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Abstract: Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph
G, respectively. For any real number @ € [0, 1], Nikiforov defined the A,-matrix of a graph G as
AL (G) = aD(G) + (1 — @)A(G). Let S1(A,(G)) be the sum of the k largest eigenvalues of A,(G). In
this paper, some bounds on S ;(A,(G)) are obtained, which not only extends the results of the sum of
the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new
bounds on graph energy.
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1. Introduction

Let G be a simple undirected graph with vertex set V(G) = {v{,v,,...,V,} and edge set E(G). For
vi € V(G), d; = dg(v;) denotes the degree of vertex v;, and M, = M(G) = Y, dl.2 is called the
first Zagreb index. The minimum and the maximum degree of G are denoted by 6(G) and A(G), or
simply ¢ and A, respectively. Denote by K,, C, and K| ,_, the complete graph, cycle and complete
bipartite graph with n vertices, respectively. The positive inertia index p = p(M) and the negative
inertia index of a matrix M are the number of positive and negative eigenvalues of M, respectively. For
other undefined notations and terminology from graph theory, the readers are referred to [6].

For a graph G, S((A(G)) is the sum of the k largest eigenvalues of adjacency matrix A(G).
Mohar [23] showed that S ;(A(G)) is at most %( vk + 1)n. This bound is shown to be the best possible,
in the sense that for every k there exist graphs whose sum is %( Vi + %)n —o(k™*")n. Das et al. [11]
proved an upper bound on S;(A(G)) in terms of vertex number and negative inertia index. Let
L(G) = D(G) — A(G) be the Laplacian matrix of a graph G. Based on the famous Grone-Merris-Bai
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theorem [3, 14], Brouwer et al. [5] proposed the following conjecture.

Conjecture 1.1. (Brouwer’s conjecture) Let G be a graph with n vertices and e(G) edges. For 1 < k <
n, we have

S(L(G)) < e(G) + (k ; 1).

Inspired by Brouwer’s conjecture, Ashraf et al. [2] proposed a similar conjecture as follows.
Conjecture 1.2. [2] Let G be a graph with n vertices and e(G) edges. For 1 < k < n, we have
k+ 1)

s )
where Q(G) = D(G) + A(G) is called the signless Laplacian matrix of G.

Si(Q(G)) < eG) + (

The above two conjectures have been proven to be correct for all graphs with at most ten vertices [2],
all graphs with k = 1,2,n —2,n — 1,n [2,7], regular graphs [2], trees [17], unicyclic graphs [31, 32],
bicyclic graphs [31, 32], tricyclic graphs [31,32] and so on. In particular, Haemers et al. [17] proved
that S (L(T)) < e(T) + 2k — 1 when T is a tree with n vertices.

Another motivation to study S;(A(G)) and S (Q(G)) came from the energy £(A(G)) and signless
Laplacian energy £(Q(G)) of a graph G, which is very popular in mathematical chemistry. Let G be a
graph with n vertices, m edges and the positive inertia index p. Then we have

n

&(G) = £(A(G)) = Z |4 (A(G))] = 2§ ,(A(G)),

k=1

and

2QG) = )’

k=1

where A;(M) is the k-th largest eigenvalue of the matrix M. Thus, S(A(G)) and S(Q(G)) are close

relation with the energy and signless Laplacian energy, respectively. For more details in this field, we

refer the reader to [1,11,13,22]. In addition, S ((A(G)) is related to Ky Fan norms of graphs introduced
by Nikiforov [25], which are a fundamental matrix parameter anyway.
For any real a € [0, 1], Nikiforov [24] defined the matrix A,(G) as

2 4k
BQG) - 2| = max {2Sk(Q<G>> - 7’”}

A,(G) = aD(G) + (1 — )A(G),

where D(G) is the diagonal matrix of its vertex degrees, and A(G) is the adjacency matrix. It is easy
to see that Ao(G) = A(G) and 2A,,2(G) = Q(G). The new matrix A,(G) not only can underpin a
unified theory of A(G) and Q(G), but it also brings many new interesting problems, see [18-20,24,26].
This matrix has recently attracted the attention of many researchers, and there are several research
papers published recently, see [4,20,21,29] and the references therein.

Motivated by the above works, we study the sum of the k largest eigenvalues of A,(G). Since
Si(Ap(G)) = Si(A(G)) and 254(A12(G)) = Si(Q(G)), Si(A.(G)) can be regard as a common
generalization of S (A(G)) and S+(Q(G)). Moreover, if G is a graph with n vertices and m edges, then

n

£a(G) = )

k=1

44,6 - 22| = max {250, - 22

1<k<

AIMS Mathematics Volume 7, Issue 8, 15064—-15074.



15066

where &,(G) is the a-energy of G defined by Guo and Zhou [15]. Thus, S;(A,(G)) is a close relation
with the a-energy of G. It is not difficult to see that £y(G) = £(A(G)) and 2¢2(G) = £(Q(G)).

In this paper, we obtain some upper and lower bounds on the sum of the k largest eigenvalues of
A.(G), which extend the results of S;(A(G)) and S (Q(G)). In particular, we give new bounds on the
energy of graphs in terms of the positive inertia index and the first Zagreb index. In addition, some
graph operations on S;(A,(G)) are presented, which provides new bounds for the energy of graph
operations.

The remainder of this paper is organized as follows. In Section 2, we recall some useful notions
and lemmas used further. In Section 3, some upper bounds on S;(A,(G)) are obtained in terms of
A,-spectral radius and the first Zagreb index. Similarly to Conjecture 1.2, a conjecture is proposed for
% < @ < 1. In Section 4, the line graph and the square of graphs on S;(A,(G)) are presented.

2. Preliminaries

The line graph £(G) is the graph whose vertex set is the edges in G, where two vertices are adjacent
if the corresponding edges in G have a common vertex. The square G of a graph G is a graph with the
same set of vertices as G such that two vertices are adjacent in G? if and only if their distance in G is
at most 2. The second smallest eigenvalue of the Laplacian of a graph G, best-known as the algebraic
connectivity of G, is denoted by a(G).

Lemma 2.1. [12] Let M and N be two real symmetric matrices of order n. Then we have

Zk: (M +N) < i (M) + Zk: Ai(N)
i=1 i=1 i=1

forany 1 <k < n.

Lemma 2.2. [24] Let G be a graph with n vertices. Then we have

| M,
Py < 4(A(G)) <A

Lemma 2.3. [9] Let G be a graph with n vertices and m > 1 edges. Then, 1;(Q(G)) = L,(A(L(G))) +2,
i=1,2,...,s where s = min{n, m}. Further, if m > n, we have 1;(A(L(G))) = =2 fori > n+ 1, and if
n > m, we have 1;(Q(G)) =0fori>m+ 1.

Lemma 2.4. [8] For any Cs-free and C4-free graph G, A(G*) = A*(G) — L(G).
3. Bounds on the sum of the largest A,-eigenvalues

Theorem 3.1. Let G be a graph with n vertices.
O)If0<ac< % then

(1 = )S(Q(G)) + Ca = DS (D(G)) < S (Aa((G)) < aS(Q(G)) + (1 - 20)S (A(G))

for1 <k <n.
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(ii) If% <a<l,then
aS (Q(G)) + (1 = 2a)S (A(G)) < Si(Au(G)) < (1 — )SK(Q(G)) + 2a — DS (D(G))

for1 <k<n.
If G is r-regular, then the equality in the above inequalities must hold.

Proof. (i) Since A,(G) = aQ(G) + (1 - 20)A(G) for0 < a < %, by Lemma 2.1, we have
S(Ae(G)) < aS(Q(G)) + (1 = 2a)S (A(G)).

If0 < a < 1, then % < 1—-a < 1. Note that A|_,(G) = aQ(G) + (1 — 2a)D(G). Since A,(G) +

2’

A1_o(G) = Q(G), by Lemma 2.1, we have

S (Aa(G))

v

Si(Q(G)) = Sk(A1-(G))
Si(Q(G)) — aS (Q(G)) — (1 = 2a)S«(D(G))
(1 = )S(Q(G)) + QCa = DS (D(G)).

\%

W%

(i) Since Ao (G) = (1 — @)Q(G) + 2a — 1)D(G) for 1+ < & < 1, by Lemma 2.1, we have
S1(A(G)) < (1 = )S(Q(G)) + 2a — DS (D(G)).

If% <a<l,then0 <1-a< % Note that A|_,(G) = (1 — @)O(G) + 2a — 1)A(G). Since

AL(G) + A1_o(G) = Q(G), by Lemma 2.1, we have

S 1(Aa(G))

\%

Si(Q(G)) = Si(A1-4(G))
Si(Q(G) — (1 = )SK(Q(G)) - Qo — DS (A(G))
aS i (Q(G)) + (1 = 2a)S «(A(G)).

\%

\%

If G is r-regular, from [24], we have S (A,(G)) = akr + (1 — @)S(A(G)) and S (Q(G)) = kr +
S «(A(G)). Thus, the two above equations hold. This completes the proof. O

It is well known that the spectrum of any symmetric matrix majorizes its main diagonal, that is,
S«(0(G)) > S1(D(G)), and by Theorem 3.1, we have the following corollary.

Corollary 3.1. Let G be a graph with n vertices. If % <a<1, then
S(Aa(G)) < S (Q(G))
for1 <k<n.

From Corollary 3.1 and Conjecture 1.1, we give a new conjecture.

Conjecture 3.1. Let G be a graph with n vertices and e(G) edges. If % <a <1, then

S(AL(G)) < ae(G) + a(k ; 1)

for1 <k<n.
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Theorem 3.2. Let G be a graph with n vertices and m edges. If 0 < a < 1, then

(n—k)A1(A(G)) + 2a(k — D)m + (k- D)(n — k)Y

Si(Ax(G)) <
n—1

3.1)

where Y = (n — D)(@*M, + 2m(1 — @)* — /l%(Aa(G))) — Qam — A1(A,(G)))%. The equality holds for
k = 1. Moreover, the equality holds if and only if 1,(A.(G)) = -+ = L4(AL(G)) and A1 (A (G)) =
coo = ,(Ao(G)) for k > 2.

Proof. Let 1;(A,(G)) = A; and S (A, (G)) = Sy fori = 1,2,...,n. Since ), A; = 2am, Z/lf =
i=1 i=1

a@*M; + 2m(1 — a)?, and by the Cauchy-Schwarz inequality, we have

Se S At = DA+ )

A+ J(k— 1)(a2M1 +2m(l —a)? — A2 - Z Af)

i=k+1

IA

1
A + \/(k— 1)(&2M1 +2m(1 — 0,’)2 - /l% - m@am — Sk)Z)

with equality if and only if 4, = --- = A4y and A4 = --- = A, for k > 2. Thus,

(n—k)(S, = ) + (k= 1)(Sk = 2am)* < (k- D)(n— k)(@*M, +2m(1 — a)* - 1}),

that is,
S, < (n—k)A; + 2atk — Dm + (k- 1)(n— k)Y
k< 1 ;
where
T = (- D@M, +2m(1 —a)* - 23) — Qam - 1,)
n n 2
= (=D X —[Z&J
i=2 i=2
> 0.
This completes the proof. O

Remark 3.1. If the equality in (3.1) holds, then this implies that G has at most three distinct A,-
eigenvalues. If G is a connected graph with two distinct A,-eigenvalues, then G = K,. Clearly, the
equality in (3.1) holds for K,,. If G is a graph with three distinct A,-eigenvalues, then we refer to [30].

Corollary 3.2. Let G be a graph with n vertices and m edges. If p is the positive inertia index of A(G),
then

2(n — p)Ai(AG)) +2 \/(p = D = p)[2(n = Dm - nA{(A(G))]

EG) <
n—1

(3.2)
The equality holds for K,, and K, (s +t = n).
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Remark 3.2. There are many graphs such that the equality in (3.2) holds, we may refer to [10, 28].

Nikiforov et al. [27] and Brondani et al. [4] found «, for some special classes of graphs.

Let a( be the smallest a such that A,(G) is positive semidefinite for ¢y < @ < 1. Recently,

Theorem 3.3. Let 0 < a < oy and G be a graph with n vertices and m edges. Then we have

1 iy
SUALG)) < 2am + ~om(1 — ) + a*My) | "=
2 M,
with equality if and only if |41 (Ag(G))] = - - = (Ae(G))] = 2=t o,

Proof. By Lemma 2.2, we have 1;(A,(G)) > % We assume that

n—

n2m(l — a)> + o*M,)?
4M, ’

k
A1 (Aa(G)) >
1

i=

in which case

2m(1 — a)* + &*M,

k n—k
D A ALG) + ) A (AG))
i=1 i=1

\%

n—k
BALG) + ) A, (A(G))
i=1

S M, N n(2m(1 — @) + a*M,)?
n 4M1 ’

2
M 1 n
(,/71 — 5 @m(1 - @)+ a*M,) M) <0,

which is a contradiction. Thus,

This implies that

n@2m(l — @)* + a*M,;)?
2 (A < :
n—[+1( (I(G)) — 4M1

n—k
i=1

By the Cauchy-Schwarz inequality, we have

n—k
2am = ) Ay-is1(An(G))

SKA(G) =
i=1
n—k
< 2am+ |(n—k) Z 2, (A(G))
i=1
1 —k
< 20m+ S (2m(l - a)’ +a*M)) n(an )
with equality if and only if |41 (Au(G))] = -+ = |4,(Ao(G))] = 2= M |4 This completes
the proof. O
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Corollary 3.3. Let G be a graph with n vertices and m edges. If p is the positive inertia index of A(G),

then
E(G) < om |1 P)
M,
with equality if and only if |1,.1(A(G))| = - = |[1,(A(G))| = m (n—Z)Ml'

Let M be a real symmetric partitioned matrix of order n described in the following block form:

My - My,

Mtl e Mtt
where the diagonal blocks M;; are n; X n; matrices for any i € {1,2,...,¢t} and n = n; + --- + n,. For
any i, j € {1,2,...,1}, let b;; denote the average row sum of M;; , i.e., b;; is the sum of all entries in M;;

divided by the number of rows. Then, B(M) = (b;;) (or denoted simply by B) is called the quotient
matrix of M.

Lemma 3.1. [16] Let M be a symmetric partitioned matrix of order n with eigenvalues &, > &, > -+ - >
&,, and let B be its quotient matrix with eigenvaluesn, > 1, > --- > n,andn > r. Then, & > 1n; > €, 4i
fori=1,2,...,r.

Let B be the quotient matrix of A,(G) corresponding to the partition for the color classes of G.
Then, the following corollary is immediate.

Corollary 3.4. Let G be a connected graph with n vertices, m edges, chromatic number y and
independence number 0. If 0 < a < 1, then

S (A4(G)) = 2"‘7’"

Theorem 3.4. Let 0 < a < 1 and G be a connected graph with n vertices and m edges. For any given
vertices subset U = {uy, ..., uy_1} with 1 <k <n,

Z d + 2m — (1 — a)|o(U, V(G)\U)I’
n—k+1

1
Si(A(G)) 2 (01 - m)

uelU
where O(U, V(G)\U) is the set of edges which connect vertices in U with vertices in V(G)\U.

Proof. 1f 2 < k < n, then the quotient matrix of A,(G) corresponding to the partition V(G) = (| {x}) U

xeU
(VGI\U) of G is
bl,k
sG = A0 :
bk—l,k
bk,l T bk,k—l ‘ bk,k

where A,(U) is the principal submatrix of A,(G). By Lemma 3.1, we have

AIMS Mathematics Volume 7, Issue 8, 15064—-15074.
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Vv

Si(A(G)) = SKBG))
11(Ao(U)) + by
2m— 2 dy, — (1 - a)lo(U, V(G)\U)

= @)t ——

(a B 1 )Z d+ 2m— (1 - a)l0(U, V(G)\U)I.

n—k+1 4 n—-k+1

If k = 1, then U is an empty set. Thus, Y d, = 0 and |0(U, V(G)\U)| = 0. Taking X = (1,..., 1),
uelU
by Rayleigh’s principle, we have

2
S1(Ax(G)) = 11(Au(G)) 2 7m

Therefore, the above inequality still holds for k = 1. This completes the proof. O

Corollary 3.5. Let G be a connected graph with n vertices, m edges and the positive inertia index p.

Then we have
dm — 2|6(U, V(G)\U)l _ 2 ZMGU du

n—p+1 n—-p+1°

&) >

4. On the sum of the largest A ,-eigenvalues of graph operations

Theorem 4.1. Let G be a graph with n vertices and m > 1 edges. Then we have
S (A (L(G)) < 2k(@A - 1) + (1 — )S(Q(G))
for1 <k <s, where s = min{n,m}. If m > n, then
S (A (L(G))) < 2ak(A-1)+2(1 — a)(m — k)

forn+1<k<m.

Proof. 1If a vertex w is in one-to-one correspondence with the edge uv of the graph G, then d;)(w) =
dc(u) + dg(v) — 2. By Lemmas 2.1 and 2.3, we have

S(Au(L(G) = aSDLG))) + (1 - )S(ALG))
< ak(2A -2) + (1 — @) (S(Q(G)) — 2k)
2k(@A - 1) + (1 — )S(Q(G))

for 1 < k < s, where s = min{n, m}. If m > n, then we have
S(AL(LG)) <akRA-2)+ (1 —a)2m —2n —2(k — n)) = 2ak(A - 1) + 2(1 — a)(m — k)

for n + 1 < k < m. This completes the proof. O
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By the special cases of Conjecture 1.2 and Theorem 4.1, we have the following corollaries.

Corollary 4.1. If T is a tree with n vertices, then S (Ao (L(T))) < 2ka(A-1)+(1—a)(n—-2) for 1 <k <
n—1. If U is a unicyclic graph with n vertices, then S (A,(L(U))) < 2k(aA—-1)+ (1 —a)(n + k22—+k)f0r
1 <k < n. If Bisabicyclic graph with n vertices, then S ((Ay(L(B))) < 2k(aA-1)+(1—-a)(n+1+ ]‘ZT”‘)
for1 <k<n.

Corollary 4.2. If T is a tree with n vertices, then E(L(T)) < 2(n — 2). If U is a unicyclic graph with
n vertices, then E(L(U))) < 2n + p* — 3p. If B is a bicyclic graph with n vertices, then E(L(B)) <
2n+ p* —-3p +2.

Theorem 4.2. Let G be a Cs-free and Cy-free graph with n vertices, m edges and the algebraic
connectivity a(G). If 0 < a < 1, then

Si(A(G?) < a(M((G) — (n = D) (G)) + (1 — a)(kA*(G) = (k - 1)a(G)).
Proof. By Lemma 2.2, we have

L(AX(G)) + L(AXG)) + - - + W(AX(G))
kA AG))
kA%(G).

SK(A*(G))

IA I

IA

Since ), d, = M(G), by Lemmas 2.1 and 2.4, we have

ueV(G?)

SiA(GY) < aSD(GY) + (1 — a)Si(A(G?))
< aSD(G?) + (1 — a)(S(A*(G)) + S(~L(G)))
< a(M(G) — (n - k)6*(G)) + (1 — a)(kA*(G) — (k — Da(G)).
This completes the proof. O

Corollary 4.3. Let G be a Cs-free and Cy-free graph with n vertices, m edges and the algebraic
connectivity a(G). If p is the positive inertia index of A(G?), then

E(G*) < 2pA*(G) - 2(p — Da(G).
5. Conclusions
In this paper, we study the sum of the k largest eigenvalues of the A,-matrix of a graph, which not
only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless
Laplacian matrix, but it also gives new bounds on graph energy.
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