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1. Introduction

Recent years have witnessed the development of distributed discrete fractional operators based on
singular and nonsingular kernels with the aim of solving a large variety of discrete problems arising
in different application fields such as biology, physics, robotics, economic sciences and engineering
(see for example [1–9]). These operators depend on their corresponding kernels overcoming some
limits of the order of discrete operators, for example the most popular operators are Riemann-Liouville
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and Caputo with standard kernels, Caputo-Fabrizio with exponential kernels, Attangana-Baleanu with
Mittag-Leffler kernels (see for example [10–13]). We also refer the reader to [14–18] for discrete
fractional operators. Modeling and positivity simulations have been developed or adapted for discrete
fractional operators, ranging from continuous fractional models to discrete fractional frameworks; see
for example [1,19,20]). For other results on positivity and monotonicity we refer the reader to [21–25]
and for discrete fractional models with monotonicity and positivity which is important in the context
of discrete fractional calculus we refer the reader to [26–29].

In this work, we are interested in finding positivity and monotonicity results for the following single
and composition of delta fractional difference equations:(

CFC
a∆

ν G
)

(t)

and (
CFC
a+1∆

ν CFC
a∆

µ G
)

(t),

where we will assume that G is defined on Na B {a, a + 1, . . .}, and ν and µ are two different positive
orders.

The paper is structured as follows. The mathematical backgrounds and preliminaries needed are
given in Section 2. Section 3 presents the problem statement and the main results. Conclusions are
provided in Section 4.

2. Mathematical backgrounds and preliminaries

Let us start this section by recalling the notions of discrete delta Caputo-Fabrizio fractional operators
that we will need.

Definition 2.1 (see [30,31]). Let
(
∆G

)
(t) = G(t + 1) − G(t) be the forward difference operator. Then for

any function G defined on Na with a ∈ R, the discrete delta Caputo-Fabrizio fractional difference in the
Caputo sense and Caputo-Fabrizio fractional difference in the Riemann sense are defined by(

CFC
a∆

αG
)

(t) =
B(α)
1 − α

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ−1

=
B(α)

1 − 2α

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ,
[
∀ t ∈ Na+1

]
, (2.1)

and (
CFR

a∆
αG

)
(t) =

B(α)
1 − α

∆t

t−1∑
κ=a

G(κ)(1 + λ)t−κ−1

=
B(α)

1 − 2α
∆t

t−1∑
κ=a

G(κ)(1 + λ)t−κ,
[
∀ t ∈ Na+1

]
, (2.2)

respectively, where λ = − α
1−α for α ∈ [0, 1), and B(α) is a normalizing positive constant.

Moreover, for the higher order case when q < α < q + 1 with q > 0, we have(
CFC

a∆
αG

)
(t) =

(
CFC

a∆
α−q ∆qG

)
(t),

[
∀ t ∈ Na+1

]
. (2.3)
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Remark 2.1. It should be noted that

0 < 1 + λ =
1 − 2α
1 − α

< 1,

if α ∈
(
0, 1

2

)
, where (as above) λ = − α

1−α .

Definition 2.2 (see [29, 32]). Let G be defined on Na and α ∈ [1, 2]. Then G is α−convex iff
(
∆G

)
is

(α − 1)−monotone increasing. That is,

G(t + 1) − α G(t) + (α − 1)G(t − 1) > 0,
[
∀ t ∈ Na+1

]
.

3. Convexity and positivity results

This section deals with convexity and positivity of the Caputo-Fabrizio operator in the Riemann
sense (2.2). We first present some necessary lemmas.

Lemma 3.1. Let G : Na → R be a function satisfying(
CFC

a∆
α ∆G

)
(t) > 0

and (
∆G

)
(a) > 0,

for α ∈
(
0, 1

2

)
and t in Na+2. Then

(
∆G

)
(t) > 0, for every t in Na+1.

Proof. From Definition 2.1, we have for each t ∈ Na+2:

(
CFC

a∆
α ∆G

)
(t) =

B(α)
1 − 2α

t−1∑
κ=a

(
∆2
κ f

)
(κ)(1 + λ)t−κ

=
B(α)

1 − 2α

[ t−1∑
κ=a

(
∆G

)
(κ + 1)(1 + λ)t−κ −

t−1∑
κ=a

(
∆G

)
(κ)(1 + λ)t−κ

]

=
B(α)

1 − 2α

(1 + λ)
(
∆G

)
(t) + λ

t−1∑
κ=a

(
∆G

)
(κ)(1 + λ)t−κ


=

B(α)
1 − 2α

(1 + λ)
(
∆G

)
(t) − (1 + λ)t−a(∆G)(a) + λ

t−1∑
κ=a+1

(
∆G

)
(κ)(1 + λ)t−κ

 . (3.1)

Since B(α)
1−2α > 0, 1 + λ > 0 and

(
CFC

a∆
α ∆G

)
(t) > 0 for all t ∈ Na+2, then (3.1) gives us

(∆G) (t) > (1 + λ)t−a−1(∆G)(a) −
λ

1 + λ

t−1∑
κ=a+1

(
∆G

)
(κ)(1 + λ)t−κ. (3.2)
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We will now show that (∆G) (a + i + 1) > 0 if we assume that (∆G) (a + i) > 0 for some i ∈ N1. Note
from our assumption we have that (∆G) (a) > 0. But then from the lower bound for (∆G)(a + i + 1)
in (3.2) and our assumption we have

(∆G) (a + i + 1) > (1 + λ)i(∆G)(a)︸             ︷︷             ︸
>0

−
λ

1 + λ

a+i∑
κ=a+1

(
∆G

)
(κ)(1 + λ)a+i+1−κ︸                    ︷︷                    ︸

>0︸                                      ︷︷                                      ︸
>0

> 0,

where we used λ
1+λ

< 0. Thus, the result follows by induction. �

Lemma 3.2. Let G be defined on Na and(
CFC

a∆
α G

)
(t) > 0 with the initial values G(a + 1) > G(a) > 0,

for α ∈
(
1, 3

2

)
and t ∈ Na+1. Then G is monotone increasing, positive and

(
1

2−α

)
−convex on Na.

Proof. From the definition with q = 1 we have

0 6
(

CFC
a∆

α G
)

(t) =
(

CFC
a∆

α−1 ∆ G
)

(t),
[
∀ t ∈ Na+1

]
.

Since
(
∆G

)
(a) > 0 is given we have (

∆G
)
(t) > 0,

[
∀ t ∈ Na+1

]
,

by Lemma 3.1. This implies that G is a monotone increasing function. Therefore,

G(t) > G(t − 1) > · · · > G(a + 1) > G(a) > 0,
[
∀ t ∈ Na+1

]
,

and hence G is positive.
From the idea in Lemma 3.1 we have (here λ = −α−1

2−α for α ∈
(
1, 3

2

)
),

(∆G) (t) > (1 + λ)t−a−1(∆G)(a) −
λ

1 + λ

t−1∑
κ=a+1

(
∆G

)
(κ)(1 + λ)t−κ

= (1 + λ)t−a−1(∆G)(a)︸                  ︷︷                  ︸
>0

−λ
(
∆G

)
(t − 1)−

λ

1 + λ

t−2∑
κ=a+1

(
∆G

)
(κ)(1 + λ)t−κ︸                                 ︷︷                                 ︸

>0 since
(
∆G

)
(t)>0

> −λ
(
∆G

)
(t − 1)

=

(
α − 1
2 − α

) (
∆G

)
(t − 1) =

(
1

2 − α
− 1

) (
∆G

)
(t − 1).

Consequently we have that G is
(

1
2−α

)
−convex on the set Na. �

Lemma 3.3. Let G be defined on Na and(
CFC

a∆
α G

)
(t) > 0 with

(
∆2G

)
(a) > 0,

for α ∈
(
2, 5

2

)
and t ∈ Na+1. Then, Then

(
∆2G

)
(t) > 0, for all t ∈ Na. Furthermore, one has G convex on

the set Na.
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Proof. Let
(

CFC
a∆

α G
)

(t) B F(t) for each t ∈ Na+1. Since α ∈
(
2, 5

2

)
, we have:(

CFC
a∆

α G
)

(t) =
(

CFC
a∆

α−2 ∆2G
)

(t) =
(

CFC
a∆

α−2 ∆ F
)

(t) > 0,

for each t ∈ Na+1, and by assumption we have(
∆F

)
(a) =

(
∆2G

)
(a) > 0.

Then, using Lemma 3.2, we get (
∆F

)
(t) =

(
∆2G

)
(t) > 0

for each t ∈ Na+1. Hence, G is convex on Na. �

Lemma 3.4. Let G be defined on Na and

∆2
(

CFC
a∆

α G
)

(t) > 0

and (
∆G

)
(a + 1) >

(
∆G

)
(a) > 0,

for α ∈
(
0, 1

2

)
and t ∈ Na+1. Then

(
∆2G

)
(t) > 0, for each t ∈ Na.

Proof. For t ∈ Na+1, we have

∆
(

CFC
a∆

α G
)

(t) =
B(α)

1 − 2α
∆

 t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ


=
B(α)

1 − 2α

 t∑
κ=a

(∆κG) (κ)(1 + λ)t+1−κ −

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ


=
B(α)

1 − 2α

(1 + λ) (∆G) (t) +

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t+1−κ −

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ


=
B(α)

1 − 2α

(1 + λ) (∆G) (t) + λ

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ
 , (3.3)

where λ = − α
1−α . It follows from (3.3) that,

∆2
(

CFC
a∆

α G
)

(t) (3.4)

=
B(α)

1 − 2α
∆

(1 + λ)
(
∆G

)
(t) + λ

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ


=
(1 + λ)B(α)

1 − 2α
(
∆2G

)
(t) +

λB(α)
1 − 2α

[ t∑
κ=a

(∆κG) (κ)(1 + λ)t+1−κ −

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ
]

=
(1 + λ)B(α)

1 − 2α
(
∆2G

)
(t) +

λB(α)
1 − 2α

[
(1 + λ)t+1−a(∆G)(a) +

t−1∑
κ=a

(∆κG) (κ + 1)(1 + λ)t−κ
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−

t−1∑
κ=a

(∆κG) (κ)(1 + λ)t−κ
]

=
(1 + λ)B(α)

1 − 2α
(
∆2G

)
(t) +

λB(α)
1 − 2α

[
(1 + λ)t+1−a(∆G)(a) +

t−1∑
κ=a

(
∆2
κG

)
(κ)(1 + λ)t−κ

]
. (3.5)

Due to the nonnegativity of (1+λ)B(α)
1−2α , from (3.4) we deduce

(
∆2G

)
(t) > −

λ

1 + λ

[
(1 + λ)t+1−a(∆G)(a) +

t−1∑
κ=a

(
∆2
κG

)
(κ)(1 + λ)t−κ

]
. (3.6)

By substituting t = a + 1 into (3.6), we get

(
∆2G

)
(a + 1) > −

λ

1 + λ

[
(1 + λ)2(∆G)(a) +

(
∆2G

)
(a)(1 + λ)

]
=

α

(1 − α)︸  ︷︷  ︸
>0

[
(1 + λ)

(
∆G

)
(a)︸            ︷︷            ︸

>0

+
(
∆2G

)
(a)︸    ︷︷    ︸

>0

]
> 0.

Also, if we substitute t = a + 2 into (3.6), we obtain

(
∆2G

)
(a + 2) > −

λ

1 + λ

[
(1 + λ)3(∆G)(a) + (1 + λ)2

(
∆2G

)
(a) + (1 + λ)

(
∆2G

)
(a + 1)

]
=

α

(1 − α)︸  ︷︷  ︸
>0

[
(1 + λ)2(∆G)(a)︸             ︷︷             ︸

>0

+ (1 + λ)
(
∆2G

)
(a)︸              ︷︷              ︸

>0

+
(
∆2G

)
(a + 1)︸          ︷︷          ︸
>0

]

> 0.

By continuing this process, we obtain that
(
∆2G

)
(t) > 0 for each t ∈ Na as desired. �

Now, we are in a position to state the first result on convexity. Furthermore, three representative
results associated to different subregions in the space of (µ, ν)-parameter will be provided.

Theorem 3.1. Let G be defined on Na with ν ∈
(
0, 1

2

)
and µ ∈

(
2, 5

2

)
, and(

CFC
a+1∆

ν CFC
a∆

µ G
)

(t) > 0

and (
∆2G

)
(a + 1) >

(
∆2G

)
(a) > 0,

for each t ∈ Na+1. Then G is convex on the set Na.

Proof. Let
(

CFC
a∆

µ G
)

(t) B F(t) for each t ∈ Na+1. Then, by assumption we have(
CFC
a+1∆

ν CFC
a∆

µ G
)

(t) =
(

CFC
a+1∆

ν F
)

(t) > 0,

AIMS Mathematics Volume 7, Issue 9, 15812–15823.
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for each t ∈ Na+1. From the definition with q = 2 we have

F(a + 1) =
(

CFC
a∆

µ G
)

(a + 1) =
(

CFC
a∆

µ−2 ∆2 G
)

(a + 1)

=
B(µ − 2)
5 − 2µ

a∑
κ=a

(
∆3
κG

)
(κ)(1 + λµ)a−κ

=
B(µ − 2)
5 − 2µ︸    ︷︷    ︸

>0

(
∆3G

)
(a)︸    ︷︷    ︸

>0 by assumption

> 0,

where λµ = −
µ−2
3−µ . Since

(
∆2G

)
(a) > 0, we find that

(
∆2G

)
(t) > 0 for each t ∈ Na. Furthermore, we see

that G is convex on Na from Lemma 3.3. �

Theorem 3.2. Let G be defined on Na with ν ∈
(
1, 3

2

)
and µ ∈

(
2, 5

2

)
, and(

CFC
a+1∆

ν CFC
a∆

µ G
)

(t) > 0,(
∆2G

)
(a + 2) >

1
3 − µ

(
∆G2)(a + 1) > 0,

and (
∆2G

)
(a + 1) >

(
∆2G

)
(a) > 0,

for each t ∈ Na+1. Then G is convex on Na.

Proof. Let F(t) B
(

CFC
a∆

µ G
)

(t). Note that:(
CFC
a+1∆

ν CFC
a∆

µ G
)

(t) =
(

CFC
a+1∆

ν F
)

(t) > 0,

for t ∈ Na+1. Then we have

F(a + 1) =
(

CFC
a∆

µ−2 ∆2 G
)

(a + 1)

=
B(µ − 2)
5 − 2µ

a∑
κ=a

(
∆3G

)
(κ)(1 + λµ)a+1−κ

=
B(µ − 2)
5 − 2µ

(1 + λµ)
(
∆3G

)
(a) > 0, (3.7)

and

F(a + 2) =
(

CFC
a∆

µ−2 ∆2 G
)

(a + 2)

=
B(µ − 2)
5 − 2µ

a+1∑
κ=a

(
∆3G

)
(κ)(1 + λµ)a+2−κ

=
B(µ − 2)
5 − 2µ

[
(1 + λµ)2(∆3G

)
(a) + (1 + λµ)

(
∆3G

)
(a + 1)

]
AIMS Mathematics Volume 7, Issue 9, 15812–15823.
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=
(1 + λµ)B(µ − 2)

5 − 2µ

[
(1 + λµ)

[(
∆2G

)
(a + 1) −

(
∆2G

)
(a)

]
+

[(
∆2G

)
(a + 2) −

(
∆2G

)
(a + 1)

]]
>

(1 + λµ)B(µ − 2)
5 − 2µ

[
1

3 − µ
− 1

]
> 0, (3.8)

where λµ = −
µ−2
5−2µ . On the other hand, one has

F(a + 2) − F(a + 1) =
(1 + λµ)B(µ − 2)

5 − 2µ

[
(1 + λµ)

(
∆3G

)
(a) +

(
∆3G

)
(a + 1) −

(
∆3G

)
(a)

]
>

(1 + λµ)B(µ − 2)
5 − 2µ

(
λµ − 1 +

1
3 − µ

) (
∆2G

)
(a + 1) > 0. (3.9)

Then, from Eqs (3.7)–(3.9), we see that F(a + 2) > F(a + 1) > 0. Therefore, Lemma 3.2 gives

F(t) =
(

CFC
a+1∆

ν G
)

(t) > 0

for all t in Na+1. Moreover, by considering
(
∆2G

)
(a) > 0 in Lemma 3.3, we can deduce that G is convex

on the set Na. �

Theorem 3.3. Let G be defined on Na with ν ∈
(
2, 5

2

)
and µ ∈

(
0, 1

2

)
, and(

CFC
a+1∆

ν CFC
a∆

µ G
)

(t) > 0,(
∆G

)
(a + 2) >

1
1 − µ

(
∆G

)
(a + 1) > 0,

and (
∆G

)
(a + 1) >

(
∆G

)
(a) > 0,

for each t ∈ Na+1. Then we have that G is convex on Na.

Proof. Again, we write F(t) B
(

CFC
a∆

µ G
)

(t), and therefore,
(

CFC
a+1∆

ν F
)

(t) > 0 by assumption, for each
t ∈ Na+1. Then, we see that(

∆2F
)
(a + 1) ≡ ∆2

(
CFC

a∆
µ G

)
(a + 1)

by
=

(3.4)

(1 + λµ)B(µ)
1 − 2µ

(
∆2G

)
(a + 1)

+
λµ B(µ)
1 − 2µ

[
(1 + λµ)2(∆G)(a) +

a∑
κ=a

(
∆2
κG

)
(κ)(1 + λµ)a+1−κ

]
=

(1 + λµ)B(µ)
1 − 2µ

[(
∆2G

)
(a + 1) + λµ(1 + λµ)

(
∆G

)
(a) + λµ

(
∆2G

)
(a)

]
=

(1 + λµ)B(µ)
1 − 2µ

[(
∆G

)
(a + 2) + (λµ − 1)

(
∆G

)
(a + 1) + λ2

µ

(
∆G

)
(a)

]
AIMS Mathematics Volume 7, Issue 9, 15812–15823.
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>
(1 + λµ)B(µ)

1 − 2µ

[
1

1 − µ
(
∆G

)
(a + 1) + (λµ − 1)

(
∆G

)
(a + 1) + λ2

µ

(
∆G

)
(a)︸     ︷︷     ︸

>0

]

>
(1 + λµ)B(µ)

1 − 2µ

[ 1
1 − µ

+ λµ − 1
](

∆G
)
(a + 1)

> 0,

where λµ = −
µ

1−µ . It follows that, (
∆2F

)
(t) = ∆2

(
CFC

a∆
µ G

)
(t) > 0,

for each t ∈ Na by Lemma 3.3. Considering,
(
∆2G

)
(a) > 0, we can deduce that G is convex on Na by

Lemma 3.4. �

In Figure 1, we demonstrate the regions of the (µ, ν)-parameter space in which the above three
Theorems 3.1–3.3 are applied.

0.5 1 1.5 2 2.5 3

1

2

3
Region for Theorem 3.1

Region for Theorem 3.3

Region for Theorem 3.2

ν

µ

Figure 1. Three different regions concerning Theorems 3.1–3.3.

4. Conclusions

In this study, we present some new positivity results for discrete fractional operators with
exponential kernels in the sense of Caputo. In particular new positivity, α−convexity and
α−monotonicity were presented. We now refer the reader to observations for discrete generalized
fractional operators in [33] which combined with this paper may motivate future work.
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