−1Πt−1N(n−1)
k , 0, where Nk = D [u0, u1, ..., uk−1] is a unit in CCMk(R0).

Thus, Π has the maximal index of nilpotency in CCMk(R0). Using Proposition 2.1, one deduce that
CCMk(R0) is a chain ring with invariants p, n, r, k, m. �

Proposition 2.3. CMk(R0) is a finite chain ring with invariants p, n, r, k, k′,m.

Proof. Assume that A = D[a0 a1 ... ak−1] = [αi j], B = D[b0 b1 ... bk−1] = [βi j] are elements of CMk(R0).
Then, we define σ- multiplication in CMk(R0) as A∗B = C∗ = [c∗i j], where c∗i j in CMk(R0) has the same
expression as ci j in CCMk(R0), except we put aibσ

i

j instead of aib j for all i, j = 0, 1, ..., k − 1. Now,
using ci1 = pu0ci−1k for i > 1 and ci j = ci−1 j−1 + pu j−1ci−1k for i, j > 1, we deduce that c∗i1 = pu0c∗i−1k for
i > 1 and c∗i j = c∗i−1 j−1 + pu j−1c∗i−1k for i, j > 1.

Let M = {D[pa0 a1 ... at−1 at ... ak−1] : a0, a1, ..., at−1 ∈ R0 & at, ..., ak−1 ∈ R0/pn−1R0}. Then, it is
easy to see (as above) that M is the unique maximal ideal in CMk(R0); subsequently, CMk(R0) is a local
ring. Further, assume that Π = D[0, 1, 0, ..., 0, 0]. Then, obviously as above Πm = 0 and Πm−1 , 0.
Thus, Π has the maximal index of nilpotency in CMk(R0). Using Proposition 2.1, one deduce that
CMk(R0) is a chain ring with invariants p, n, r, k, k′,m. �

Theorem 2.1. A finite ring is a chain ring with invariants p, n, r, k, k′,m if and only if it is isomorphic
to one of the rings given by construction A.

Proof. Let R be a finite chain ring with invariants p, n, r, k, k′, m, R0 = GR(pn, r) be a coefficient
subring of R, J(R) = Rπ such that π is a root of Eisenstein polynomial g(x) = xk − pΣk−1

i=0 uixi over R0

AIMS Mathematics Volume 7, Issue 9, 15824–15833.



15830

and σ be the associated automorphism of R with respect to R0. Using ππk = πkπ and πk = pΣk−1
i=0 uiπ

i,
we deduce that u0, u1, ..., uk−2 are elements of the subring S 0 = GR(pn, s) of R0 such that u0 is a unit
and uk−1 is either an element of R0 or an element of S 0 according to whether p2uk−1 is zero or not (see
Example 2.1).

Let φ be a mapping from R to CMk(R0) defined by φ((a0 + a1π + ... + ak−1π
k−1) = D[a0 a1 ... ak−1].

Assume that a = a0 + a1π + ... + ak−1π
k−1 and b = b0 + b1π + ... + bk−1π

k−1 are elements of R. Then:
φ(a + b) = φ((a0 + a1π+ ...+ ak−1π

k−1) + (b0 + b1π+ ...+ bk−1π
k−1)) = φ((a0 + b0) + (a1 + b1)π+ ...+

(ak−1 + bk−1)πk−1)) = D[a0 + b0 a1 + b1 ... ak−1 + bk−1] = D[a0a1...ak−1] + D[b0 b1 ... bk−1] = φ(a) +φ(b).
Also ab = (a0 + a1π+ ...+ ak−1π

k−1)(b0 + b1π+ ...+ bk−1π
k−1) = ζ0 + ζ1π+ ...+ ζk−1π

k−1 and φ(ab) = [c∗i j].
According to the last proposition [c∗i j] is determined completely by [c1 j]. Thus, to check that φ(ab) =

φ(a)∗φ(b) it is enough to prove that [c∗1 j] = [ζ0 ζ1 ... ζk−1], which can be proved using similar technique
as the one used in the proof of Proposition 2.2. Therefore, φ is a ring homomorphism. Now, it is easy
to check that φ is an isomorphism. Actually, φ(π) = Π = D[0 1 0 ... 0 0] is the k × k companion matrix
of Eisenstein polynomial g(x) = xk − pΣk−1

i=0 uixi over R0 in which π is its root. �

Remark 2.1. Suppose that

C′Mk(R0) =

 k−1∑
i=0

aiΠ
i : a0, a1, ..., ak−1 ∈ R0

 =

k−1∑
i=0

R0Π
i,

where Π is the matrix given in the proof of the last proposition and Π0 = Ik =
[
ei j

]
is the diagonal

matrix of degree k, the elements ei j of Π0 in the first t columns are in R0, whereas they are in R0/pn−1R0

otherwise and eii = 1 for all i = 1, 2; ..., k; this means that Π0 = Ik = [1, 0, ..., 0] in C′Mk(R0)
according to the notation used above. Clearly, C′Mk(R0) is additive matrix group. Let us define that
Πia = a σi

Πi for each a ∈ R0. It is a direct check to see that this multiplication transfers the additive
group C′Mk(R0) =

∑k−1
i=0 R0Π

i into a ring; i.e., it is the ring of all k × k matrices
∑k−1

i=0 aiΠ
i, where ai

are elements of R0. Further, C′Mk(R0) is commutative if and only if σ = IdR0 . Now, it is evident that
C′Mk(R0) is the same as the ring CMk(R0) given in construction A. This can be considered as another
matrix construction of a finite chain ring.

3. Construction of Artinian chain ring with absolutely algebraic residue field

Let R be an Artinian local duo (every left ideal is a right ideal and vice versa) ring of characteristic pn

with absolutely algebraic residue field, where p is the characteristic of R/J(R); it is already known [1]
that R in sucha case has a commutative chain subring R0 as its coefficient subring. In fact, R0 is a union
of ascending chains of Galois subrings of R of characteristic pn, with its maximal ideal generated by p
and Aut R0 u Aut (R0/pR0). Thus, we call R0 in this case a generalized Galois ring.

Now assume that R is an Artinian chain ring with m as the index of nilpotency of J(R). Then [1]:

(i) There exists a pair (π, σ) such that J(R) = Rπ and πa = aσπ for each a in R0, where π an element
of J(R) and σ is an automorphism of R0. Further, σ is uniquely determined by R and R0. Thus,
we call σ the associated automorphism of R with respect to R0.

(ii) R = ⊕k−1
i=0 R0π

i as R0- modules and thus one can deduce that R is a duo ring.
(iii) πk = pΣk−1

i=0 uiπ
i, where u0 is a unit in R0 and the other ui are elements of R0; i.e., π is a root of

Eisenstein polynomial g(x) = xk − pΣk−1
i=0 uixi over R0.
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(iv) There are R0-module isomorphisms:

R0π
i u R0 for i = 1, 2, ..., t − 1 and

R0π
i u R0/pn−1R0 for i = t, t + 1, ..., k − 1,

where 1 ≤ t ≤ k.
(v) σk = IdR0 if n > 1 and hence if k′ is the order σ then k′ divides k.

(vi) m = (n − 1)k + t.
(vii) Assume R′ is the subring of R generated by Zpn and π. Then, it is easy to check that R′ is a finite

chain subring of R with invariants p, n, r′, k, k′,m, where R′0 = GR(pn, r′) is a coefficient subring
of R′. We call R′ the associated finite chain ring of R.

(viii) We call the integers p, n, r′, k, k′, m invariants of R.

Proposition 3.1. Let R be an Artinian duo local ring of characteristic pn in which its residue field is
absolutely algebraic. Then, the following are equivalent:

(i) R is a chain ring
(ii) J(R) has the maximal index of nilpotency
(iii) There exists an element in J(R) that has the maximal index of nilpotency.

Proof. Let R0 be a coefficient subring of R. Then, R0 is a generalized Galois ring. Assume R′0 is
a maximal Galois subring of R0 and R′0 u GR(pn, r′) = Zpn[η], where η is an element of R′0 of
multiplicative order pr′ − 1.

(i) =⇒ (ii): Let R be a chain ring and R′ the associated finite chain ring of R. Then, J(R) = Rπ and
hence J(R′) = R′π. Thus, using Proposition 2.1, one can deduce that J(R′) has the maximal index of
nilpotency and subsequently J(R) has the maximal index of nilpotency.

(ii) =⇒ (iii): Assume J(R) has the maximal index of nilpotency, say m, and T = {Σm−1
i=0 λiη

i :
λi ∈ R0 }. It is easy to check that T is a finite local ring and J(T ) = Tπ. Hence, T is a chain ring;
consequently, π is an element of J(R), which has the maximal index of nilpotency.

(iii) =⇒ (i): Let π be an element of J(R) of maximal index of nilpotency, say m, and T = {Σm−1
i=0

λiη
i : λi ∈ R0 }. Since R0 is a coefficient subring of R; R = R0 + J(R) and R/J(R) u R0 /pR0 .

Additionally, as above T is a chain ring with invariants p, n, r′, k, k′, m with T/Tπ u R0 /pR0 . Hence,
R/J(R) u T/Tπ. But T ⊆ R. Therefore, R = T ; thus, R is a chain ring. �

Using the fact that if R is an Artinian chain ring with absolutely algebraic field and R′ is the
associated finite chain ring of R, then J(R) and J(R′) have the same generator, one can prove the
following theorem.

Theorem 3.1. Let R and T be Artinian chain rings with absolutely algebraic residue fields and
constructed over the same generalized Galois subring and with the same invariants p, n, r′, k, k′,
m and R′, T ′ be their associated finite chain subrings respectively. Then, R u T if and only if R′ u T ′.

Construction B:
Assume that R0 is a generalized Galois ring of characteristic pn, t , k are positive integers with

1 ≤ t ≤ k, σ is an automorphism of R0 of order k′ with k′ divides k if n > 1, R′0 is a Galois subring of
R0 of the form GR(pn, r′), S 0 is a Galois subring of R′0 of the form GR(pn, s), u0, u1, ..., uk−1 are certain
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elements or R′0 such that u0, u1, ..., uk−2 are elements of S 0 with u0 is a unit and uk−1 is either an element
of R′0 if p2uk−1 = 0 or an element of S 0 otherwise, where s = r′ / k′. Further, in such a (Artinian) case,
suppose that ACMk(R0) is the additive matrix group of all k x k matrices of the form [αi j] , [a0 a1 ...

at−1 at ... ak−1] is the first row of A, a0, a1, ..., at−1 ∈ R0 & at, ..., ak−1 ∈ R0/pn−1R0, αi1 = pu0αi−1k for
i > 1 and αi j is a function of αi−1 j−1 and αi−1k defined by αi j = αi−1 j−1 + pu j−1 αi−1k for i, j > 1. As in
the last construction, let us denote an arbitrary element A of ACMk(R0) by D[a0 a1 ... ak−1], where a0,
a1, ..., ak−1 are the elements of the first row of A. Let A = D[a0 a1 ... ak−1] and B = D[b0 b1 ... bk−1]
be elements of ACMk(R0) and let us define the σ-skew multiplication A ∗ B in ACMk(R0) as in the last
construction and such multiplication make sense for the same reason as in the finite case. Now, using a
similar technique as in a finite case and using Proposition 3.1, one can prove that ACMk(R0) is a chain
ring and J(ACMk(R0)) is generated by Π, where Π is the one given in the finite case.

Using Theorems 2.1 and 3.1 and taking into consideration that the associated finite chain ring of
ACMk(R0) is CMk(R′0) = {D[a0 a1 ... ak−1] : a0, a1, ..., at−1 ∈ R′0 & at, ..., ak−1 ∈ R′0/pn−1R′0}, we can
prove the following theorem.

Theorem 3.2. An Artinian duo local ring of characteristic pn in which its residue field is absolutely
algebraic is a chain ring with invariants p, n, r′, k, k

′

, m if and only if it is isomorphic to one of the
rings given by construction B.

4. Conclusions

The structure of a finite chain ring has already been described by Wirt in 1972 and others later.
We managed to describe the structure of a finite chain ring as a ring of square matrices over a
Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such
a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring. The
given construction may help in implementing finite chain rings in coding theoretic environments.
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