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Abstract: Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph
G, respectively. For any real number α ∈ [0, 1], Nikiforov defined the Aα-matrix of a graph G as
Aα(G) = αD(G) + (1 − α)A(G). Let S k(Aα(G)) be the sum of the k largest eigenvalues of Aα(G). In
this paper, some bounds on S k(Aα(G)) are obtained, which not only extends the results of the sum of
the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new
bounds on graph energy.
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1. Introduction

Let G be a simple undirected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). For
vi ∈ V(G), di = dG(vi) denotes the degree of vertex vi, and M1 = M1(G) =

∑n
i=1 d2

i is called the
first Zagreb index. The minimum and the maximum degree of G are denoted by δ(G) and ∆(G), or
simply δ and ∆, respectively. Denote by Kn, Cn and Ks, n−s the complete graph, cycle and complete
bipartite graph with n vertices, respectively. The positive inertia index p = p(M) and the negative
inertia index of a matrix M are the number of positive and negative eigenvalues of M, respectively. For
other undefined notations and terminology from graph theory, the readers are referred to [6].

For a graph G, S k(A(G)) is the sum of the k largest eigenvalues of adjacency matrix A(G).
Mohar [23] showed that S k(A(G)) is at most 1

2 (
√

k + 1)n. This bound is shown to be the best possible,
in the sense that for every k there exist graphs whose sum is 1

2 (
√

k + 1
2 )n − o(k−2/5)n. Das et al. [11]

proved an upper bound on S k(A(G)) in terms of vertex number and negative inertia index. Let
L(G) = D(G) − A(G) be the Laplacian matrix of a graph G. Based on the famous Grone-Merris-Bai
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theorem [3, 14], Brouwer et al. [5] proposed the following conjecture.

Conjecture 1.1. (Brouwer’s conjecture) Let G be a graph with n vertices and e(G) edges. For 1 ≤ k ≤
n, we have

S k(L(G)) ≤ e(G) +

(
k + 1

2

)
.

Inspired by Brouwer’s conjecture, Ashraf et al. [2] proposed a similar conjecture as follows.

Conjecture 1.2. [2] Let G be a graph with n vertices and e(G) edges. For 1 ≤ k ≤ n, we have

S k(Q(G)) ≤ e(G) +

(
k + 1

2

)
,

where Q(G) = D(G) + A(G) is called the signless Laplacian matrix of G.

The above two conjectures have been proven to be correct for all graphs with at most ten vertices [2],
all graphs with k = 1, 2, n − 2, n − 1, n [2, 7], regular graphs [2], trees [17], unicyclic graphs [31, 32],
bicyclic graphs [31, 32], tricyclic graphs [31, 32] and so on. In particular, Haemers et al. [17] proved
that S k(L(T )) ≤ e(T ) + 2k − 1 when T is a tree with n vertices.

Another motivation to study S k(A(G)) and S k(Q(G)) came from the energy ε(A(G)) and signless
Laplacian energy ε(Q(G)) of a graph G, which is very popular in mathematical chemistry. Let G be a
graph with n vertices, m edges and the positive inertia index p. Then we have

ε(G) = ε(A(G)) =

n∑
k=1

|λk(A(G))| = 2S p(A(G)),

and

ε(Q(G)) =

n∑
k=1

∣∣∣∣∣λk(Q(G)) −
2m
n

∣∣∣∣∣ = max
1≤k≤n

{
2S k(Q(G)) −

4km
n

}
,

where λk(M) is the k-th largest eigenvalue of the matrix M. Thus, S k(A(G)) and S k(Q(G)) are close
relation with the energy and signless Laplacian energy, respectively. For more details in this field, we
refer the reader to [1,11,13,22]. In addition, S k(A(G)) is related to Ky Fan norms of graphs introduced
by Nikiforov [25], which are a fundamental matrix parameter anyway.

For any real α ∈ [0, 1], Nikiforov [24] defined the matrix Aα(G) as

Aα(G) = αD(G) + (1 − α)A(G),

where D(G) is the diagonal matrix of its vertex degrees, and A(G) is the adjacency matrix. It is easy
to see that A0(G) = A(G) and 2A1/2(G) = Q(G). The new matrix Aα(G) not only can underpin a
unified theory of A(G) and Q(G), but it also brings many new interesting problems, see [18–20,24,26].
This matrix has recently attracted the attention of many researchers, and there are several research
papers published recently, see [4, 20, 21, 29] and the references therein.

Motivated by the above works, we study the sum of the k largest eigenvalues of Aα(G). Since
S k(A0(G)) = S k(A(G)) and 2S k(A1/2(G)) = S k(Q(G)), S k(Aα(G)) can be regard as a common
generalization of S k(A(G)) and S k(Q(G)). Moreover, if G is a graph with n vertices and m edges, then

εα(G) =

n∑
k=1

∣∣∣∣∣λk(Aα(G)) −
2αm

n

∣∣∣∣∣ = max
1≤k≤n

{
2S k(Aα(G)) −

4αkm
n

}
,
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where εα(G) is the α-energy of G defined by Guo and Zhou [15]. Thus, S k(Aα(G)) is a close relation
with the α-energy of G. It is not difficult to see that ε0(G) = ε(A(G)) and 2ε1/2(G) = ε(Q(G)).

In this paper, we obtain some upper and lower bounds on the sum of the k largest eigenvalues of
Aα(G), which extend the results of S k(A(G)) and S k(Q(G)). In particular, we give new bounds on the
energy of graphs in terms of the positive inertia index and the first Zagreb index. In addition, some
graph operations on S k(Aα(G)) are presented, which provides new bounds for the energy of graph
operations.

The remainder of this paper is organized as follows. In Section 2, we recall some useful notions
and lemmas used further. In Section 3, some upper bounds on S k(Aα(G)) are obtained in terms of
Aα-spectral radius and the first Zagreb index. Similarly to Conjecture 1.2, a conjecture is proposed for
1
2 ≤ α < 1. In Section 4, the line graph and the square of graphs on S k(Aα(G)) are presented.

2. Preliminaries

The line graphL(G) is the graph whose vertex set is the edges in G, where two vertices are adjacent
if the corresponding edges in G have a common vertex. The square G2 of a graph G is a graph with the
same set of vertices as G such that two vertices are adjacent in G2 if and only if their distance in G is
at most 2. The second smallest eigenvalue of the Laplacian of a graph G, best-known as the algebraic
connectivity of G, is denoted by a(G).

Lemma 2.1. [12] Let M and N be two real symmetric matrices of order n. Then we have

k∑
i=1

λi(M + N) ≤
k∑

i=1

λi(M) +

k∑
i=1

λi(N)

for any 1 ≤ k ≤ n.

Lemma 2.2. [24] Let G be a graph with n vertices. Then we have√
M1

n
≤ λ1(Aα(G)) ≤ ∆.

Lemma 2.3. [9] Let G be a graph with n vertices and m ≥ 1 edges. Then, λi(Q(G)) = λi(A(L(G)))+2,
i = 1, 2, . . . , s, where s = min{n,m}. Further, if m > n, we have λi(A(L(G))) = −2 for i ≥ n + 1, and if
n > m, we have λi(Q(G)) = 0 for i ≥ m + 1.

Lemma 2.4. [8] For any C3-free and C4-free graph G, A(G2) = A2(G) − L(G).

3. Bounds on the sum of the largest Aα-eigenvalues

Theorem 3.1. Let G be a graph with n vertices.
(i) If 0 ≤ α < 1

2 , then

(1 − α)S k(Q(G)) + (2α − 1)S k(D(G)) ≤ S k(Aα(G)) ≤ αS k(Q(G)) + (1 − 2α)S k(A(G))

for 1 ≤ k ≤ n.
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(ii) If 1
2 ≤ α < 1, then

αS k(Q(G)) + (1 − 2α)S k(A(G)) ≤ S k(Aα(G)) ≤ (1 − α)S k(Q(G)) + (2α − 1)S k(D(G))

for 1 ≤ k ≤ n.
If G is r-regular, then the equality in the above inequalities must hold.

Proof. (i) Since Aα(G) = αQ(G) + (1 − 2α)A(G) for 0 ≤ α < 1
2 , by Lemma 2.1, we have

S k(Aα(G)) ≤ αS k(Q(G)) + (1 − 2α)S k(A(G)).

If 0 ≤ α < 1
2 , then 1

2 ≤ 1 − α ≤ 1. Note that A1−α(G) = αQ(G) + (1 − 2α)D(G). Since Aα(G) +

A1−α(G) = Q(G), by Lemma 2.1, we have

S k(Aα(G)) ≥ S k(Q(G)) − S k(A1−α(G))
≥ S k(Q(G)) − αS k(Q(G)) − (1 − 2α)S k(D(G))
≥ (1 − α)S k(Q(G)) + (2α − 1)S k(D(G)).

(ii) Since Aα(G) = (1 − α)Q(G) + (2α − 1)D(G) for 1
2 ≤ α < 1, by Lemma 2.1, we have

S k(Aα(G)) ≤ (1 − α)S k(Q(G)) + (2α − 1)S k(D(G)).

If 1
2 ≤ α ≤ 1, then 0 ≤ 1 − α ≤ 1

2 . Note that A1−α(G) = (1 − α)Q(G) + (2α − 1)A(G). Since
Aα(G) + A1−α(G) = Q(G), by Lemma 2.1, we have

S k(Aα(G)) ≥ S k(Q(G)) − S k(A1−α(G))
≥ S k(Q(G)) − (1 − α)S k(Q(G)) − (2α − 1)S k(A(G))
≥ αS k(Q(G)) + (1 − 2α)S k(A(G)).

If G is r-regular, from [24], we have S k(Aα(G)) = αkr + (1 − α)S k(A(G)) and S k(Q(G)) = kr +

S k(A(G)). Thus, the two above equations hold. This completes the proof. �

It is well known that the spectrum of any symmetric matrix majorizes its main diagonal, that is,
S k(Q(G)) ≥ S k(D(G)), and by Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph with n vertices. If 1
2 ≤ α < 1, then

S k(Aα(G)) ≤ αS k(Q(G))

for 1 ≤ k ≤ n.

From Corollary 3.1 and Conjecture 1.1, we give a new conjecture.

Conjecture 3.1. Let G be a graph with n vertices and e(G) edges. If 1
2 ≤ α < 1, then

S k(Aα(G)) ≤ αe(G) + α

(
k + 1

2

)
for 1 ≤ k ≤ n.
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Theorem 3.2. Let G be a graph with n vertices and m edges. If 0 ≤ α < 1, then

S k(Aα(G)) ≤
(n − k)λ1(Aα(G)) + 2α(k − 1)m +

√
(k − 1)(n − k)Υ

n − 1
, (3.1)

where Υ = (n − 1)(α2M1 + 2m(1 − α)2 − λ2
1(Aα(G))) − (2αm − λ1(Aα(G)))2. The equality holds for

k = 1. Moreover, the equality holds if and only if λ2(Aα(G)) = · · · = λk(Aα(G)) and λk+1(Aα(G)) =

· · · = λn(Aα(G)) for k ≥ 2.

Proof. Let λi(Aα(G)) = λi and S k(Aα(G)) = S k for i = 1, 2, . . . , n. Since
n∑

i=1
λi = 2αm,

n∑
i=1
λ2

i =

α2M1 + 2m(1 − α)2, and by the Cauchy-Schwarz inequality, we have

S k ≤ λ1 +

√
(k − 1)(λ2

2 + · · · + λ2
k)

= λ1 +

√√
(k − 1)

α2M1 + 2m(1 − α)2 − λ2
1 −

n∑
i=k+1

λ2
i


≤ λ1 +

√
(k − 1)

(
α2M1 + 2m(1 − α)2 − λ2

1 −
1

n − k
(2αm − S k)2

)
with equality if and only if λ2 = · · · = λk and λk+1 = · · · = λn for k ≥ 2. Thus,

(n − k)(S k − λ1)2 + (k − 1)(S k − 2αm)2 ≤ (k − 1)(n − k)(α2M1 + 2m(1 − α)2 − λ2
1),

that is,

S k ≤
(n − k)λ1 + 2α(k − 1)m +

√
(k − 1)(n − k)Υ

n − 1
,

where

Υ = (n − 1)(α2M1 + 2m(1 − α)2 − λ2
1) − (2αm − λ1)2

= (n − 1)
n∑

i=2

λ2
i −

 n∑
i=2

λi

2

≥ 0.

This completes the proof. �

Remark 3.1. If the equality in (3.1) holds, then this implies that G has at most three distinct Aα-
eigenvalues. If G is a connected graph with two distinct Aα-eigenvalues, then G � Kn. Clearly, the
equality in (3.1) holds for Kn. If G is a graph with three distinct Aα-eigenvalues, then we refer to [30].

Corollary 3.2. Let G be a graph with n vertices and m edges. If p is the positive inertia index of A(G),
then

E(G) ≤
2(n − p)λ1(A(G)) + 2

√
(p − 1)(n − p)[2(n − 1)m − nλ2

1(A(G))]

n − 1
. (3.2)

The equality holds for Kn and Ks, t (s + t = n).
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Remark 3.2. There are many graphs such that the equality in (3.2) holds, we may refer to [10, 28].

Let α0 be the smallest α such that Aα(G) is positive semidefinite for α0 ≤ α ≤ 1. Recently,
Nikiforov et al. [27] and Brondani et al. [4] found α0 for some special classes of graphs.

Theorem 3.3. Let 0 ≤ α < α0 and G be a graph with n vertices and m edges. Then we have

S k(Aα(G)) ≤ 2αm +
1
2

(2m(1 − α)2 + α2M1)

√
n(n − k)

M1

with equality if and only if |λk+1(Aα(G))| = · · · = |λn(Aα(G))| = 2m(1−α)2+α2 M1
2

√
n

(n−k)M1
.

Proof. By Lemma 2.2, we have λ1(Aα(G)) ≥
√

M1
n . We assume that

n−k∑
i=1

λ2
n−i+1(Aα(G)) >

n(2m(1 − α)2 + α2M1)2

4M1
,

in which case

2m(1 − α)2 + α2M1 =

k∑
i=1

λ2
i (Aα(G)) +

n−k∑
i=1

λ2
n−i+1(Aα(G))

≥ λ2
1(Aα(G)) +

n−k∑
i=1

λ2
n−i+1(Aα(G))

>
M1

n
+

n(2m(1 − α)2 + α2M1)2

4M1
.

This implies that √M1

n
−

1
2

(2m(1 − α)2 + α2M1)
√

n
M1

2

< 0,

which is a contradiction. Thus,
n−k∑
i=1

λ2
n−i+1(Aα(G)) ≤

n(2m(1 − α)2 + α2M1)2

4M1
.

By the Cauchy-Schwarz inequality, we have

S k(Aα(G)) = 2αm −
n−k∑
i=1

λn−i+1(Aα(G))

≤ 2αm +

√√
(n − k)

n−k∑
i=1

λ2
n−i+1(Aα(G))

≤ 2αm +
1
2

(2m(1 − α)2 + α2M1)

√
n(n − k)

M1

with equality if and only if |λk+1(Aα(G))| = · · · = |λn(Aα(G))| = 2m(1−α)2+α2 M1
2

√
n

(n−k)M1
. This completes

the proof. �
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Corollary 3.3. Let G be a graph with n vertices and m edges. If p is the positive inertia index of A(G),
then

E(G) ≤ 2m

√
n(n − p)

M1

with equality if and only if |λp+1(A(G))| = · · · = |λn(A(G))| = m
√

n
(n−p)M1

.

Let M be a real symmetric partitioned matrix of order n described in the following block form:
M11 · · · M1t
...

. . .
...

Mt1 · · · Mtt

 ,
where the diagonal blocks Mii are ni × ni matrices for any i ∈ {1, 2, . . . , t} and n = n1 + · · · + nt. For
any i, j ∈ {1, 2, . . . , t}, let bi j denote the average row sum of Mi j , i.e., bi j is the sum of all entries in Mi j

divided by the number of rows. Then, B(M) = (bi j) (or denoted simply by B) is called the quotient
matrix of M.

Lemma 3.1. [16] Let M be a symmetric partitioned matrix of order n with eigenvalues ξ1 ≥ ξ2 ≥ · · · ≥

ξn, and let B be its quotient matrix with eigenvalues η1 ≥ η2 ≥ · · · ≥ ηr and n > r. Then, ξi ≥ ηi ≥ ξn−r+i

for i = 1, 2, . . . , r.

Let B be the quotient matrix of Aα(G) corresponding to the partition for the color classes of G.
Then, the following corollary is immediate.

Corollary 3.4. Let G be a connected graph with n vertices, m edges, chromatic number χ and
independence number θ. If 0 ≤ α < 1, then

S χ(Aα(G)) ≥
2αm
θ
.

Theorem 3.4. Let 0 ≤ α < 1 and G be a connected graph with n vertices and m edges. For any given
vertices subset U = {u1, . . . , uk−1} with 1 ≤ k ≤ n,

S k(Aα(G)) ≥
(
α −

1
n − k + 1

)∑
u∈U

du +
2m − (1 − α)|∂(U,V(G)\U)|

n − k + 1
,

where ∂(U,V(G)\U) is the set of edges which connect vertices in U with vertices in V(G)\U.

Proof. If 2 ≤ k ≤ n, then the quotient matrix of Aα(G) corresponding to the partition V(G) = (
⋃
x∈U
{x})∪

(V(G)\U) of G is

B(G) =


b1,k

Aα(U)
...

bk−1,k

bk,1 · · · bk,k−1 bk,k

 ,
where Aα(U) is the principal submatrix of Aα(G). By Lemma 3.1, we have

AIMS Mathematics Volume 7, Issue 8, 15064–15074.
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S k(Aα(G)) ≥ S k(B(G))
= tr(Aα(U)) + bk,k

= α
∑
u∈U

du +

2m −
∑

u∈U
du − (1 − α)|∂(U,V(G)\U)|

n − k + 1

=

(
α −

1
n − k + 1

)∑
u∈U

du +
2m − (1 − α)|∂(U,V(G)\U)|

n − k + 1
.

If k = 1, then U is an empty set. Thus,
∑

u∈U
du = 0 and |∂(U,V(G)\U)| = 0. Taking X = (1, . . . , 1)T ,

by Rayleigh’s principle, we have

S 1(Aα(G)) = λ1(Aα(G)) ≥
2m
n
.

Therefore, the above inequality still holds for k = 1. This completes the proof. �

Corollary 3.5. Let G be a connected graph with n vertices, m edges and the positive inertia index p.
Then we have

E(G) ≥
4m − 2|∂(U,V(G)\U)|

n − p + 1
−

2
∑

u∈U du

n − p + 1
.

4. On the sum of the largest Aα-eigenvalues of graph operations

Theorem 4.1. Let G be a graph with n vertices and m ≥ 1 edges. Then we have

S k(Aα(L(G))) ≤ 2k(α∆ − 1) + (1 − α)S k(Q(G))

for 1 ≤ k ≤ s, where s = min{n,m}. If m > n, then

S k(Aα(L(G))) ≤ 2αk(∆ − 1) + 2(1 − α)(m − k)

for n + 1 ≤ k ≤ m.

Proof. If a vertex w is in one-to-one correspondence with the edge uv of the graph G, then dL(G)(w) =

dG(u) + dG(v) − 2. By Lemmas 2.1 and 2.3, we have

S k(Aα(L(G))) ≤ αS k(D(L(G))) + (1 − α)S k(A(L(G)))
≤ αk(2∆ − 2) + (1 − α)(S k(Q(G)) − 2k)
= 2k(α∆ − 1) + (1 − α)S k(Q(G))

for 1 ≤ k ≤ s, where s = min{n,m}. If m > n, then we have

S k(Aα(L(G))) ≤ αk(2∆ − 2) + (1 − α)(2m − 2n − 2(k − n)) = 2αk(∆ − 1) + 2(1 − α)(m − k)

for n + 1 ≤ k ≤ m. This completes the proof. �
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By the special cases of Conjecture 1.2 and Theorem 4.1, we have the following corollaries.

Corollary 4.1. If T is a tree with n vertices, then S k(Aα(L(T ))) ≤ 2kα(∆−1)+(1−α)(n−2) for 1 ≤ k ≤
n− 1. If U is a unicyclic graph with n vertices, then S k(Aα(L(U))) ≤ 2k(α∆− 1) + (1− α)(n + k2+k

2 ) for
1 ≤ k ≤ n. If B is a bicyclic graph with n vertices, then S k(Aα(L(B))) ≤ 2k(α∆−1)+(1−α)(n+1+ k2+k

2 )
for 1 ≤ k ≤ n.

Corollary 4.2. If T is a tree with n vertices, then E(L(T )) ≤ 2(n − 2). If U is a unicyclic graph with
n vertices, then E(L(U))) ≤ 2n + p2 − 3p. If B is a bicyclic graph with n vertices, then E(L(B)) ≤
2n + p2 − 3p + 2.

Theorem 4.2. Let G be a C3-free and C4-free graph with n vertices, m edges and the algebraic
connectivity a(G). If 0 ≤ α ≤ 1, then

S k(Aα(G2)) ≤ α(M1(G) − (n − k)δ2(G)) + (1 − α)(k∆2(G) − (k − 1)a(G)).

Proof. By Lemma 2.2, we have

S k(A2(G)) = λ1(A2(G)) + λ2(A2(G)) + · · · + λk(A2(G))
≤ kλ2

1(A(G))
≤ k∆2(G).

Since
∑

u∈V(G2)
du = M1(G), by Lemmas 2.1 and 2.4, we have

S k(Aα(G2)) ≤ αS k(D(G2)) + (1 − α)S k(A(G2))
≤ αS k(D(G2)) + (1 − α)(S k(A2(G)) + S k(−L(G)))
≤ α(M1(G) − (n − k)δ2(G)) + (1 − α)(k∆2(G) − (k − 1)a(G)).

This completes the proof. �

Corollary 4.3. Let G be a C3-free and C4-free graph with n vertices, m edges and the algebraic
connectivity a(G). If p is the positive inertia index of A(G2), then

E(G2) ≤ 2p∆2(G) − 2(p − 1)a(G).

5. Conclusions

In this paper, we study the sum of the k largest eigenvalues of the Aα-matrix of a graph, which not
only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless
Laplacian matrix, but it also gives new bounds on graph energy.
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