Mathematics
http://www.aimspress.com/journal/Math

Research article

Structure of a chain ring as a ring of matrices over a Galois ring

Yousef Alkhamees* and Badr Alhajouj
Department of Mathematics, King Saud University, Riyadh 11451, Saudi Arabia
* Correspondence: Email: ykhamees@ksu.edu.sa.

Abstract

The structure of a finite chain ring has already been described by Wirt in 1972 and others later. The purpose of this article is to describe another structure of a finite chain ring as a ring of square matrices over Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring.

Keywords: local ring; chain ring; Galois ring; companion matrix
Mathematics Subject Classification: 16L30, 16P20, 16P30

1. Introduction

We only consider associative Artinian rings with identity. A chain ring is a ring whose left (right) ideals form a chain. A ring is a chain ring if and only if it is a principal local ring. Because commutative principal ring is a direct sum of chain rings, the study of commutative principal rings is reduced to that of chain rings. Finite commutative chain rings occur naturally in at least three different areas; in Algebraic Number Theory (cf. p. 86 in [11]); in Commutative Algebra (cf. [6]); and in Geometry (cf. [9]).

A good example of finite chain rings are the commutative rings $Z_{p^{n}}[x] /(g(x))$, where $g(x)$ is a monic polynomial of degree r over $Z_{p^{n}}$ irreducible mod p. The maximal ideal of such a ring is the ideal generated by p, where p is the characteristic of its residue field. Such a ring is uniquely determined by p, n, and r, and its group of automorphisms is cyclic of order r. These rings have a lot in common with Galois fields and are thus called Galois rings and denoted by $\operatorname{GR}\left(p^{n}, r\right)$. They were first observed by Krull (1924) (cf. p. 20 in [10]).

A commutative chain subring R_{0} of a local ring R is called a coefficient subring of R if $R=R_{0}+J(R)$ and $R / J(R) \cong R_{0} / p R_{0}$, where $J(R)$ is the maximal ideal of R. The subring R_{0} plays an important role in the structure of the local ring R. The coefficient subring of a finite local ring is its maximal Galois subring (cf. [4]).

Chain rings have been studied by several mathematicians. Wirt [17] describes the structure of a finite chain ring as the quotient of a skew polynomial ring over a Galois ring by an ideal of special form generated using Eisenstein polynomial; this conclusion was almost achieved by Nechaev [14], who called them Galois-Eisenstein-Ore rings. Further, Fisher [6] described the structure of such a ring as the quotient of a skew power series ring over a certain commutative complete discrete valuation domain by an ideal of special form similar to the ideal involved in the construction in the study by Wirt. Finally, Alkhamees, Singh, and Alolayan [1] generalize the construction of Wirt to the situation of an Artinian chain ring in which the residue field is absolutely algebraic (algebraic over its prime subfield).

The use of finite chain rings in coding theory may be traced back to the seminal work of Preparata [15] in 1968; afterward, there was an increased interest in using finite chain rings in getting more compact codes with higher capabilities of error-correction (see for example [12]). The role of different types of matrices in coding theory is well known (for instance, cf. [3,7,16,18]). They are used during the decoding process to expose and correct errors during transmission.

This paper aimed to describe the structure of a chain ring as a ring of square matrices over a Galois ring using the companion matrix of a certain Eisenstein polynomial over a Galois ring (for the definition of the companion matrix of a monic polynomial over a field, see Definition, p. 307 and problem 4, p. 312 in [8]). Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring.

The use of matrices in coding theory mentioned above indicates that this construction may be useful in the recent applications of finite chain rings in coding theory. This construction may also help in implementing finite chain rings in coding theoretic environments.

2. Construction of a finite chain ring

Let R be a finite chain ring of characteristic p^{n}, m the index of nilpotency of $J(R)$, and R_{0} $=G R\left(p^{n}, r\right)=Z_{p^{n}}[\eta]$ a coefficient subring of R, where η is an element of R_{0} of multiplicative order $p^{r}-1$. Then [5]:
(i) There exists a pair (π, σ) such that $J(R)=R \pi$ and $\pi a=a^{\sigma} \pi$ for each a in R_{0}, where π is an element of $J(R)$ and σ is an automorphism of R_{0}. Additionally, σ is uniquely determined by R and R_{0} [1]. Thus, we call σ the associated automorphism of R with respect to R_{0}. Let $S_{0}=G R\left(p^{n}, s\right)$ be the Galois subring of R_{0}, where $s=r / k^{\prime}$; i.e., $S_{0}=\left(R_{0}\right)^{\sigma}$.
(ii) $R=\oplus_{i=0}^{k-1} R_{0} \pi^{i}$ as R_{0} - modules.
(iii) $\pi^{k}=p \Sigma_{i=0}^{k-1} u_{i} \pi^{i}$, where u_{0} is a unit in R_{0} and the other u_{i} are elements of R_{0}; i.e., π is a root of Eisenstein polynomial $g(x)=x^{k}-p \Sigma_{i=0}^{k-1} u_{i} x^{i}$ over R_{0}.
(iv) There are R_{0}-module isomorphisms:

$$
\begin{gathered}
R_{0} \pi^{i} \cong R_{0} \text { for } i=1,2, \ldots, t-1 \text { and } \\
R_{0} \pi^{i} \cong R_{0} / p^{n-1} R_{0} \text { for } i=t, t+1, \ldots, k-1,
\end{gathered}
$$

where $1 \leq t \leq k$.
(v) $\sigma^{k}=I d_{R_{0}}$ if $n>1$ and hence if k^{\prime} is the order σ then k^{\prime} divides k.
(vi) $m=(n-1) k+t$.
(vii) We call the integers $p, n, r, k, k^{\prime}, m$ invariants of R.

In the case that R is a finite chain ring, let $R_{0}, S_{0}, \pi, \eta, u_{0}, u_{1}, \ldots, u_{k-1}, p, n, r, s, t, k, k^{\prime}, m$ and σ retain their meanings throughout the paper.

Proposition 2.1. Let R be a finite local ring. Then, R is a chain ring if and only if $J(R)$ has the maximal index of nilpotency.

This is Proposition 1 in [2].

Construction A:

Notation: Let R_{0} be a Galois ring of the form $G R\left(p^{n}, r\right), t, k$ be positive integers with $1 \leq t \leq k$, and σ be an automorphism of R_{0} of order k^{\prime} with k^{\prime} divides k if $n>1$. Suppose that S_{0} is a Galois subring of R_{0} of the form $G R\left(p^{n}, s\right), u_{0}, u_{1}, \ldots, u_{k-2}, u_{k-1}$ are certain elements of R_{0} such that $u_{0}, u_{1}, \ldots, u_{k-2}$ are elements of S_{0} with u_{0} is a unit and u_{k-1} is either an element of R_{0} if $p^{2} u_{k-1}=0$ or an element of S_{0} otherwise, where $s=r / k^{\prime}$. Next, assume that $C M_{k}\left(R_{0}\right)$ is the additive matrix group of all $k \times k$ matrices of the form $A=\left[\alpha_{i j}\right]$, where $\left[\begin{array}{ccccc}a_{0} & a_{1} & \ldots & a_{t-1} & a_{t} \ldots a_{k-1}\end{array}\right]$ is the first row of $A, a_{0}, a_{1}, \ldots, a_{t-1} \in R_{0}$ $\& a_{t}, \ldots, a_{k-1} \in R_{0} / p^{n-1} R_{0}, \alpha_{i 1}=p u_{0} \alpha_{i-1 k}$ for $i>1$ and $\alpha_{i j}$ is a function of $\alpha_{i-1 j-1}$ and $\alpha_{i-1 k}$ defined by $\alpha_{i j}=\alpha_{i-1 j-1}+p u_{j-1} \alpha_{i-1 k}$ for $i, j>1$. Clearly, there is a certain pattern of matrices in $C M_{k}\left(R_{0}\right)$ makes all the rows of them depend on their first row and the certain elements $p u_{0}, p u_{1}, \ldots, p u_{k-1}$; thus each matrix A in $C M_{k}\left(R_{0}\right)$ is induced (derived) from the first row $\left[a_{0} a_{1} \ldots a_{t-1} a_{t} \ldots a_{k-1}\right]$ and hence let us denote an arbitrary element A of $C M_{k}\left(R_{0}\right)$ by $A=D\left[a_{0} a_{1} \ldots a_{k-1}\right]$, where $a_{0}, a_{1}, \ldots, a_{k-1}$ are the elements of the first row of A (see Example 2.1 below).

Let $R_{0}, S_{0}, C M_{k}\left(R_{0}\right), D\left[a_{0} a_{1} \ldots a_{k-1}\right], u_{0}, u_{1}, \ldots, u_{k-1}, p, n, r, s, t, k, k^{\prime}$ and σ retain their meanings as in the last notation. Suppose that $A=D\left[\begin{array}{lll}a_{0} & a_{1} & \ldots \\ a_{k-1}\end{array}\right]$ and $B=D\left[b_{0} b_{1} \ldots b_{k-1}\right]$ are elements of $C M_{k}\left(R_{0}\right)$ and let us define the σ - skew multiplication $A * B$ in $C M_{k}\left(R_{0}\right)$ in the same way as the usual matrix multiplication $A B$ except we put $a_{i} b_{j}^{\sigma^{i}}$ in stead of $a_{i} b_{j}$ for all $i, j=0,1, \ldots, k-1$. The multiplication $A * B$ makes sense by taking into consideration that $p R_{0}$ may be considered as $R_{0} / p^{n-1} R_{0}{ }^{-}$ module (in the case that the elements of the first t columns are involved in the multiplication when it is needed) and $R_{0} / p^{n-1} R_{0}$ may be considered as R_{0}-module (in the case that the elements of the last $k-t$ columns are involved in the multiplication).

To make it easier to understand construction A, let us introduce the following example:
Example 2.1. Let R_{0} be a Galois ring of the form $G R\left(p^{n}, r\right)$ with $n>1, r$ an even positive number, σ an automorphism of R_{0} of order $k^{\prime}=2, u_{0}$ and u_{1} are certain elements of R_{0} such that u_{0} is a unit in the subring $S_{0}=G R\left(p^{n}, s\right)$ of R_{0} and u_{1} is either an element of R_{0} or an element of S_{0} according to wether $p^{2} u_{1}$ is zero or not, where $s=r / k^{\prime}=r / 2$. Assume
$C M_{2}\left(R_{0}\right)=\left\{\left(\begin{array}{cc}a_{0} & a_{1} \\ p u_{0} a_{1} & a_{0}+p u_{1} a_{1}\end{array}\right): a_{0} \in R_{0}\right.$ and $\left.a_{1} \in R_{0} / p^{n-1} R_{0}\right\}$. Then, there is a certain pattern of matrices in $\mathrm{CM}_{2}\left(R_{0}\right)$ such that the second row of them depends on their first row and the certain elements $p u_{0}$, $p u_{1}$ and so any matrix $A=\left(\begin{array}{cc}a_{0} & a_{1} \\ p u_{0} a_{1} & a_{0}+p u_{1} a_{1}\end{array}\right)$ of $C M_{2}\left(R_{0}\right)$ is induced (derived) from the first row $\left[a_{0} a_{1}\right]$; thus, let us denote an arbitrary element A of $C M_{2}\left(R_{0}\right)$ by $A=D\left[a_{0} a_{1}\right]$, where a_{0} and a_{1} are the elements of the first row of A. Suppose that $A=D\left[a_{0} a_{1}\right]$ and $B=D\left[b_{0} b_{1}\right]$ are arbitrary elements of the additive matrix group $C M_{2}\left(R_{0}\right)$ and let us define the σ-skew multiplication $A * B$ in $C M_{2}\left(R_{0}\right)$ in the same way as the usual matrix multiplication $A B$ except we put $a_{i} b_{j}^{\sigma}$ instead of $a_{i} b_{j}$ for $i=1$ and for all $j=0,1$. Thus,

$$
\begin{aligned}
A * B & =D\left[a_{0} a_{1}\right] * D\left[b_{0} b_{1}\right] \\
& =\left(\begin{array}{cc}
a_{0} b_{0}+p u_{0} a_{1} b_{1}^{\sigma} & a_{0} b_{1}+a_{1} b_{0}^{\sigma}+p u_{1} a_{1} b_{1}^{\sigma} \\
p u_{0}\left(a_{0} b_{1}+a_{1} b_{0}^{\sigma}+p u_{1} a_{1} b_{1}^{\sigma}\right) & a_{0} b_{0}+p u_{0} a_{1} b_{1}^{\sigma}+p u_{1}\left(a_{0} b_{1}+a_{1} b_{0}^{\sigma}+p u_{1} a_{1} b_{1}^{\sigma}\right)
\end{array}\right) \\
& =D\left[a_{0} b_{0}+p u_{0} a_{1} b_{1}^{\sigma} a_{0} b_{1}+a_{1} b_{0}^{\sigma}+p u_{1} a_{1} b_{1}^{\sigma}\right] .
\end{aligned}
$$

The multiplication $A * B$ makes sense by taking into consideration that $p R_{0}$ may be considered as $R_{0} / p^{n-1} R_{0}$-module (in the case that the elements of the first column are involved in the multiplication when it is needed) and $R_{0} / p^{n-1} R_{0}$ may be considered as R_{0}-module (in the case that the elements of the second column are involved in the multiplication). Thus, $A * B \in C M_{2}\left(R_{0}\right)$. Now, it is trivial to see that that $C M_{2}\left(R_{0}\right)$ is a ring. Let $J=\left\{D\left[p a_{0} a_{1}\right]: a_{0} \in R_{0}\right.$ and $\left.a_{1} \in R_{0} / p^{n-1} R_{0}\right\}$. It is easy to see that $C M_{2}\left(R_{0}\right) / J \cong G F\left(p^{r}\right)$ and $C M_{2}\left(R_{0}\right)$ is a local ring of order $p^{m r}$, where $m=2(n-1)+1$. Suppose that $\Pi=D\left[\begin{array}{ll}0 & 1\end{array}\right]=\left(\begin{array}{cc}0 & 1 \\ p u_{0} & p u_{1}\end{array}\right)$, then $\Pi^{2}=p D\left[u_{0} u_{1}\right]$. This implies that $\Pi^{m}=\Pi^{2(n-1)+1}=p^{n-1} \Pi N_{2}^{(n-1)}=0$ $N_{2}^{(n-1)}=0$ and $\Pi^{m-1}=\Pi^{2(n-1)}=p^{n-1} N_{2}^{(n-1)} \neq 0$, where $N_{2}=D\left[u_{0} u_{1}\right]$ is a unit in $C M_{2}\left(R_{0}\right)$. Therefore, Π has the maximal index of nilpotency and thus according to the last proposition $\mathrm{CM}_{2}\left(R_{0}\right)$ is a chain ring with invariants $p, n, r, k=k^{\prime}=2, m$.

Assume that R is a finite chain ring with invariants $p, n, r, k=k^{\prime}=2, m=2(n-1)+1(t=1)$ with $n>1, r$ is even number, $R_{0}=G R\left(p^{n}, r\right)$ is a coefficient subring of R, σ is the associated automorphism of R with respect to R_{0} of order $k^{\prime}=2$ and $J(R)=R \pi$ with $\pi^{2}=p u_{0}+p u_{1} \pi$; i.e., π is a root of Eisenstein polynomial $g(x)=x^{2}-p u_{1} x-p u_{0}$ over R_{0}. Using $\pi \pi^{2}=\pi^{2} \pi$ and $\pi^{2}=p u_{0}+p u_{1} \pi$, we get that u_{0} is a unit in the subring $S_{0}=G R\left(p^{n}, s\right)$ of R_{0} and u_{1} is either an element of R_{0} or an element of S_{0} according to whether $p^{2} u_{1}$ is zero or not.

Let ϕ be a mapping from R to $C M_{2}\left(R_{0}\right)$ defined by $\phi\left(a_{0}+a_{1} \pi\right)=D\left[a_{0} a_{1}\right]$. Let $a=a_{0}+a_{1} \pi$ and $b=b_{0}+b_{1} \pi$ be elements of R. Then,
$\left.\phi(a+b)=\phi\left(\left(a_{0}+a_{1} \pi\right)+\left(b_{0}+b_{1} \pi\right)\right)=\phi\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) \pi\right)\right)=D\left[a_{0}+b_{0} a_{1}+b_{1}\right]=D\left[a_{0}\right.$ $\left.a_{1}\right]+D\left[b_{0} b_{1}\right]=\phi(a)+\phi(b)$,
$\phi(a b)=\phi\left(\left(a_{0}+a_{1} \pi\right)\left(b_{0}+b_{1} \pi\right)\right)=\phi\left(a_{0} b_{0}+p u_{0} a_{1} b_{1}^{\sigma}+\left(a_{0} b_{1}+a_{1} b_{0}^{\sigma}+p u_{1} a_{1} b_{1}^{\sigma}\right) \pi\right)=D\left[a_{0} b_{0}+p u_{0} a_{1} b_{1}^{\sigma}\right.$ $\left.a_{0} b_{1}+a_{1} b_{0}^{\sigma}+p u_{1} a_{1} b_{1}^{\sigma}\right]=D\left[a_{0} a_{1}\right] * D\left[b_{0} b_{1}\right]=\phi(a) \phi(b)$.

Therefore, ϕ is a ring homomorphism. Now, it is easy to check that ϕ is an isomorphism. It is worth noting that $\phi(\pi)=\Pi=D\left[\begin{array}{ll}0 & 1\end{array}\right]=\left(\begin{array}{cc}0 & 1 \\ p u_{0} & p u_{1}\end{array}\right)$, which is the companion matrix of a certain Eisenstein polynomial $g(x)=x^{2}-p u_{1} x-p u_{0}$ over R_{0} mentioned above and has π in $J(R)$ as its root.

Let us denote $C M_{k}\left(R_{0}\right)$ with $\sigma=I d_{R_{0}}$ by $C C M_{k}\left(R_{0}\right)$. In such a case, we notice that the σ-skew multiplication $A * B$ in $C C M_{k}\left(R_{0}\right)$ is the same as the usual matrix multiplication $A B$ because $\sigma=I d_{R_{0}}$.

Proposition 2.2. $\operatorname{CCM}_{k}\left(R_{0}\right)$ is a finite commutative chain ring with invariants p, n, r, k, m.
Proof. Assume that $A=D\left[a_{0} a_{1} \ldots a_{k-1}\right]=\left[\alpha_{i j}\right], B=D\left[b_{0} b_{1} \ldots b_{k-1}\right]=\left[\beta_{i j}\right]$ are arbitrary elements of $\operatorname{CCM}_{k}\left(R_{0}\right)$ and $C=A B=\left[c_{i j}\right]$. We want to prove that:

$$
\begin{equation*}
c_{i 1}=p u_{0} c_{i-1 k} \text { for } i>1 \text { and } c_{i j}=c_{i-1 j-1}+p u_{j-1} c_{i-1 k} \text { for } i, j>1 . \tag{2.1}
\end{equation*}
$$

For the 1 st column, we notice that

$$
\begin{aligned}
c_{i 1} & =\sum_{e=1}^{k} \alpha_{i e} \beta_{e 1}=\alpha_{i 1} \beta_{11}+\sum_{e=2}^{k} \alpha_{i e} \beta_{e 1}=p u_{0} \alpha_{i-1 k} \beta_{11}+\sum_{e=2}^{k}\left(\alpha_{i-1 e-1}+p u_{e-1} \alpha_{i-1 k}\right) p u_{0} \beta_{e-1 k} \\
& =p u_{0} \sum_{e=2}^{k} \alpha_{i-1 e-1} \beta_{e-1 k}+p u_{0} \alpha_{i-1 k}\left(\beta_{11}+\sum_{e=2}^{k} p u_{e-1} \beta_{e-1 k}\right) \\
& =p u_{0}\left(c_{i-1 k}-\alpha_{i-1 k} \beta_{k k}\right)+p u_{0} \alpha_{i-1 k}\left(\beta_{11}+\sum_{e=2}^{k} p u_{e-1} \beta_{e-1 k}\right) \\
& =p u_{0} c_{i-1 k}+p u_{0} \alpha_{i-1 k}\left(\beta_{11}+\sum_{e=2}^{k}\left(\beta_{e e}-\beta_{e-1 e-1}\right)-\beta_{k k}\right)=p u_{0} c_{i-1 k} .
\end{aligned}
$$

Now, let us find $c_{i j}$ for $i, j>1$:

$$
\begin{aligned}
c_{i j}=\sum_{e=1}^{k} \alpha_{i e} \beta_{e j}=\alpha_{i 1} \beta_{1 j}+\sum_{e=2}^{k} \alpha_{i e} \beta_{e j} & =\alpha_{i 1} \beta_{1 j}+\sum_{e=2}^{k}\left(\alpha_{i-1 e-1}+p u_{e-1} \alpha_{i-1 k}\right)\left(\beta_{e-1 j-1}+p u_{j-1} \beta_{e-1 k}\right) \\
& =\alpha_{i 1} \beta_{1 j}+\sum_{e=2}^{k} \alpha_{i-1 e-1} \beta_{e-1 j-1}+p \alpha_{i-1 k} \sum_{e=2}^{k} u_{e-1} \beta_{e-1 j-1} \\
& +p u_{j-1} \sum_{e=2}^{k} \alpha_{i-1 e-1} \beta_{e-1 k}+p^{2} u_{j-1} \alpha_{i-1 k} \sum_{e=2}^{k} u_{e-1} \beta_{e-1 k} .
\end{aligned}
$$

But

$$
\begin{aligned}
& \sum_{e=2}^{k} \alpha_{i-1 e-1} \beta_{e-1 j-1}=c_{i-1 j-1}-\alpha_{i-1 k} \beta_{k}, 1 \\
& p u_{j-1} \sum_{e=2}^{k} \alpha_{i-1 e-1} \beta_{e-1 k}=p u_{j-1}\left(c_{i-1 k}-\alpha_{i-1 k} \beta_{k k}\right) \\
& p^{2} u_{j-1} \alpha_{i-1 k} \sum_{e=2}^{k} u_{e-1} \beta_{e-1 k}=p u_{j-1} \alpha_{i-1 k} \sum_{e=2}^{k} p u_{e-1} \beta_{e-1 k}=p u_{j-1} \alpha_{i-1 k}\left(\beta_{k k}-\beta_{11}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
c_{i j}= & \alpha_{i 1} \beta_{1 j}+\left(c_{i-1 j-1}-\alpha_{i-1 k} \beta_{k j-1}\right)+p u_{j-1}\left(c_{i-1 k}-\alpha_{i-1 k} \beta_{k k}\right)+p u_{j-1} \alpha_{i-1 k}\left(\beta_{k k}-\beta_{11}\right) \\
& +\alpha_{i-1 k} \sum_{e=2}^{k} p u_{e-1} \beta_{e-1 j-1}=c_{i-1 j-1}+p u_{j-1} c_{i-1 k}+p u_{0} \alpha_{i-1 k} \beta_{1 j}-\alpha_{i-1 k} \beta_{k j-1}-p u_{j-1} \alpha_{i-1 k} \beta_{11} \\
& +\alpha_{i-1 k} \sum_{e=2}^{k} p u_{e-1} \beta_{e-1 j-1}=c_{i-1 j-1}+p u_{j-1} c_{i-1 k}+\alpha_{i-1 k}\left(p u_{0} \beta_{1 j}-\beta_{k j-1}-p u_{j-1} \beta_{11}\right. \\
& \left.+\sum_{e=2}^{k} p u_{e-1} \beta_{e-1 j-1}\right) .
\end{aligned}
$$

Using the following relations: $\beta_{i 1}=p u_{0} \beta_{i-1 k}$ for $i>1$ and $\beta_{i j}=\beta_{i-1 j-1}+p u_{j-1} \beta_{i-1 k}$ for $i, j>1$ which make all the rows of $B=\left[\beta_{i j}\right]$ depend on their first row and certain elements $p u_{0}, p u_{1}, \ldots, p u_{k-1}$. It is a matter of routine calculations to deduce that $p u_{0} \beta_{1 j}-\beta_{k j-1}-p u_{j-1} \beta_{11}+\sum_{e=2}^{k} p u_{e-1} \beta_{e-1 j-1}=0$. Hence,

$$
c_{i j}=c_{i-1 j-1}+p u_{j-1} c_{i-1 k}
$$

Now, it is easy to see that $C C M_{k}\left(R_{0}\right)$ is a commutative ring with identity. Assume that $M=\left\{D\left[p a_{0}\right.\right.$ $\left.\left.a_{1} \ldots a_{t-1} a_{t} \ldots a_{k-1}\right]: a_{0}, a_{1}, \ldots, a_{t-1} \in R_{0} \& a_{t}, \ldots, a_{k-1} \in R_{0} / p^{n-1} R_{0}\right\}$. Then, it is easy to see that M is an ideal in $\operatorname{CCM}_{k}\left(R_{0}\right),|M|=p^{(m-1) r}$, whereas $\left|\operatorname{CCM}_{k}\left(R_{0}\right)\right|=p^{m r}$. Clearly, $\operatorname{CCM}_{k}\left(R_{0}\right) / M \cong G F\left(p^{r}\right)$; subsequently, $C C M_{k}\left(R_{0}\right)$ is a local ring. Suppose that

$$
\Pi=D[0,1,0, \ldots, 0,0]=\left(\begin{array}{cccccccc}
0 & 1 & 0 & 0 & . & . & . & 0 \\
0 & 0 & 1 & 0 & . & . & . & 0 \\
0 & 0 & 0 & 1 & 0 & . & . & 0 \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
0 & 0 & . & . & . & 0 & 1 & 0 \\
0 & 0 & . & . & . & 0 & 0 & 1 \\
p u_{0} & p u_{1} & p u_{2} & . & . & . & p u_{k-2} & p u_{k-1}
\end{array}\right)
$$

is an element of $\operatorname{CCM}_{k}\left(R_{0}\right)$ in which the first superdiagonal consists entirely of ones and all other elements above the last row of the matrix Π are zeros. Then, obviously $\Pi^{2}=D[0,0,1,0$, $\ldots, 0,0], \Pi^{3}=D[0,0,0,1, \ldots, 0,0]$ and so on $\Pi^{k}=p D\left[u_{0}, u_{1}, \ldots, u_{k-1}\right]$. Using $\Pi^{k}=p D\left[u_{0}\right.$, $\left.u_{1}, \ldots, u_{k-1}\right]$, then one can deduce that $\Pi^{m}=\Pi^{(n-1) k+t}=p^{n-1} \Pi^{t} N_{k}^{(n-1)}=0 N_{k}^{(n-1)}=0$ and $\Pi^{m-1}=\Pi^{(n-1) k+t-1}=p^{n-1} \Pi^{t-1} N_{k}^{(n-1)} \neq 0$, where $N_{k}=D\left[u_{0}, u_{1}, \ldots, u_{k-1}\right]$ is a unit in $\operatorname{CCM}_{k}\left(R_{0}\right)$. Thus, Π has the maximal index of nilpotency in $\operatorname{CCM}_{k}\left(R_{0}\right)$. Using Proposition 2.1, one deduce that $C C M_{k}\left(R_{0}\right)$ is a chain ring with invariants p, n, r, k, m.

Proposition 2.3. $C M_{k}\left(R_{0}\right)$ is a finite chain ring with invariants $p, n, r, k, k^{\prime}, m$.
Proof. Assume that $A=D\left[a_{0} a_{1} \ldots a_{k-1}\right]=\left[\alpha_{i j}\right], B=D\left[b_{0} b_{1} \ldots b_{k-1}\right]=\left[\beta_{i j}\right]$ are elements of $C M_{k}\left(R_{0}\right)$. Then, we define σ-multiplication in $C M_{k}\left(R_{0}\right)$ as $A * B=C^{*}=\left[c_{i j}^{*}\right]$, where $c_{i j}^{*}$ in $C M_{k}\left(R_{0}\right)$ has the same expression as $c_{i j}$ in $C C M_{k}\left(R_{0}\right)$, except we put $a_{i} b_{j}^{\sigma^{i}}$ instead of $a_{i} b_{j}$ for all $i, j=0,1, \ldots, k-1$. Now, using $c_{i 1}=p u_{0} c_{i-1 k}$ for $i>1$ and $c_{i j}=c_{i-1 j-1}+p u_{j-1} c_{i-1 k}$ for $i, j>1$, we deduce that $c_{i 1}^{*}=p u_{0} c_{i-1 k}^{*}$ for $i>1$ and $c_{i j}^{*}=c_{i-1 j-1}^{*}+p u_{j-1} c_{i-1 k}^{*}$ for $i, j>1$.

Let $M=\left\{D\left[p a_{0} \quad a_{1} \ldots a_{t-1} a_{t} \ldots a_{k-1}\right]: a_{0}, a_{1}, \ldots, a_{t-1} \in R_{0} \& a_{t}, \ldots, a_{k-1} \in R_{0} / p^{n-1} R_{0}\right\}$. Then, it is easy to see (as above) that M is the unique maximal ideal in $C M_{k}\left(R_{0}\right)$; subsequently, $C M_{k}\left(R_{0}\right)$ is a local ring. Further, assume that $\Pi=D[0,1,0, \ldots, 0,0]$. Then, obviously as above $\Pi^{m}=0$ and $\Pi^{m-1} \neq 0$. Thus, Π has the maximal index of nilpotency in $C M_{k}\left(R_{0}\right)$. Using Proposition 2.1, one deduce that $C M_{k}\left(R_{0}\right)$ is a chain ring with invariants $p, n, r, k, k^{\prime}, m$.

Theorem 2.1. A finite ring is a chain ring with invariants $p, n, r, k, k^{\prime}, m$ if and only if it is isomorphic to one of the rings given by construction A.

Proof. Let R be a finite chain ring with invariants $p, n, r, k, k^{\prime}, m, R_{0}=G R\left(p^{n}, r\right)$ be a coefficient subring of $R, J(R)=R \pi$ such that π is a root of Eisenstein polynomial $g(x)=x^{k}-p \sum_{i=0}^{k-1} u_{i} x^{i}$ over R_{0}
and σ be the associated automorphism of R with respect to R_{0}. Using $\pi \pi^{k}=\pi^{k} \pi$ and $\pi^{k}=p \Sigma_{i=0}^{k-1} u_{i} \pi^{i}$, we deduce that $u_{0}, u_{1}, \ldots, u_{k-2}$ are elements of the subring $S_{0}=G R\left(p^{n}, s\right)$ of R_{0} such that u_{0} is a unit and u_{k-1} is either an element of R_{0} or an element of S_{0} according to whether $p^{2} u_{k-1}$ is zero or not (see Example 2.1).

Let ϕ be a mapping from R to $C M_{k}\left(R_{0}\right)$ defined by $\phi\left(\left(a_{0}+a_{1} \pi+\ldots+a_{k-1} \pi^{k-1}\right)=D\left[a_{0} a_{1} \ldots a_{k-1}\right]\right.$. Assume that $a=a_{0}+a_{1} \pi+\ldots+a_{k-1} \pi^{k-1}$ and $b=b_{0}+b_{1} \pi+\ldots+b_{k-1} \pi^{k-1}$ are elements of R. Then:
$\phi(a+b)=\phi\left(\left(a_{0}+a_{1} \pi+\ldots+a_{k-1} \pi^{k-1}\right)+\left(b_{0}+b_{1} \pi+\ldots+b_{k-1} \pi^{k-1}\right)\right)=\phi\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) \pi+\ldots+\right.$ $\left.\left.\left(a_{k-1}+b_{k-1}\right) \pi^{k-1}\right)\right)=D\left[a_{0}+b_{0} a_{1}+b_{1} \ldots a_{k-1}+b_{k-1}\right]=D\left[a_{0} a_{1} \ldots a_{k-1}\right]+D\left[b_{0} b_{1} \ldots b_{k-1}\right]=\phi(a)+\phi(b)$. Also $a b=\left(a_{0}+a_{1} \pi+\ldots+a_{k-1} \pi^{k-1}\right)\left(b_{0}+b_{1} \pi+\ldots+b_{k-1} \pi^{k-1}\right)=\zeta_{0}+\zeta_{1} \pi+\ldots+\zeta_{k-1} \pi^{k-1}$ and $\phi(a b)=\left[c_{i j}^{*}\right]$. According to the last proposition $\left[c_{i j}^{*}\right]$ is determined completely by $\left[c_{1 j}\right]$. Thus, to check that $\phi(a b)=$ $\phi(a) * \phi(b)$ it is enough to prove that $\left[c_{1 j}^{*}\right]=\left[\zeta_{0} \zeta_{1} \ldots \zeta_{k-1}\right]$, which can be proved using similar technique as the one used in the proof of Proposition 2.2. Therefore, ϕ is a ring homomorphism. Now, it is easy to check that ϕ is an isomorphism. Actually, $\phi(\pi)=\Pi=D\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$ is the $k \times k$ companion matrix of Eisenstein polynomial $g(x)=x^{k}-p \sum_{i=0}^{k-1} u_{i} x^{i}$ over R_{0} in which π is its root.

Remark 2.1. Suppose that

$$
C^{\prime} M_{k}\left(R_{0}\right)=\left\{\sum_{i=0}^{k-1} a_{i} \Pi^{i}: a_{0}, a_{1}, \ldots, a_{k-1} \in R_{0}\right\}=\sum_{i=0}^{k-1} R_{0} \Pi^{i}
$$

where Π is the matrix given in the proof of the last proposition and $\Pi^{0}=I_{k}=\left[e_{i j}\right]$ is the diagonal matrix of degree k, the elements $e_{i j}$ of Π^{0} in the first t columns are in R_{0}, whereas they are in $R_{0} / p^{n-1} R_{0}$ otherwise and $e_{i i}=1$ for all $i=1,2 ; \ldots, k ;$ this means that $\Pi^{0}=I_{k}=[1,0, \ldots, 0]$ in $C^{\prime} M_{k}\left(R_{0}\right)$ according to the notation used above. Clearly, $C^{\prime} M_{k}\left(R_{0}\right)$ is additive matrix group. Let us define that $\Pi^{i} a=a^{\sigma^{i}} \Pi^{i}$ for each $a \in R_{0}$. It is a direct check to see that this multiplication transfers the additive group $C^{\prime} M_{k}\left(R_{0}\right)=\sum_{i=0}^{k-1} R_{0} \Pi^{i}$ into a ring; i.e., it is the ring of all $k \times k$ matrices $\sum_{i=0}^{k-1} a_{i} \Pi^{i}$, where a_{i} are elements of R_{0}. Further, $C^{\prime} M_{k}\left(R_{0}\right)$ is commutative if and only if $\sigma=I d_{R_{0}}$. Now, it is evident that $C^{\prime} M_{k}\left(R_{0}\right)$ is the same as the ring $C M_{k}\left(R_{0}\right)$ given in construction A. This can be considered as another matrix construction of a finite chain ring.

3. Construction of Artinian chain ring with absolutely algebraic residue field

Let R be an Artinian local duo (every left ideal is a right ideal and vice versa) ring of characteristic p^{n} with absolutely algebraic residue field, where p is the characteristic of $R / J(R)$; it is already known [1] that R in sucha case has a commutative chain subring R_{0} as its coefficient subring. In fact, R_{0} is a union of ascending chains of Galois subrings of R of characteristic p^{n}, with its maximal ideal generated by p and Aut $R_{0} \approx A u t\left(R_{0} / p R_{0}\right)$. Thus, we call R_{0} in this case a generalized Galois ring.

Now assume that R is an Artinian chain ring with m as the index of nilpotency of $J(R)$. Then [1]:
(i) There exists a pair (π, σ) such that $J(R)=R \pi$ and $\pi a=a^{\sigma} \pi$ for each a in R_{0}, where π an element of $J(R)$ and σ is an automorphism of R_{0}. Further, σ is uniquely determined by R and R_{0}. Thus, we call σ the associated automorphism of R with respect to R_{0}.
(ii) $R=\oplus_{i=0}^{k-1} R_{0} \pi^{i}$ as R_{0} - modules and thus one can deduce that R is a duo ring.
(iii) $\pi^{k}=p \Sigma_{i=0}^{k-1} u_{i} \pi^{i}$, where u_{0} is a unit in R_{0} and the other u_{i} are elements of R_{0}; i.e., π is a root of Eisenstein polynomial $g(x)=x^{k}-p \Sigma_{i=0}^{k-1} u_{i} x^{i}$ over R_{0}.
(iv) There are R_{0}-module isomorphisms:

$$
\begin{gathered}
R_{0} \pi^{i} \cong R_{0} \text { for } i=1,2, \ldots, t-1 \text { and } \\
R_{0} \pi^{i} \cong R_{0} / p^{n-1} R_{0} \text { for } i=t, t+1, \ldots, k-1,
\end{gathered}
$$

where $1 \leq t \leq k$.
(v) $\sigma^{k}=I d_{R_{0}} \quad$ if $n>1$ and hence if k^{\prime} is the order σ then k^{\prime} divides k.
(vi) $m=(n-1) k+t$.
(vii) Assume R^{\prime} is the subring of R generated by $Z_{p^{n}}$ and π. Then, it is easy to check that R^{\prime} is a finite chain subring of R with invariants $p, n, r^{\prime}, k, k^{\prime}, m$, where $R_{0}^{\prime}=G R\left(p^{n}, r^{\prime}\right)$ is a coefficient subring of R^{\prime}. We call R^{\prime} the associated finite chain ring of R.
(viii) We call the integers $p, n, r^{\prime}, k, k^{\prime}, m$ invariants of R.

Proposition 3.1. Let R be an Artinian duo local ring of characteristic p^{n} in which its residue field is absolutely algebraic. Then, the following are equivalent:
(i) R is a chain ring
(ii) $J(R)$ has the maximal index of nilpotency
(iii) There exists an element in $J(R)$ that has the maximal index of nilpotency.

Proof. Let R_{0} be a coefficient subring of R. Then, R_{0} is a generalized Galois ring. Assume R_{0}^{\prime} is a maximal Galois subring of R_{0} and $R_{0}^{\prime} \cong G R\left(p^{n}, r^{\prime}\right)=Z_{p^{n}}[\eta]$, where η is an element of R_{0}^{\prime} of multiplicative order $p^{p^{\prime}}-1$.
(i) \Longrightarrow (ii): Let R be a chain ring and R^{\prime} the associated finite chain ring of R. Then, $J(R)=R \pi$ and hence $J\left(R^{\prime}\right)=R^{\prime} \pi$. Thus, using Proposition 2.1, one can deduce that $J\left(R^{\prime}\right)$ has the maximal index of nilpotency and subsequently $J(R)$ has the maximal index of nilpotency.
(ii) \Longrightarrow (iii): Assume $J(R)$ has the maximal index of nilpotency, say m, and $T=\left\{\sum_{i=0}^{m-1} \lambda_{i} \eta^{i}\right.$: $\left.\lambda_{i} \in R_{0}\right\}$. It is easy to check that T is a finite local ring and $J(T)=T \pi$. Hence, T is a chain ring; consequently, π is an element of $J(R)$, which has the maximal index of nilpotency.
(iii) \Longrightarrow (i): Let π be an element of $J(R)$ of maximal index of nilpotency, say m, and $T=\left\{\Sigma_{i=0}^{m-1}\right.$ $\left.\lambda_{i} \eta^{i}: \lambda_{i} \in R_{0}\right\}$. Since R_{0} is a coefficient subring of $R ; R=R_{0}+J(R)$ and $R / J(R) \cong R_{0} / p R_{0}$. Additionally, as above T is a chain ring with invariants $p, n, r^{\prime}, k, k^{\prime}, m$ with $T / T \pi \approx R_{0} / p R_{0}$. Hence, $R / J(R) \cong T / T \pi$. But $T \subseteq R$. Therefore, $R=T$; thus, R is a chain ring.

Using the fact that if R is an Artinian chain ring with absolutely algebraic field and R^{\prime} is the associated finite chain ring of R, then $J(R)$ and $J\left(R^{\prime}\right)$ have the same generator, one can prove the following theorem.

Theorem 3.1. Let R and T be Artinian chain rings with absolutely algebraic residue fields and constructed over the same generalized Galois subring and with the same invariants $p, n, r^{\prime}, k, k^{\prime}$, m and R^{\prime}, T^{\prime} be their associated finite chain subrings respectively. Then, $R \cong T$ if and only if $R^{\prime} \approx T^{\prime}$.

Construction B:

Assume that R_{0} is a generalized Galois ring of characteristic p^{n}, t, k are positive integers with $1 \leq t \leq k, \sigma$ is an automorphism of R_{0} of order k^{\prime} with k^{\prime} divides k if $n>1, R_{0}^{\prime}$ is a Galois subring of R_{0} of the form $G R\left(p^{n}, r^{\prime}\right), S_{0}$ is a Galois subring of R_{0}^{\prime} of the form $G R\left(p^{n}, s\right), u_{0}, u_{1}, \ldots, u_{k-1}$ are certain
elements or R_{0}^{\prime} such that $u_{0}, u_{1}, \ldots, u_{k-2}$ are elements of S_{0} with u_{0} is a unit and u_{k-1} is either an element of R_{0}^{\prime} if $p^{2} u_{k-1}=0$ or an element of S_{0} otherwise, where $s=r^{\prime} / k^{\prime}$. Further, in such a (Artinian) case, suppose that $A C M_{k}\left(R_{0}\right)$ is the additive matrix group of all $k x k$ matrices of the form $\left[\alpha_{i j}\right],\left[\begin{array}{ll}a_{0} & a_{1}\end{array} \ldots\right.$ $\left.a_{t-1} a_{t} \ldots a_{k-1}\right]$ is the first row of $A, a_{0}, a_{1}, \ldots, a_{t-1} \in R_{0} \& a_{t}, \ldots, a_{k-1} \in R_{0} / p^{n-1} R_{0}, \alpha_{i 1}=p u_{0} \alpha_{i-1 k}$ for $i>1$ and $\alpha_{i j}$ is a function of $\alpha_{i-1 j-1}$ and $\alpha_{i-1 k}$ defined by $\alpha_{i j}=\alpha_{i-1 j-1}+p u_{j-1} \alpha_{i-1 k}$ for $i, j>1$. As in the last construction, let us denote an arbitrary element A of $A C M_{k}\left(R_{0}\right)$ by $D\left[a_{0} a_{1} \ldots a_{k-1}\right]$, where a_{0}, a_{1}, \ldots, a_{k-1} are the elements of the first row of A. Let $A=D\left[a_{0} a_{1} \ldots a_{k-1}\right]$ and $B=D\left[b_{0} b_{1} \ldots b_{k-1}\right]$ be elements of $A C M_{k}\left(R_{0}\right)$ and let us define the σ-skew multiplication $A * B$ in $A C M_{k}\left(R_{0}\right)$ as in the last construction and such multiplication make sense for the same reason as in the finite case. Now, using a similar technique as in a finite case and using Proposition 3.1, one can prove that $A C M_{k}\left(R_{0}\right)$ is a chain ring and $J\left(A C M_{k}\left(R_{0}\right)\right)$ is generated by Π, where Π is the one given in the finite case.

Using Theorems 2.1 and 3.1 and taking into consideration that the associated finite chain ring of $A C M_{k}\left(R_{0}\right)$ is $C M_{k}\left(R_{0}^{\prime}\right)=\left\{D\left[a_{0} a_{1} \ldots a_{k-1}\right]: a_{0}, a_{1}, \ldots, a_{t-1} \in R_{0}^{\prime} \& a_{t}, \ldots, a_{k-1} \in R_{0}^{\prime} / p^{n-1} R_{0}^{\prime}\right\}$, we can prove the following theorem.

Theorem 3.2. An Artinian duo local ring of characteristic p^{n} in which its residue field is absolutely algebraic is a chain ring with invariants $p, n, r^{\prime}, k, k^{\prime}, m$ if and only if it is isomorphic to one of the rings given by construction B.

4. Conclusions

The structure of a finite chain ring has already been described by Wirt in 1972 and others later. We managed to describe the structure of a finite chain ring as a ring of square matrices over a Galois ring using the companion matrix of a certain Eisenstein polynomial over Galois ring. Such a companion matrix generates the unique maximal ideal of the corresponding matrix chain ring. The given construction may help in implementing finite chain rings in coding theoretic environments.

Acknowledgments

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. The authors would also like to express their gratitude to the referees for their valuable comments. Finally, we would like to thank Al-Thukair, Alabaid, Balfagih, and Bazfour for reading an earlier version of this article.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Y. Alkhamees, S. Singh, H. Alolayan, A representation theorem for chain rings, Colloq. Math., 96 (2003), 103-119. https://doi.org/10.4064/cm96-1-10
2. Y. Alkhamees, The enumeration of finite principal completely primary rings, Abh. Math. Sem. Hamburg, 51 (1981), 226-231.
3. B. J. Chathely, Hadamard matrix and its application in coding theory and combinatorial design theory, Int. J. Math. Trend. Technol., 59 (2018), 218-227.
4. W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc., 33 (1972), 25-27. https://doi.org/10.1090/S0002-9939-1972-0294411-8
5. W. E. Clark, D. A. Drake, Finite chain rings, Abh. Math. Sem. Hamburg, 39 (1973), 147-153. https://doi.org/10.1007/BF02992827
6. J. L. Fisher, Finite principal rings, Can. Math. Bull., 19 (1976), 277-283.
7. M. Greferath, S. E. Schmidt, Linear codes and rings of matrices, Springer, Berlin, 2003, 160-169.
8. I. N. Herstein, Topics in algebra, 2 Eds., John Wiley \& Sons, New York, 1975.
9. W. Klingenberg, Projective and affine Ebene mit Nachbarelementen, Math. Z., 60 (1960), 384-406.
10. W. Krull, Algebraische theorie der ringe II, Math. Ann., 91 (1924), 1-46. https://doi.org/10.1007/BF01498378
11. W. Krull, Ideal theorie, 2 Eds., Spring Verlag, Berlin, New York, 1968.
12. X. Liu, H. Liu, LCD codes over finite chain rings, Finite Fields Th. App., 34 (2015), 1-19. https://doi.org/10.1016/j.ffa.2015.01.004
13. B. R. Macdonald, Finite rings with identity, Marcel Dekker, New York, 1974.
14. A. A. Nechaev, Finite rings of principal ideals, Mat. Sb., 91 (1973), 350-366.
15. F. P. Preparata, A class of optimum nonlinear double-error-correcting codes, Inform. Control, 13 (1968), 378-400. https://doi.org/10.1016/S0019-9958(68)90874-7
16. A. Stakhov, A new coding theory based on matrix approach, The Harmony of Mathematics, Series of Knots and Every Thing, World Scientific Publishing Co. Pte. Ltd., Singapore, 22 (2009), 569614.
17. B. R. Wirt, Finite non-commutative local rings, Ph. D. Thesis, University of Oklahoma, 1972.
18. C. P. Xing, Coding theory: A first course, Cambridge University Press, 2004.

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

