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Abstract: In this paper, a (3+1)-dimensional nonlinear evolution equation is considered. First, its
bilinear formalism is derived by introducing dependent variable transformation. Then, its breather
wave solutions are obtained by employing the extend homoclinic test method and related figures are
presented to illustrate the dynamical features of these obtained solutions. Next, its resonant multi-
soliton solutions are obtained by using the linear superposition principle. Meanwhile, 3D profiles and
contour plots are presented to exhibit the process of wave motion. Finally, M-breather wave solutions
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1. Introduction

It is known that Hirota bilinear method [1] is a direct and effective method to solve a large number of
nonlinear evolution equations, which can depict physical phenomenon in nonlinear science. Recently,
Professor Ma considered the Hirota conditions of a (2+ 1)-dimensional combined equation and derived
its the N-soliton solution in [2]. Furthermore, Ma presented N-soliton solutions of the combined pKP-
BKP equation in [3] and soliton solutions to the B-type Kadomtsev-Petviashvili equation under general
dispersion relations in [4] by using Hirota bilinear method. In recent literature, many types of exact
solutions have been obtained by employing the Hirota bilinear method, such as soliton solutions [5–7],
breather solutions [8,9], lump wave solutions [10], interaction solutions [11,12], rogue wave solutions
[13, 14], resonant multi-soliton solutions [15–17], bifurction solitons [18, 19], bright and dark soliton
solutions [20, 21] and so on.
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In 2009, Dai proposed the homoclinic test approach and extended homoclinic test approach to
search solitary-wave solution of high dimensional nonlinear equation in [22]. Then Xu proposed the
homoclinic breather limit method for searching rogue wave solution to nonlinear evolution equation
in [23]. In 2011, Ma constructed the resonant multi-soliton solutions of nonlinear equations by
introducing introducing the linear superposition principle [24]. Afterwards the linear superposition
principle was used to establish the resonant multiple wave solutions of a (3+1)-dimensional generalized
Kadomtsev-Petviashvili equation by Lin in [25]. By comparing the linear superposition principle
and the velocity resonant condition, Kuo [26, 27] concluded that the linear superposition principle
is more effective, although they could result in the same results. In recent years, the complex conjugate
method was applied to N-soliton solutions to construct M-breather solutions and corresponding hybrid
solutions in [28–30]. As early as 1977, lump wave solutions were first proposed by Manakov et
al. [31] to indicate that the type of wave does not decrease in the direction of (x, y)-plane. Later,
Satsuma and Ablowitz [32] proposed the long wave limit method for seeking M-lump solutions based
on the collision effects of lump and N-soliton. And it is proved to be the most effective method to
construct M-lump solutions of nonlinear evolution equationsİn the past few years, a lot of literature on
M-lump solutions and hybrid solutions between lump and solitons of nonlinear evolution equations
has been appeared such as the (2+1)-dimensional combined pKP-BKP equation [33], the (3+1)-
dimensional potential-YTSF equation [34], a (2+1)-dimensional generalized KDKK equation [35],
the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation [36], (2+1)-dimensional HSI
equation [37], (3+1)-dimensional Kadomtsev-Petviashvili equation [38], (3+1)-dimensional gCH-KP
equation [39], the (4+1)-dimensional Boiti-LeonManna-Pempinelli equation [40] and so on.

Recently, Zhang etc [41] considered a (3 +1)- dimensional nonlinear evolution equation which was
written by

− 4uxt + uxxxz + 3αuyy + 4uxuxz + 2uxxuz = 0. (1.1)

Its M-lump and interactive solutions of Eq (1.1) were given in [41] by using long wave limit method.
when α = 1, Eq (1.1) can be reduced to the potential-YTSF equation [34], whose nontravelling wave
solutions were discussed by Yan in [42]. Based on the above literature, we aim to consider the breather
wave solutions and resonant multi-soliton solutions, M-breather solutions of Eq (1.1).

The rest of this paper is organized as follows. In Section 2, the bilinear formalism of the (3 + 1)-
dimensional equation (1.1) is derived via introducing variable transformation; In Section 3, breather
wave solutions are derived by using the extend homoclinic test approach. Meanwhile, a rouge wave
solution is derived by using the homoclinic breather limit method ; In Section 4, resonant multi-soliton
solutions are obtained by using linear superposition principle; In Section 5, multi-soliton solutions are
derived by Hirota bilinear method, then its M-breather solutions and hybrid solutions are constructed
based upon the obtained multi-soliton solutions. Finally, related remarks are given.

2. Bilinear formalism for the (3 + 1)-dimensional equation (1.1)

Through simple calculation, we can see that it is impossible to establish the Hirota bilinear
formalism of the (3 + 1)-dimensional equation (1.1) directly. By introducing a dependent variable
transformation ξ = x + kz in (1.1), the (3 + 1)-dimensional equation (1.1) can be transformed into the
following form

− 4uξt + kuξξξξ + 3αuyy + 6kuξuξξ = 0, (2.1)
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where k is a real constant. In what follows, we introduce another potential transformation

u = cqξ. (2.2)

By substituting (2.2) into (2.1), we can get

E(q) = −4cqξξt + ckqξξξξξ + 3αcqξyy + 6kc2qξξqξξξ = 0. (2.3)

Integrating the Eq (2.3) with respect to ξ once, we have

− 4cqξt + ckqξξξξ + 3cαqyy + 3c2kq2
ξξ = 0. (2.4)

According to the results between Bell polynomials and bilinear formalism in Ref. [43] and taking
c = 1, the above expression (2.4) leads to the following bilinear form of (2.1)[

−4DξDt + kD4
ξ + 3αD2

y

]
ϕ · ϕ = 0, (2.5)

with the help of the following transformation relationship

q = 2ln(ϕ)⇔ u = qξ = 2 (lnϕ)ξ . (2.6)

3. Breather wave and rouge wave solutions

In the beginning, we aim to investigate the breather wave solutions of Eq (1.1) by using the extend
homoclinic test method [22]. We choose the test function as the following form

ϕ = exp(−p1(ξ + m1y + c1t)) + δ1cos(p2(ξ + m2y + c2t)) + δ2exp(p1(ξ + m1y + c1t)), (3.1)

where p1, p2,m1,m2, c1, c2, δ1, δ2 are undetermined real constants. By substituting Eq (3.1) into Eq
(2.5), an algebraic equation can be obtained. Setting all coefficients for the powers of exp(±p1(ξ +

m1y + c1t)), sin(p2(ξ + m2y + c2t)), cos(p2(ξ + m2y + c2t)) to be zero, some algebraic equations can be
obtained. Taking p1 = p2 = p, we can get

2p2(−6αδ1m1m2 + 4c1δ1 + 4c2δ1) = 0,
2p2(3αδ1m2

1 − 3αδ1m2
2 − 4p2kδ1 − 4c1δ1 + 4c2δ1) = 0,

2p2(3αδ1δ2m2
1 − 3αδ1δ2m2

2 − 4p2kδ1δ2 − 4c1δ1δ2 + 4c2δ1δ2) = 0,
2p2(6αδ1δ2m1m2 − 4c1δ1δ2 − 4c2δ1δ2) = 0,
2p2(−3αδ2

1m2
2 + 4p2kδ2

1 + 12αδ2m2
1 + 16p2kδ2 + 4c2δ

2
1 − 16c1δ2) = 0.

(3.2)

Solving the obtained equations (3.2) by means of symbolic computation, two cases are obtained:
Case 1.

δ2
1 =

4((m1 − m2)2α + 4p2k)δ2

(m1 − m2)2α − 4p2k
, c1 =

(3m2
1 + 6m1m2 − 3m2

2)α
8

−
p2k
2
,

c2 =
(−3m2

1 + 6m1m2 + 3m2
2)α

8
+

p2k
2
.

(3.3)
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in which p, δ2,m1,m2 are arbitrary real numbers with 4((m1−m2)2α+4p2k)δ2
(m1−m2)2α−4p2k > 0.

Case 2.

δ2
1 = −4δ2, c1 =

3m2
2α

4
−

p2k
2
, c2 =

3m2
2α

4
+

p2k
2
, (3.4)

in which δ2, p,m1,m2 are arbitrary real numbers with δ2 < 0.
For Case 1, substituting (3.3) along with ξ = x + kz into (3.1), we obtain the following results

ϕ = exp(−p(x+m1y+kz+Ω1t))±
√

Ω2cos(p(x+m2y+kz+Ω3t))+δ2exp(p(x+m1y+kz+Ω1t)), (3.5)

where Ω1 =
(3m2

1+6m1m2−3m2
2)α

8 −
p2k
2 ,Ω2 =

4((m1−m2)2α+4p2k)δ2
(m1−m2)2α−4p2k ,Ω3 =

(−3m2
1+6m1m2+3m2

2)α
8 +

p2k
2 .

When δ2 > 0, (3.5) can be reduced to the following equation

ϕ = 2
√
δ2cosh(p(x + m1y + kz + Ω1t) +

1
2

ln(δ2)) ±
√

Ω2cos(p2(x + m2y + kz + Ω3t)). (3.6)

According to the variable transformation u = 2ln(ϕ)ξ, we obtain the exact wave solutions for (1.1) as

u1 =
4p
√
δ2sinh(p(x + m1y + kz + Ω1t) + 1

2 ln(δ2)) − 2p
√

Ω2sin(p(x + m2y + kz + Ω3t))

2
√
δ2cosh(p(x + m1y + kz + Ω1t) + 1

2 ln(δ2)) +
√

Ω2cos(p(x + m2y + kz + Ω3t))
, (3.7)

u2 =
4p
√
δ2sinh(p(x + m1y + kz + Ω1t) + 1

2 ln(δ2)) + 2p
√

Ω2sin(p(x + m2y + kz + Ω3t))

2
√
δ2cosh(p(x + m1y + kz + Ω1t) + 1

2 ln(δ2)) −
√

Ω2cos(p(x + m2y + kz + Ω3t))
, (3.8)

where u1 and u2 are two homoclinic breather wave solutions of (1.1). Their dynamical properties are
much similar, so we only discuss u2 for an example. By selecting appropriate parameters, the profile
of u2 is shown in Figure 1, which is of great value in understanding the dynamical behaviors of the
breathers (3.7) and (3.8).

For u2 in Eq (3.8) at p = 0, taking δ2 = 1, we can obtain the following Taylor expansions

sinh(p(x + m1y + kz + Ω1t)) = p(x + m1y + kz + Ω1t) + O(p2),
sin(p(x + m2y + kz + Ω3t)) = p(x + m2y + kz + Ω3t) + O(p2),

cosh(p(x + m1y + kz + Ω1t)) = 1 +
1
2

(p(x + m1y + kz + Ω1t))2 + O(p3),

cos(p(x + m1y + kz + Ω1t)) = 1 −
1
2

(p(x + m2y + kz + Ω3t))2 + O(p3).

(3.9)

Supposing an arbitrary constant u0 is the equilibrium solution of Eq (1.1), substituting above Taylor
expansions into Eq (3.8), then the following rouge wave solution for Eq (1.1) can be obtained

u3 = u0 +
8x + 4(m1 + m2)y + 8kz + 6m1m2t(

x + m1y + kz +
(3m2

1+6m1m2−3m2
2)αt

8

)2
+

(
x + m2y + kz +

(−3m2
1+6m1m2+3m2

2)αt
8

)2 . (3.10)

By choosing the same parameters as in Figure 1, we exhibit the profile of rouge wave solution (3.10)
in Figure 2.
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(a) (b)

Figure 1. (Color online) Plots of breather solution (3.8) with α = 2, p = 1, δ2 = 1,m1 =

3,m2 = 1, k = −1, z = 1 at time t = 0. (a) 3D plot; (b) Overhead view of the wave.

(a) (b)

Figure 2. (Color online) Rouge wave for Eq (1.1) described by (3.10) with u0 = 1, α = 2, k =

3,m1 = 2,m2 = −1, z = 1 at t = 2. (a) 3D profile; (b) Vertical view of the wave.

We can see that there is one peak and one trough in Figure 2(a). For any given time t, when
x2 + y2 + z2 → +∞, u3 tends to the equilibrium solution u0. If taking u0 = 0, when p tends to 0, u3 is
exactly the limit of u2 . From the mathematical point of view, the rogue wave solution (3.10) is a limit
behavior of breather wave solution (3.8). From the physical point of view, we may think perhaps the
energy collection and superposition of breather waves in many periods generate a rogue wave.
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For Case 2, when δ2 < 0, (3.5) can be reduced to the following equation

ϕ = −2
√
−δ2sinh(p(x + m1y + kz + Ω1t) +

1
2

ln(−δ2)) ±
√

Ω2cos(p2(x + m2y + kz + Ω3t)). (3.11)

According to the variable transformation u = 2ln(ϕ)ξ, we obtain the exact wave solutions for (1.1) as

u4 =
4p
√
−δ2cosh(p(x + m1y + kz + Ω1t) + 1

2 ln(−δ2)) + 2p
√

Ω2sin(p(x + m2y + kz + Ω3t))

2
√
−δ2sinh(p(x + m1y + kz + Ω1t) + 1

2 ln(−δ2)) −
√

Ω2cos(p(x + m2y + kz + Ω3t))
, (3.12)

u5 =
4p
√
−δ2cosh(p(x + m1y + kz + Ω1t) + 1

2 ln(−δ2)) − 2p
√

Ω2sin(p(x + m2y + kz + Ω3t))

2
√
−δ2sinh(p(x + m1y + kz + Ω1t) + 1

2 ln(−δ2)) +
√

Ω2cos(p(x + m2y + kz + Ω3t))
, (3.13)

where u4 and u5 are also two homoclinic breather wave solutions of (1.1). They also have similar
dynamical properties , here we only choose u4 for an example. By selecting proper parameters, we
present the profile of u5 in Figure 3, which will help us better understand the dynamical behaviors of
the breather wave solutions (3.12) and (3.13).

(a) (b)

Figure 3. (Color online) Breather wave for Eq.(1.1) described by (3.13) with α = −2, p =

−1, δ2 = −1,m1 = 2,m2 = 1, k = −1, z = 2 at time t = 1. (a) Front view of the wave. (b)
Overhead view of the wave.

Substituting (3.4) along with ξ = x + kz into (3.1), we have the following expression

ϕ =exp(−p(x + m1y + kz + Φ1t)) ± 2
√
−δ2cos(p(x + m2y + kz + Φ2t)

+ δ2exp(p1(ξ + m1y + kz + Φ1t)),
(3.14)

where Φ1 =
3m2

2α

4 −
p2k
2 ,Φ2 =

3m2
2α

4 +
p2k
2 . When δ2 < 0, (3.14) can be reduced to the following equation

ϕ = −2
√
−δ2sinh(p(x + m1y + kz + Φ1t)) ± 2

√
−δ2cos(p(x + m2y + kz + Φ2t). (3.15)
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According to the variable transformation u = 2ln(ϕ)ξ, we obtain the breather wave solution for (1.1) as

u6 =
2pcosh(p(x + m1y + kz + Φ1t)) + 2psin(p(x + m2y + kz + Φ2t)

sinh(p(x + m1y + kz + Φ1t)) − cos(p(x + m2y + kz + Φ2t)
, (3.16)

u7 =
2psinh(p(x + m1y + kz + Φ1t)) − 2psin(p(x + m2y + kz + Φ2t)

sinh(p(x + m1y + kz + Φ1t)) + cos(p(x + m2y + kz + Φ2t)
, (3.17)

where u6 and u7 are another two homoclinic breather wave solutions of (1.1). They also have similar
dynamical properties , here we only choose u7 for an example. By selecting appropriate parameters,
the profile of u7 is presented in Figure 4. By comparing the other two pairs of breather wave solutions,
we can better comprehending the dynamical behaviors of the breather wave solutions (3.16) and (3.17).

(a) (b)

Figure 4. (Color online) Breather depicted by(3.17) with α = 2, p = 1, δ2 = −1,m1 =

1,m2 = 1
2 , k = 1, z = 1 at t = 1. (a) Perspective view of the wave. (b) Overhead view of the

wave.

4. Resonant multi-soliton solutions of Eq (1.1)

In what follows, we would like to construct the resonant multi-soliton solution of Eq (1.1). For the
bilinear formula Eq (2.5), we choose N-exponential wave function as the following form

ϕ =

N∑
j=1

µ jϕ j =

N∑
j=1

µ jexpζ j = µ1expζ1 + µ2expζ2 + · · · + µNexpζN . (4.1)

in which the resonant multi-soliton variables ζ j = h jξ + l jy + r jt and µ j are nonzero (1 ≤ j ≤ N). On
the basis of the properties of differential operator to exponential functions, substituting the expression
(4.1) into the bilinear equation (2.5), we have[

−4DξDt + kD4
ξ + 3αD2

y

]
ϕ · ϕ =

N∑
j,i=1

µ jµiP(h j − hi, l j − li, r j − ri)exp(ζ j + ζi) = 0. (4.2)
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therefore the Eq (4.2) holds if and only if P(h j − hi, l j − li, r j − ri) = 0. Hence the resonant multi-soliton
condition can be written as

kh4
i − 4kh3

i h j + 6kh2
i h2

j − 4khih3
j + kh4

j + 3αl2
i − 6αlil j + 3αl2

j − 4hiri + 4r jhi + 4h jri − 4r jh j = 0. (4.3)

By balancing the power of hi, l j, r j, we conjecture the following wave related numbers

h j = h j, l j = c1h2
j , r j = c2h3

j . (4.4)

Substituting (4.4) into (4.2), we can obtain the following solution for bilinear equation (2.5)

ϕ = µ1exp(h1ξ + c1h2
1y + c2h3

1t) + µ2exp(h2ξ + c1h2
2y + c2h3

2t) + · · ·+ µNexp(hNξ + c1h2
Ny + c2h3

Nt), (4.5)

with the condition c1 =

√
k
α
, c2 = k. Through the transformation u = 2ln(ϕ)ξ and ξ = x + kz, we can

derive the resonant multi-soliton solution of the equation (1.1), which can be written as

u = 2
∂

∂x
ln

 N∑
j=1

µ jexp(h jx +

√
k
α

h2
jy − kh jz + kh3

j t)

 . (4.6)

Especially, the 2-kink solution is written as

ukink =
2h1µ1exp(h1x +

√
k
α
h2

1y + kh1z + kh3
1t) + 2h2µ2exp(h2x +

√
k
α
h2

2y + kh2z + kh3
2t)

µ1exp(h1x +

√
k
α
h2

1y + kh1z + kh3
1t) + µ2exp(h2x +

√
k
α
h2

2y + kh2z + kh3
2t)

. (4.7)

In Figure 5, the physical behaviors at t = 2 are vividly presented by selecting proper parameters. For
(a) and (d) with the following parameters: N = 2, µ1 = 1, µ2 = 3, h1 = 0.5, h2 = 1, k = 4, α = 3, z = 1;
For (b) and (e) with the following parameters N = 4, µ1 = 1, µ2 = 3, µ3 = 0.5, µ4 = 2, h1 = 0.5, h2 =

1, h3 = 0.2, h4 = 3, k = 4, α = 3, z = 1; For(c) and (f) with the following parameters: N = 6, µ1 =

0.5, µ2 = 1.5, µ3 = 2, µ4 = 0.6, µ5 = 0.7, µ6 = 1.4, h1 = 0.8, h2 = 3, h3 = 1.2, h4 = 0.5, h5 = 1.4, h6 =

1.8, k = 2, α = 4, z = 0. As a matter of fact, the waves shown in Figure 5 are inelastic. It is clear
that two convex waves appeared in (a) and (d), three convex waves appeared in (b) and (e), while
four convex waves appeared in (c) and (f). Their fashions and motion trend in (x, y)-plane are vividly
exhibited separately. Consequently, the resonant solutions expressed by (4.6) emerge a novel type of
interactions.
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(a) N=2 (b) N=4 (c) N=6

(d) N=2 (e) N=4 (f) N=6

Figure 5. (Color online) 3D profiles and contour plots for solutions (4.6) at t = 2 with
parameters mentioned above.

5. M-breather and hybrid solutions

In the end, we aim to derive M-breather and hybrid solutions of Eq (1.1) by using complex conjugate
method. To achieve this goal, we consider its multi-soliton solutions. Based upon the bilinear
formalism (2.5), we expand function ϕ(ξ, y, t) into a series of infinitesimal ε,

ϕ = 1 + ϕ(1)ε + ϕ(2)ε2 + ϕ(3)ε3 + · · · . (5.1)

Substituting Eq (5.1) into Eq (2.5), we obtain the following bilinear equations by comparing the
coefficients of the same power with respect to ε

−4ϕ(1)
ξt + kϕ(1)

ξξξξ + 3αϕ(1)
yy = 0. (5.2a)[

−4DξDt + kD4
ξ + 3αD2

y

]
ϕ(1) · ϕ(1) = 2

(
4ϕ(2)

ξt − kϕ(2)
ξξξξ − 3αϕ(2)

yy

)
. (5.2b)

−4ϕ(3)
ξt + kϕ(3)

ξξξξ + 3αϕ(3)
yy =

[
4DξDt − kD4

ξ − 3αD2
y

]
ϕ(1) · ϕ(2). (5.2c)

From the (5.2a), we can get a solution of ϕ(1) in this form ϕ(1) = exp(η1), η1 = l1(ξ+m1y+n1t)+η01, n1 =
kl21+3αm2

1
4 . Substituting ϕ(1) into (5.2b), we have 4ϕ(2)

ξt − kϕ(2)
ξξξξ − 3αϕ(2)

yy = 0. If we take ϕ(2) = 0, we can
derive −4ϕ(3)

ξt + kϕ(3)
ξξξξ + 3αϕ(3)

yy = 0 from (5.2c) such that ϕ(3) = 0. Continuing to study like this, we
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can further derive ϕ(4) = ϕ(5) = · · · = 0. So a finite form of series (5.1) can be derived by truncation.
If taking ε = 1, we have ϕ = 1 + exp(η1). By means of transformation u = 2ln(ϕ)ξ, we derive the
one-soliton solution u = 2 ∂

∂x ln(1 + exp(η1)) of equation (1.1), and η1 = l1(x + m1y + kz + n1t) + η01. On
account of the linear property for Eq (5.2a), ϕ(1) = exp(η1)+exp(η2) is also its solution. By substituting
ϕ(1) = exp(η1)+exp(η2) into (5.2b), according to the identity of Hirota bilinear operators, it is clear that
ϕ(2) = exp(η1 + η2 + A12) is a solution of (5.2b), where A12 = −

4(l1−l2)(l1n1−l2n2)−k(l1−l2)4−3α(l1m1−l2m2)2

(4(l1+l2)(l1n1+l2n2)−k(l1+l2)4−3α(l1m1+l2m2)2 , ηi =

li(ξ+miy+nit)+η0i and ni is defined as before. From (5.2b), we can further obtain ϕ(4) = ϕ(5) = · · · = 0.
Thus, the truncation solution at ε = 1 with ϕ = 1+exp(η1)+exp(η2)+exp(η1 +η2 + A12) can be derived.
In addition the two-soliton solution u = 2 ∂

∂x (ln(1 + exp(η1) + exp(η2) + exp(η1 + η2 + A12)) can also be
obtained. According to the existence theorem of N-soliton solution, with the help of the mathematical
induction, N-soliton solution for the (3+1)-dimensional equation (1.1) can be derived. Therefore, we
have the following conclusions

ϕN =
∑
λ=0,1

exp

 N∑
i=1

λiηi +

N∑
i< j

λiλ jAi j

 . (5.3)

through transformation u = 2ln(ϕ)ξ and ξ = x + kz, N-soliton solutions of equation (1.1) can be written
as

u = 2
∂

∂x
ln

1 +
∑
λi=0,1

exp

 N∑
i=1

λiηi +

N∑
i< j

λiλ jAi j


 . (5.4)

in which exp(Ai j) = −
4(li−l j)(lini−l jn j)−k(li−l j)4−3α(limi−l jm j)2

4(li+l j)(lini+l jn j)−k(li+l j)4−3α(limi+l jm j)2 , ηi = li(ξ + miy + nit) + η0i, ni =
kl2i +3αm2

i
4 ,

∑
λ=0,1 is

all possible sums with regard to λi = 0 or 1 under the condition 1 ≤ i < j ≤ N. Furthermore, li,mi are
non-zero constants.

In what follows, we would like to construct M-breather based on multi-soliton solutions. By taking
N = 2 in (5.4), we can obtain the following result

u = 2
∂

∂x
(ln(1 + exp(η1) + exp(η2) + exp(η1 + η2 + A12)). (5.5)

By selecting l1 = l∗2 = a1 + a2i,m1 = m2 in solution (5.5), we can derive the one-breather solution.
Hence the function ϕ can be expressed as

ϕ = 1 + 2cosh(θ)cos(ρ) + 2sinh(θ)cos(ρ) + exp(A12)(cosh(2θ) + cosh(2θ)). (5.6)

where

θ = a1

(
x + m1y + kz +

kl2
1 + 3αm2

1

4
t
)
,

ρ = b1

(
x + m1y + kz +

kl2
1 + 3αm2

1

4
t
)
.

(5.7)

Therefore, we obtain the 1-breather solution of Eq (1.1) as the following form

u =
2(cosh(θ) + sinh(θ))(a1cos(ρ) − b1sin(ρ)) + 2a1exp(A12)(cosh(2θ) + cosh(2θ))

1 + 2cosh(θ)cos(ρ) + 2sinh(θ)cos(ρ) + exp(A12)(cosh(2θ) + cosh(2θ))
. (5.8)

AIMS Mathematics Volume 7, Issue 9, 15795–15811.



15805

If taking N = 4 in (5.4), the function ϕ can be written as the following form

ϕ = 1 + exp(η1) + exp(η2) + exp(η3) + exp(η4) + exp(η1 + η2 + A12) + exp(η2 + η3 + A23)
+ exp(η3 + η4 + A34) + exp(η1 + η3 + A13) + exp(η1 + η4 + A14) + exp(η2 + η4 + A24)
+ exp(η1 + η2 + η3 + A12 + A13 + A23) + exp(η2 + η3 + η4 + A23 + A24 + A34)
+ exp(η1 + η2 + η4 + A12 + A14 + A24) + exp(η1 + η3 + η4 + A13 + A14 + A34)
+ exp(η1 + η2 + η3 + η4 + A12 + A13 + A14 + A23 + A24 + A34).

(5.9)

which is exactly the four-soliton solution for bilinear equation (2.5). According to the complex
conjugate method, taking special selections l1 = l∗3 = a1+b1i, l2 = l∗4 = a2+b2i,m1 = m∗3 = c1+d1i,m2 =

m∗4 = c2 + d2i in (5.4), then the two-breather solution can be derived. By taking N = 6 and selecting
l1 = l∗4 = a1 +b1i, l2 = l∗5 = a2 +b2i, l3 = l∗6 = a3 +b3i,m1 = m∗4 = c1 +d1i,m2 = m∗5 = c2 +d2i,m3 = m∗6 =

c3 + d3i in (5.4), hence the three-breather solution will be obtained. As the expressions of two-breather
solution and three-breather solution are too complex, so we omit their expressions here.

In order to describe their evolution process, appropriate parameters for two-breather are selected
with N = 4, k = 1, α = 2, a1 = 1, b1 = 2, a2 = 1, b2 = 3, c1 = 2, d1 = 3, c2 = 2, d2 = 5 at t = −5, 0, 5.
The motion pattern of the wave is shown in Figure 6. By the similar way, we select suitable parameters
for three-breather solution with N = 6, k = 2, α = 3, a1 = 0, a2 = 0, a3 = 0, b1 = 4, b2 = 3, b3 = 2, c1 =

1, c2 = 2, c3 = 2, d1 = 2, d2 = 3, d3 = 1 at t = −30, 0, 30. Its fluctuation form is shown in Figure 7.

By analyzing these pictures, several column waves emerge for two-breather while many column
waves emerge for three-breather. In Figure 6, when t = −5, it appears three peaks, two of them are
taller than the third one. Then their heights are different from each other at t = 0. At t = 5, it appears
four or more peaks. As can be seen from Figure 7, when t = −30, it appears many peaks and troughs
with different heights. Then their numbers decrease at t = 0. At t = 30, it appears many peaks and
troughs, but their height differences are not obvious. They maintain a froward posture for both the
two-breather and three-breather waves.

(a) t=-5 (b) t=0 (c) t=5

Figure 6. (Color online)Profiles of two-breather solution at different times with parameters
described above:(a) At t = −5 with z = 1; (b) At t = 0 with z = 1; (c) At t = 5 with z = 1.
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(a) t=-30 (b) t=0 (c) t=30

Figure 7. (Color online)Profiles of three-breather solution at different times:(a) At t = −30
with z = 4; (b) At t = 0 with z = 4; (c) At t = 30 with z = 4.

In the next, we would like to construct hybrid solutions based on multi-soliton solutions. Taking
N = 3 in (5.5), the function ϕ can be written as the following form

ϕ = 1 + exp(η1) + exp(η2) + exp(η3) + exp(η1 + η2 + A12) + exp(η1 + η3 + A13)
+ exp(η2 + η3 + A23) + exp(η1 + η2 + η3 + A12 + A13 + A23),

(5.10)

which is exactly the three-soliton solution for bilinear equation (2.5). By selecting l1 = l∗3 = a1 +

b1i,m1 = m∗3 = c1 + d1i in (5.10), we can derive the hybrid solution between one-soliton and one-
breather. Similarly, by selecting N = 5 and k1 = k∗3 = a1 + b1i, k2 = k∗4 = a2 + b2i, l1 = l∗3 = c1 + d1i, l2 =

l∗4 = c2 + d2i in (5.4), the hybrid solution between one-soliton and two-breather can also be obtained.
As their expressions are very long, we omit them here in order to save space.

In order to depict the evolution progress of hybrid solutions between breather and soliton, proper
parameters are selected with N = 3, k = 2, α = 4, a1 = 1

2 , b1 = 1
3 , c1 = 1

4 , d1 = 1
3 at t = −20, 0, 20 to

exhibit its wave motions. Meanwhile, proper parameters are selected with N = 5, k = 1, α = 3, a1 =
1
10 , a2 = 1

20 , b1 = 1
2 , b2 = 1

4 , c1 = 3
5 , c2 = 3

10 , d1 = 4
5 , d2 = 9

10 , k5 = 3
2 , l5 = 3 at t = −5, 0, 10 to

depict its fluctuations. As is shown in Figure 8, it appear many breathers at t = −20. When colliding
occurs at t=0 between the breather and soliton, we can see that the breather changes a lot at t = 20. It
keeps moving forward over time. It can be seen from Figure 9, two parts constitute the hybrid wave
solution. It is clear that one part is soliton wave and the other part is two parallel breathers. Both
the two parallel breathers maintain their original propagation path. They gradually separate from each
other after colliding with solitons.
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(a) t=-20 (b) t=0 (c) t=20

Figure 8. (Color online)Evolution progress of hybrid solution between one-soliton and one-
breather:(a) Profile of hybrid solution at t = −20 with z = 3; (b) Profile of hybrid solution at
t = 0 with z = 3; (c) Profile of hybrid solution at t = 20 with z = 3.

(a) t=-5 (b) t= 0 (c) t= 10

Figure 9. (Color online)Evolution progress of hybrid solution between one-soliton and two-
breather:(a) Profile of hybrid solution at t = −5 with z = 2; (b) Profile of hybrid solution at
t = 0 with z = 2; (c) Profile of hybrid solution at t = 10 with z = 2.

6. Conclusions

In order to establish the bilinear formalism of a (3+1)-dimensional equation, a dependent variable
transformation was introduced. This bilinear expression plays a key role in this paper. Then we derived
three pairs of breather solutions by employing the homoclinic test method. Among these breather
solutions, the rouge wave solution can only be derived from a from u2 . Next we obtained resonant
multi-soliton solutions by employing the linear superposition principle. Obviously, the resonant multi-
soliton solutions which we obtained don’t depend on dispersion relation. By choosing N = 2, 4, 6, the
physical shape of the waves were shown graphically. In what follows, M-breather solutions including
one-breather, two-breather and three-breather were obtained by applying the complex conjugate
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method to the multi-soliton solutions, and their evolution progress were exhibited by choosing
appropriate parameters. Compared their dynamical behaviors, we can see that breather solutions which
were derived by using the homoclinic test method are different from the ones which were derived by
using the complex conjugate method. Finally, the hybrid solutions between breathers and solitons
were constructed and their dynamic properties were exhibited in the form of plotting.Hence, these
solutions would amend the existing literature on the exact solutions of nonlinear evolution equation.
Furthermore, the method in this paper can be more effectively used in other nonlinear evolution
equations.
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to a new (3+ 1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition
principle, Appl. Math. Lett., 78 (2018), 112–117. https://doi.org/10.1016/j.aml.2017.10.013

26. C. K. Kuo, W. X. Ma, A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota-
Satsuma-Ito equations via the linear superposition principle, Nonlinear Anal., 190 (2020), 111592.
https://doi.org/10.1016/j.na.2019.111592

27. C. K. Kuo, Novel resonant multi-soliton solutions and inelastic interactions to the (3+1)- and
(4+1)- dimensional Boiti-Leon-Manna-Pempinelli equations via the simplified linear superposition
principle, Eur. Phys. J. Plus, 136 (2021), 1–11. https://doi.org/10.1140/epjp/s13360-020-01062-8

28. B. Q. Li, Y. L. Ma, Interaction dynamics of hybrid solitons and breathers for
extended generalization of Vakhnenko equation, Nonlinear Dyn., 102 (2020), 1787–1799.
https://doi.org/10.1007/s11071-020-06024-4

29. B. Q. Li, Y. L. Ma, N-order rogue waves and their novel colliding dynamics for a transient
stimulated Raman scattering system arising from nonlinear optics, Nonlinear Dyn., 101 (2021),
2449–2461. https://doi.org/10.1007/s11071-020-05906-x

30. B. Q. Li, Y. L. Ma, Extended generalized Darboux transformation to hybrid rogue wave and
breather solutions for a nonlinear Schrödinger equation, Appl. Math. Comput., 386 (2020), 125469.
https://doi.org/10.1016/j.amc.2020.125469

31. S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev, Two-dimensional solitons
of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 62 (1977), 205–206.
https://doi.org/10.1016/0375-9601(77)90875-1

32. J. Satsuma, M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math.
Phys., 20 (1979), 1496–1503. https://doi.org/10.1063/1.524208

33. Y. Y. Feng, S. D. Bilige, Resonant multi-soliton, M-breather, M-lump and hybrid
solutions of a combined pKP-BKP equation, J. Geom. Phys., 169 (2021), 104322.
https://doi.org/10.1016/j.geomphys.2021.104322

34. H. D. Guo, T. C. Xia, B. B. Hu, Dynamics of abundant solutions to the (3+ 1)-
dimensional generalized Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett., 105 (2020),
106301. https://doi.org/10.1016/j.aml.2020.106301

AIMS Mathematics Volume 7, Issue 9, 15795–15811.

http://dx.doi.org/https://doi.org/10.1016/j.ijleo.2021.167048
http://dx.doi.org/https://doi.org/10.1016/j.amc.2008.10.042
http://dx.doi.org/https://doi.org/10.1016/j.aml.2014.05.005
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2010.12.043
http://dx.doi.org/https://doi.org/10.1016/j.aml.2017.10.013
http://dx.doi.org/https://doi.org/10.1016/j.na.2019.111592
http://dx.doi.org/https://doi.org/10.1140/epjp/s13360-020-01062-8
http://dx.doi.org/https://doi.org/10.1007/s11071-020-06024-4
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05906-x
http://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125469
http://dx.doi.org/https://doi.org/10.1016/0375-9601(77)90875-1
http://dx.doi.org/https://doi.org/10.1063/1.524208
http://dx.doi.org/https://doi.org/10.1016/j.geomphys.2021.104322
http://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106301


15811

35. X. J. Zhou, O. A. Ilhan, J. Manafian, G. Singh, N. S. Tuguz, N-lump and interaction solutions
of localized waves to the (2+ 1)-dimensional generalized KDKK equation, J. Geom. Phys., 168
(2021), 104312. https://doi.org/10.1016/j.geomphys.2021.104312

36. J. Manafian, O. A. Ilhan, L. Avazpour, A. Alizadeh, N-lump and interaction solutions of
localized waves to the (2+ 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise
from a model for an incompressible fluid, Math. Method. Appl. Sci., 43 (2020), 9904–9927.
https://doi.org/10.1002/mma.6665

37. Z. L. Zhao, L. C. He, M-lump and hybrid solutions of a generalized (2+ 1)-
dimensional Hirota-Satsuma-Ito equation, Appl. Math. Lett., 111 (2021), 106612.
https://doi.org/10.1016/j.aml.2020.106612

38. Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+ 1)-dimensional Kadomtsev-Petviashvili equation
and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simul., 187
(2021), 125469. https://https://doi.org/10.1016/j.matcom.2021.03.012

39. Y. Y. Feng, X. M. Wang, S. D. Bilige, Evolutionary behavior and novel collision of various wave
solutions to (3 + 1)-dimensional generalized Camassa-Holm Kadomtsev-Petviashvili equation,
Nonlinear Dyn., 104 (2021), 4265–4275. https://doi.org/10.1007/s11071-021-06463-7

40. P. F. Han, T. Bao, Interaction of multiple superposition solutions for the (4+ 1)-
dimensional Boiti-LeonManna-Pempinelli equation, Nonlinear Dyn., 105 (2021), 717–734.
https://doi.org/10.1007/s11071-021-06603-z

41. Y. Zhang, Y. P. Liu, X. Y. Tang, M-lump and interactive solutions to a (3+1)- dimensional nonlinear
system, Nonlinear Dyn., 93 (2018), 2533–2541. https://doi.org/10.1007/s11071-018-4340-9

42. Z. Y. Yan, New families of nontravelling wave solutions to a new (3+ 1)-dimensional potential-
YTSF equation, Phys. Lett. A, 318 (2003), 78–83. https://doi.org/10.1016/j.physleta.2003.08.073

43. E. G. Fan, K. W. Chow, Darboux covariant lax pairs and infinite conservation laws of
the (2+ 1)-dimensional breaking soliton equation, J. Math. Phys., 52 (2011), 023504.
https://doi.org/10.1063/1.3545804

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 9, 15795–15811.

http://dx.doi.org/https://doi.org/10.1016/j.geomphys.2021.104312
http://dx.doi.org/ https://doi.org/10.1002/mma.6665
http://dx.doi.org/ https://doi.org/10.1002/mma.6665
http://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106612
http://dx.doi.org/https://https://doi.org/10.1016/j.matcom.2021.03.012
http://dx.doi.org/ https://doi.org/10.1007/s11071-021-06463-7
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06603-z
http://dx.doi.org/https://doi.org/10.1007/s11071-018-4340-9
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2003.08.073
http://dx.doi.org/https://doi.org/10.1063/1.3545804
http://creativecommons.org/licenses/by/4.0

	Introduction
	Bilinear formalism for the (3 + 1)-dimensional equation (1.1)
	Breather wave and rouge wave solutions
	Resonant multi-soliton solutions of Eq (1.1)
	M-breather and hybrid solutions
	Conclusions

