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1. Introduction

In all areas of physics, conservation laws [1, 2] are essential and important since they allow us to
draw conclusions of a physical system under study in an efficient way. Knowledge of conservation
laws are important for numerical integration of partial differential equations (PDEs). The existence of
a large number of conservation laws for a nonlinear partial differential equation (system) is a strong
indication of its integrability. Many powerful methods have been developed for the construction
of conservation laws, such as the Noethers theorem [3] for variational problems, Laplaces Direct
method [4], characteristic form introduced by Stuedel [5], multiplier approach [6, 7], Kara and
Mahomed [8] symmetry condition, partial Noether approach [9–11] and Cheviakov [12] developed
powerful software packages to compute conservation laws for partial differential equations.

The multiplier approach (also known as the variational derivative method) was successfully applied
to the construction of conservation laws for nonlinear partial differential equations [13–16].
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Soliton solutions for nonlinear partial differential equations (PDEs) are play a significant role in
soliton theory [17]

In [18] the authors obtained the novel exact solutions in form of dark, bright, combined dark-bright,
combined singular and other soliton solutions solitons for the meta materials model having third and
fourth order dispersions, the authors in [19] obtained investigation for the optical solitons solution
for the nonlinear Schrödinger equation in magneto-optic waveguides with anti-cubic nonlinearity and
in [20] the author obtained the new exact soliton solutions for the two deformed nonlinear Schrödinger
(NLS) type equations.

Based on He’s variational approach [21, 22], which depends on the Lagrange function and the
finding of conservation laws of system of differential equations (DEs), which is often the first step
towards finding the solution the variational formula from the conserved quantities for Benjamin-Bona-
Mahoney equation with dual-power law nonlinearity (BBM), modified regularized long wave (MRLW)
equation and modified nonlinearly dispersive KdV equations 2K(2,2,1) and 3K(3,2,2) equation and
new kinds of solitary wave solutions for these models and numerical simulations were obtained in
Sections 3–6. in Section 5. This method helps to explore the new soliton solutions for new phenomena
of nonlinear evolution equations. So we proposed a new method to derive the functional from
conserved quantities since it depends on the Lagrange function and its derivatives [23] and then find
the soliton solutions by Ritz method [24].

The Benjamin-Bona-Mahoney equation with dual-power law nonlinearity (BBM) equation
describes the dynamics of shallow water waves in the presence of advection, the modified regularized
long wave (MRLW) equation was first introduced by Peregrine [25] to describe the development
of an undular bore, the modified nonlinearly dispersive KdV equations 2K(2,2,1) equation and the
modified nonlinearly dispersive KdV equations 3K(3,2,2) equation are derived from the well-known
KdV equation which describes the mathematical modeling of traveling wave solutions, known as
solitary water waves (also called solitons) in a shallow water domain.

The proposed method derived the soliton solutions from the conserved quantities for the models
while the existing method derived the soliton solutions from the Lagrangian for the models. In [26],
He’s variational iteration method was applied to obtain the numerical solution for various kinds
of Newell-Whitehead-Segel nonlinear diffusion equation. This paper is organized as follows: In
Section 2, we give brief definitions related to the multiplier approach and main steps for deriving the
soliton solutions. In Sections 3–6, we apply this method to Benjamin-Bona-Mahoney equation with
dual-power law nonlinearity (BBM), modified regularized long wave (MRLW) equation and modified
nonlinearly dispersive KdV equations 2K(2,2,1) and 3K(3,2,2) equation and give the soliton solutions
by using a proposed method and the figures for each models to illustrate the properties of these solitons
solutions. Finally, results are summarized in Section 7.

2. The proposed method

For giving an independent variable t, x and dependent variable u
(1) The total derivative operator D with respect to t, x are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ utxx

∂

∂uxx
+ ......
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Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ uxxt

∂

∂uxt
+ ...... (2.1)

(2) The Euler operator is defined

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
+ D2

t
∂

∂utt
+ D2

x
∂

∂uxx
+ DxDt

∂

∂uxt
− D3

t
∂

∂uttt
− ..... (2.2)

Consider a mth-order partial differential equation of t, x

E(t, x, u, ut, ux, utt, utx, uxx, ......) = 0. (2.3)

(3) A vector T = (T 1,T 2) such that

DtT 1 + DxT 2 = 0, (2.4)

holds for all solutions of (2.3) is known as the conserved vector of (2.3).
(4) The multiplier Λ for (2.3) has the property

DtT 1 + DxT 2 = ΛE, (2.5)

for arbitrary function u(x, t) [5, 6]
(5) The determining equations for multiplier are obtained by taking the variational derivative
of (2.5) [6]

δ

δu
(ΛE) = 0. (2.6)

Equation (2.6) holds for arbitrary function u(x, t) not only for solutions of (2.3). We can derive the
conserved vectors using (2.5) after computing the multiplier from (2.6)
The main steps of the proposed method are given as follows:

For giving a nonlinear equation
Step 1. By using the wave transformation u(x, t) = u(ζ), ζ = kx−ωt + ζ0, we can convert Eq (2.3) into
an ordinary differential equation (ODE)

H(u,−ωuζ , kuζ , ω2uζζ ,−kωuζζ , k2uζζ , .....) = 0. (2.7)

Step 2. Equation (2.4) can be converted into

DζT ζ = 0, (2.8)

Step 3. The multiplier Λ for (2.7) has the property

DζT ζ = Λ(ζ, u(ζ))H, (2.9)

for arbitrary function U(ζ).
Step 4. The determining equations for multiplier are obtained by taking the variational derivative
of (2.9)

δ

δu
(Λ(ζ, u(ζ))H) = 0. (2.10)
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Equation (2.10) holds for arbitrary function u(ζ) not only for solutions of (2.7). We can derive the
conserved vectors using (2.9) after computing the multiplier from (2.10)
Step 5. We construct the following functional

J =

∫ ∞

0
T ζdζ, or J =

∫ ∞

−∞

T ζdζ, (2.11)

where T ζ is the conserved quantity for the Eq (2.7).
Step 6. By a Ritz method [24], we can obtain solitary wave solutions, such as u(ζ) = Asech(ζ), u(ζ) =

Asech(ζ)2, where A is a constant to be determined.
Substituting u(ζ) = Asech(ζ), u(ζ) = Asech(ζ)2 into Eq (2.11) and making J stationary with respect to
A we obtain

∂J
∂A

= 0. (2.12)

Solving Eq (2.12) we obtain the constant A . Hence the solitary wave solution is well determined.

3. Conservation laws and soliton solutions for the Benjamin-Bona-Mahoney equation with
dual-power law nonlinearity (BBM) equation

We consider the Benjamin-Bona-Mahoney equation with dual-power law nonlinearity (BBM)
equation [27]

ut + aux + (bun + cu2n)ux + luxxx = 0. (3.1)

The first term represents the evolution term while b and c represent the coefficients of dual-power law
nonlinearity. Then a and l are the coefficients of dispersion terms. The parameter n is the power law
parameter while u is the wave profile. The independent variables x and t represent spatial and temporal
variables respectively.
The two conserved vectors [28]

T t
1 =

u2

2
,

T x
1 =

a
2

u2 +
b

n + 2
un+2 +

c
2(n + 1)

u2(n+1) + luuxx −
l
2

u2
x,

T t
2 = u,

T x
2 = au +

b
n + 1

un+1 +
c

2n + 1
u2n+1 + luxx. (3.2)

Using the wave variable transformation u(x, t) = u(ζ), ζ = kx−ωt + ζ0 to convert Eq (3.1) into ODE

(ka − ω)u′ + k(bun + cu2n)u′ + k3lu′′′ = 0. (3.3)

The determining equation for multiplier Λ(ζ, u(ζ)), from (2.10), is

Λu((ka − ω)u′ + k(bun + cu2n)u′ + k3lu′′′) + k(nbun−1 + 2ncu2n−1)u′Λ
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−Dζ((ka − ω) + k(bun + cu2n))Λ − k3lD3
ζΛ = 0. (3.4)

Equation (3.4) is separated according to different combinations of derivatives of u and and an
overdetermined system of equations for multiplier Λ is obtained which gives

Λ(ζ, u) = c1u + c2. (3.5)

From (2.9) and (3.5), we obtain the conserved quantities

T ζ = (ak − ω)
(
1
2

c1u(ζ)2 + c2u(ζ)
)

+
bc2ku(ζ)n+1

n + 1
+

bc1ku(ζ)n+2

n + 2
+

c2du(ζ)2n+1

2n + 1

+
c1du(ζ)2n+2

2n + 2
+ c2k3lu′′(ζ) + c1k3l

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
)
. (3.6)

We can construct the following functional

J =

∫ ∞

0
((ak − ω)

(
1
2

c1u(ζ)2 + c2u(ζ)
)

+
bc2ku(ζ)n+1

n + 1
+

bc1ku(ζ)n+2

n + 2
+

c2du(ζ)2n+1

2n + 1

+
c1du(ζ)2n+2

2n + 2
+ c2k3lu′′(ζ) + c1k3l

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
)
)dζ. (3.7)

According to the Ritz-like method , we look for a solitary wave solution in the form

u(ζ) = Asech(ζ). (3.8)

Substituting Eq (3.8) into Eq (3.7) , we have for n = 1

J =
1

12
A

(
Ac1

(
6ak + 2A2d + πAbk − 6

(
k3l + ω

))
+ c2

(
6πak + πA2d + 6Abk − 6πω

))
. (3.9)

To find the constant A , we solve the following equation

∂J
∂A

=
1
4

c2

(
2πak + πA2d + 4Abk − 2πω

)
+ c1

(
A

(
ak + k3(−l) − ω

)
+

2A3d
3

+
1
4
πA2bk

)
= 0. (3.10)

From (3.10) , we get

A =


−3πbk∓

√
3(3π2b2k2−128adk+128dk3l+128dω)

16d , c1 = 1, c2 = 0,
−

√
2(2b2k2−π2adk+π2dω)−2bk

πd , c1 = 0, c2 = 1.
(3.11)

Therefore, the solitary wave solutions for the BBM equation with dual-power law nonlinearity are

u(x, t) =


−3πbk∓

√
3(3π2b2k2−128adk+128dk3l+128dω)

16d sech(kx − ωt + ζ0), c1 = 1, c2 = 0,
−

√
2(2b2k2−π2adk+π2dω)−2bk

πd sech(kx − ωt + ζ0), c1 = 0, c2 = 1.
(3.12)

The 3D graphs in Figures 1 and 2 illustrate the trough propagating to the right, while 2D graphs
show the movement of the wave along x-direction as time increases for Eq (3.12), a contour plot could
also be useful for describing the movement of the solitons.
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Figure 1. Shows the soliton solution of Eq (3.12) for c1 = 1, c2 = 0.

Figure 2. Shows the soliton solution of Eq (3.12) for c1 = 0, c2 = 1.

For another soliton solution in the form [29]

u(ζ) = Fsech2(ζ). (3.13)

where F is a constant to be determined. Substituting Eq (3.13) into Eq (3.9), we obtain

J =
F

315
(Fc1

(
21

(
5ak − 12k3l − 5ω

)
+ 36F2d + 56Fbk

)
)

+
F

315
(7c2

(
45ak + 8F2d + 15Fbk − 45ω)

)
). (3.14)

To find the constant F, we solve the following equation

∂J
∂F

=
1

105
(2Fc1

(
35ak + 24F2d + 28Fbk − 84k3l − 35ω

)
)

+
1

105
(7c2

(
15ak + 8F2d + 10Fbk − 15ω)

)
) = 0. (3.15)

From Eq (3.15), we have

F =


−7bk∓

√
7(72dk3l−30adk+7b2k2+30dω)

12d , c1 = 1, c2 = 0,
−5bk∓

√
5(5b2k2−24adk+24dω)

8d , c1 = 0, c2 = 1.
(3.16)
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Therefore, the solitary wave solutions for the BBM equation with dual-power law nonlinearity are as
follows:

u(x, t) =


−7bk∓

√
7(72dk3l−30adk+7b2k2+30dω)

12d sech2(kx − ωt + ζ0), c1 = 1, c2 = 0,
−5bk∓

√
5(5b2k2−24adk+24dω)

8d sech2(kx − ωt + ζ0), c1 = 0, c2 = 1.
(3.17)

The 3D graphs in Figures 3 and 4 describe nonlinear wave propagation of soliton solutions, while 2D
graphs depict the movement of the solitons obtained from Eq (3.17) for different times and a contour
plot describes the movement of the solitons.

Figure 3. Shows the soliton solution of Eq (3.17) for c1 = 1, c2 = 0.

Figure 4. Shows the soliton solution of Eq (3.17) for c1 = 0, c2 = 1.

4. Conservation laws and soliton solutions for the modified regularized long wave (MRLW)
equation

We consider the modified regularized long wave (MRLW) equation [30]

ut + ux + 6u2ux − µuxxt = 0, (4.1)

where µ is a positive constants, was originally introduced to describe the behavior of the undular bore
by Peregrine [31], and later by Benjamin et al. [32]. This equation is very important in physics media
since it describes a phenomenon with weak nonlinearity and dispersion waves, including nonlinear
transverse waves in shallow water, ion-acoustic and magneto hydrodynamic waves in plasma and
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phonon packets in nonlinear crystals.
The two conserved vectors [28]

T t
1 =

u2

2
− µ(uuxx −

1
2

u2
x),

T x
1 =

1
2

u2 + µuxut +
3
2

u4,

T t
2 = u, T x

2 = u + 2u3. (4.2)

To find the soliton solutions, we convert Eq (4.1) into an ODE

(k − ω)u′ + 6ku2u′ + µk2ωu′′′ = 0. (4.3)

The multiplier Λ(ζ, u(ζ)), can be obtained as follows

Λu((k − ω)u′ + 6ku2u′ + µk2ωu′′′) + 12kuu′Λ − Dζ((k − ω) + 6ku2)Λ − µωk2D3
ζΛ = 0. (4.4)

Solving Eq (4.4) for multiplier Λ, we obtain

Λ(ζ, u) = c1u + c2. (4.5)

From (2.9) and (4.5), we obtain the conserved quantities

T ζ = −k2µω

(
c2u′′(ζ) + c1

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
))

+
1
2

(k − ω)u(ζ) (c1u(ζ) + 2c2)

+
3
2

ku(ζ)3
(
c1u(ζ) +

4c2

3

)
. (4.6)

From (4.6), we can obtain the functional

J =

∫ ∞

0
(−k2µω

(
c2u′′(ζ) + c1

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
))

+
1
2

(k − ω)u(ζ) (c1u(ζ) + 2c2)

+
3
2

ku(ζ)3
(
c1u(ζ) +

4c2

3

)
)dζ. (4.7)

According to the Ritz-like method , we search a solitary wave solution in the form

u(ζ) = Asech(ζ). (4.8)

Substituting Eq (4.8) into Eq (4.7) , we have

J =
1
2

A
(
Ac1

(
2A2k + k2µω + k − ω

)
+ πc2

(
A2k + k − ω

))
. (4.9)

To find the constant A , we solve the following equation

∂J
∂A

=
1
2

(
2Ac1

(
4A2k + k2µω + k − ω

)
+ πc2

(
3A2k + k − ω

))
= 0. (4.10)
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From (4.10) , we obtain

A =

 ∓
√

ω−k−µωk2

4k , c1 = 1, c2 = 0,

∓

√
ω−k
3k , c1 = 0, c2 = 1.

(4.11)

Therefore, the solitary wave solutions for the MRLW equation are

u(x, t) =

 ∓
√

ω−k−µωk2

4k sech(kx − ωt + ζ0), c1 = 1, c2 = 0,

∓

√
ω−k
3k sech(kx − ωt + ζ0), c1 = 0, c2 = 1.

(4.12)

The 3D graphs in Figures 5 and 6 describe the shape of solitons for waves u(x, t), while 2D graphs
depict the movement of the soliton waves along x-direction as time increases for Eq (4.12), a contour
plot can also be useful for deseribing the movement of the solitons for (4.12).

Figure 5. Shows the soliton solution of Eq (4.12) for c1 = 1, c2 = 0.

Figure 6. Shows the soliton solution of Eq (4.12) for c1 = 0, c2 = 1.

For another soliton solution (3.13), we obtain

J =
1

105
F

(
Fc1

((
72F2 + 35

)
k + 84k2µω − 35ω

)
+ 7c2

((
16F2 + 15

)
k − 15ω

))
. (4.13)

Solving the following equation to find F

∂J
∂F

=
2

105
Fc1

((
144F2 + 35

)
k + 84k2µω − 35ω

)
+

1
5

c2

((
16F2 + 5

)
k − 5ω

)
= 0. (4.14)
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From Eq (4.14), we have

F =

 ∓
1

12

√
7(5ω−12k2µω−5k)

k , c1 = 1, c2 = 0,

∓1
4

√
5(ω−k)

k , c1 = 0, c2 = 1.
(4.15)

Therefore, the solitary wave solutions for the MRLW equation are as follows

u(x, t) =

 ∓
1
12

√
7(5ω−12k2µω−5k)

k sech2(kx − ωt + ζ0), c1 = 1, c2 = 0,

∓1
4

√
5(ω−k)

k sech2(kx − ωt + ζ0), c1 = 0, c2 = 1.
(4.16)

The 3D graphs in Figures 7 and 8 describe nonlinear wave propagation of soliton solutions to the right,
while 2D graphs depict the movement of the solitons obtained from Eq (4.16) for different times and a
contour plot describes the movement of the solitons.

Figure 7. Shows the soliton solution of Eq (4.16) for c1 = 1, c2 = 0.

Figure 8. Shows the soliton solution of Eq (4.16) for c1 = 0, c2 = 1.

5. Conservation laws and soliton solutions for the modified nonlinearly dispersive KdV
equations 2K(2,2,1) equation

The modified nonlinearly dispersive KdV equations 2K(2,2,1) equation [33] takes the form

uut + a(u2)x + buxxx = 0, (5.1)
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where a and b are constants.
The three conserved vectors [28]

T t
1 =

u2

2
(t −

x
2a

),

T x
1 = u2(at −

x
2

) + uxx(bt −
x
2

) +
1
2a

ux,

T t
2 =

u3

3
, T x

2 =
2
3

au3 −
b
2

(ux)2 + buuxx,

T t
3 =

u2

2
, T x

3 = au2 + buxx. (5.2)

By converting Eq (5.1) into an ODE

(2ak − ω)uu′ + bk3u′′′ = 0. (5.3)

The multiplier Λ(ζ, u(ζ)), can be obtained as follows

Λu((2ak − ω)uu′ + bk3u′′′) + (2ak − ω)(u′Λ − Dζ(uΛ)) − bk3D3
ζΛ = 0. (5.4)

Solving Eq (5.4) for multiplier Λ, we obtain

Λ(ζ, u) = c1u + c2. (5.5)

From (2.9) and (5.5), we obtain the conserved quantities

T ζ =
1
6

u(ζ)2(2ak − ω) (2c1u(ζ) + 3c2) + bk3
(
c2u′′(ζ) + c1

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
))
. (5.6)

From (5.6), we can obtain the functional

J =

∫ ∞

0
(
1
6

u(ζ)2(2ak − ω) (2c1u(ζ) + 3c2) + bk3
(
c2u′′(ζ) + c1

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
))

)dζ. (5.7)

According to the Ritz-like method, we search a solitary wave solution in the form

u(ζ) = Asech(ζ). (5.8)

Substituting Eq (5.8) into Eq (5.7) , we have

J =
1
12

A2
(
c1

(
−πA(ω − 2ak) − 6bk3

)
+ 6c2(2ak − ω)

)
. (5.9)

To find the constant A , we solve the following equation

∂J
∂A

=
1
4

A
(
c1

(
−πA(ω − 2ak) − 4bk3

)
+ 4c2(2ak − ω)

)
= 0. (5.10)

From (5.10) , we obtain

A =

 4bk3

π(2ak−ω) , c1 = 1, c2 = 0,
4(−2ak+bk3+ω)

π(2ak−ω) , c1 = 1, c2 = 1.
(5.11)
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Therefore, the solitary wave solutions for the 2K(2,2,1) equation are

u(x, t) =

 4bk3

π(2ak−ω) sech(kx − ωt + ζ0), c1 = 1, c2 = 0,
4(−2ak+bk3+ω)

π(2ak−ω) sech(kx − ωt + ζ0), c1 = 1, c2 = 1.
(5.12)

The 3D graphs in Figures 9 and 10 describe the shape of solitons for waves u(x, t), while 2D graphs
depict the movement of the soliton waves along x-direction as time increases for Eq (5.12), a contour
plot can also be useful for describing the movement of the solitons for (5.12).

Figure 9. Shows the soliton solution of Eq (5.12) for c1 = 1, c2 = 0.

Figure 10. Shows the soliton solution of Eq (5.12) for c1 = 1, c2 = 1.

For another soliton solution (3.13), we obtain

J =
1

45
F2

(
4c1

(
4aFk − 2Fω − 9bk3

)
+ 15c2(2ak − ω)

)
. (5.13)

Solving the following equation to find F

∂J
∂F

=
2

15
F

(
4c1

(
2aFk − Fω − 3bk3

)
+ 5c2(2ak − ω)

)
= 0. (5.14)

From Eq (5.14), we have

F =

 3bk3

2ak−ω , c1 = 1, c2 = 0,
−10ak+12bk3+5ω

4(2ak−ω) , c1 = 1, c2 = 1.
(5.15)
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Therefore, the solitary wave solutions for the 2K(2,2,1) equation are as follows:

u(x, t) =

 3bk3

2ak−ω sech2(kx − ωt + ζ0), c1 = 1, c2 = 0,
−10ak+12bk3+5ω

4(2ak−ω) sech2(kx − ωt + ζ0), c1 = 1, c2 = 1.
(5.16)

The 3D graphs in Figures 11 and 12 describe nonlinear wave propagation of soliton solutions to the
right, while 2D graphs depict the movement of the solitons obtained from Eq (5.16) for different times
and a contour plot describes the movement of the solitons.

Figure 11. Shows the soliton solution of Eq (5.16) for c1 = 1, c2 = 0.

Figure 12. Shows the soliton solution of Eq (5.16) for c1 = 1, c2 = 1.

6. Conservation laws and soliton solutions for the modified nonlinearly dispersive KdV
equations 3K(3,2,2) equation

The modified nonlinearly dispersive KdV equations 3K(3,2,2) equation [33] take the form

u2ut + a(u2)x + b(u2)xxx = 0, (6.1)

where a and b are constants.
The four conserved vectors [28]

T t
1 =

u5

5
,

T x
1 =

a
2

u4 + bu2(u2)xx − 2bu2u2
x,
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T t
2 = au2, T x

2 = au2 + 2(uuxx + u2
x),

T t
3 =

1
3

u3 sin(
√

a
b

x), T x
3 = b(2(uuxx + u2

x) sin(
√

a
b

x) − 2
√

a
b

uux cos(
√

a
b

x)),

T t
4 =

1
3

u3 cos(
√

a
b

x), T x
4 = b(2(uuxx + u2

x) cos(
√

a
b

x) + 2
√

a
b

uux sin(
√

a
b

x)). (6.2)

By converting Eq (6.1) into an ODE

(2ak − ωu)uu′ + 2k3(uu′′′ + 3u′u′′) = 0. (6.3)

The multiplier Λ(ζ, u(ζ)), can be obtained as follows

Λu((2ak − ωu)uu′ + 2k3(uu′′′ + 3u′u′′)) + ((2ak − 2ωu)u′ + 2k3u′′′)Λ
−Dζ((2ak − ωu)u + 6k3u′′)Λ) − 2k3D3

ζ(uΛ) = 0. (6.4)

Solving Eq (6.4) for multiplier Λ, we obtain

Λ(ζ, u) = c1 + c2u2. (6.5)

From (2.9) and (6.5), we obtain the conserved quantities

T ζ =
1
2

aku(ζ)2
(
c2u(ζ)2 + 2c1

)
+2k3

(
c2u(ζ)3u′′(ζ) +

3
2

c1u′(ζ)2 + c1

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
))

−
1

15
ωu(ζ)3

(
3c2u(ζ)2 + 5c1

)
. (6.6)

From (6.6), we can get the functional

J =

∫ ∞

0
(
1
2

aku(ζ)2
(
c2u(ζ)2 + 2c1

)
+2k3

(
c2u(ζ)3u′′(ζ) +

3
2

c1u′(ζ)2 + c1

(
u(ζ)u′′(ζ) −

1
2

u′(ζ)2
))

−
1

15
ωu(ζ)3

(
3c2u(ζ)2 + 5c1

)
)dζ. (6.7)

According to the Ritz-like method , we search a solitary wave solution in the form

u(ζ) = Asech(ζ). (6.8)

Substituting Eq (6.8) into Eq (6.7) , we have

J = c1

(
aA2k −

1
12
πA3ω

)
−

1
240

A4c2

(
−80ak + 9πAω + 192k3

)
. (6.9)

To find the constant A , we solve the following equation

∂J
∂A

= −
1

240
A3c2

(
−320ak + 45πAω + 768k3

)
−

1
4

Ac1(πAω − 8ak) = 0. (6.10)
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From (6.10) , we obtain

A =

 8ak
πω
, c1 = 1, c2 = 0,

64(5ak−12k3)
45πω , c1 = 0, c2 = 1.

(6.11)

Therefore, the solitary wave solutions for the 3K(3,2,2) equation are

u(x, t) =

 8ak
πω

sech(kx − ωt + ζ0), c1 = 1, c2 = 0,
64(5ak−12k3)

45πω sech(kx − ωt + ζ0), c1 = 0, c2 = 1.
(6.12)

The 3D graphs in Figures 13 and 14 describe the shape of solitons for waves u(x, t), while 2D graphs
depict the movement of the soliton waves along x-direction as time increases for Eq (6.12), a contour
plot can also be useful for describing the properties of the solitary waves for (6.12).

Figure 13. Shows the soliton solution of Eq (6.12) for c1 = 1, c2 = 0.

Figure 14. Shows the soliton solution of Eq (6.12) for c1 = 0, c2 = 1.

For another soliton solution (3.13), we obtain

J =
2F2

(
35c1(15ak − 4Fω) − 4F2c2

(
−45ak + 16Fω + 240k3

))
1575

. (6.13)

Solving the following equation to find F

∂J
∂F

=
4

315
A

(
21c1(5ak − 2Aω) − 8A2c2

(
−9ak + 4Aω + 48k3

))
= 0. (6.14)

From Eq (6.14), we have

F =

 5ak
2ω , c1 = 1, c2 = 0,
3(3ak−16k3)

4ω , c1 = 0, c2 = 1.
(6.15)
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Therefore, the solitary wave solutions for the 3K(3,2,2) equation are as follows:

u(x, t) =

 5ak
2ω sech2(kx − ωt + ζ0), c1 = 1, c2 = 0,
3(3ak−16k3)

4ω sech2(kx − ωt + ζ0), c1 = 0, c2 = 1.
(6.16)

The 3D graphs in Figures 15 and 16 describe nonlinear wave propagation of soliton solutions, while 2D
graphs depict the movement of the solitons obtained from Eq (6.16) for different times and a contour
plot describes the movement of the solitons.

Figure 15. Shows the soliton solution of Eq (6.16) for c1 = 1, c2 = 0.

Figure 16. Shows the soliton solution of Eq (6.16) for c1 = 0, c2 = 1.

7. Conclusions

In this paper we derive the soliton solutions directly from the conserved quantities for Benjamin-
Bona-Mahoney equation with dual-power law nonlinearity (BBM), modified regularized long wave
(MRLW) equation and modified nonlinearly dispersive KdV equations 2K(2,2,1) and 3K(3,2,2)
equation, which are constructed by multiplier approach (variational derivative method). The
multiplier approach on Benjamin-Bona-Mahoney equation with dual-power law nonlinearity (BBM)
and modified regularized long wave (MRLW) equation gave two multipliers of Λ(x, t, u), and thus
two conserved vectors obtained for each case. For the modified nonlinearly dispersive KdV equations
2K(2,2,1) equation, the multiplier approach yielded three multipliers and thus three conserved vectors
were obtained. For the modified nonlinearly dispersive KdV equations 3K(3,2,2) equation, the
multiplier approach yielded four multipliers and thus four conserved vectors were obtained. So, we can
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say that the proposed method is effective and an alternative mathematical tool for generating soliton
solutions. The main results is derived the functional (2.11) using the conserved quantities and then
the soliton solutions for the models. This is another method for deriving the variational principles for
the nonlinear evolution equations and we can easily extend this work to all soliton equations in future
works. Finally, we give the numerical simulations for these solutions.
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