http://www.aimspress.com/journal/Math

Research article

On the sum of the largest A_{α}-eigenvalues of graphs

Zhen Lin ${ }^{1,2, *}$
${ }^{1}$ School of Mathematics and Statistics, The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai Normal University, Xining 810008, Qinghai, China
${ }^{2}$ Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, Qinghai, China

* Correspondence: Email: Inlinzhen@163.com.

Abstract

Let $A(G)$ and $D(G)$ be the adjacency matrix and the degree diagonal matrix of a graph G, respectively. For any real number $\alpha \in[0,1]$, Nikiforov defined the A_{α}-matrix of a graph G as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$. Let $S_{k}\left(A_{\alpha}(G)\right)$ be the sum of the k largest eigenvalues of $A_{\alpha}(G)$. In this paper, some bounds on $S_{k}\left(A_{\alpha}(G)\right)$ are obtained, which not only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new bounds on graph energy.

Keywords: A_{α}-matrix; sum of A_{α}-eigenvalues; energy; graph operation
Mathematics Subject Classification: 05C50, 05C09, 05C90

1. Introduction

Let G be a simple undirected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. For $v_{i} \in V(G), d_{i}=d_{G}\left(v_{i}\right)$ denotes the degree of vertex v_{i}, and $M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2}$ is called the first Zagreb index. The minimum and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, or simply δ and Δ, respectively. Denote by K_{n}, C_{n} and $K_{s, n-s}$ the complete graph, cycle and complete bipartite graph with n vertices, respectively. The positive inertia index $p=p(M)$ and the negative inertia index of a matrix M are the number of positive and negative eigenvalues of M, respectively. For other undefined notations and terminology from graph theory, the readers are referred to [6].

For a graph $G, S_{k}(A(G))$ is the sum of the k largest eigenvalues of adjacency matrix $A(G)$. Mohar [23] showed that $S_{k}(A(G))$ is at most $\frac{1}{2}(\sqrt{k}+1) n$. This bound is shown to be the best possible, in the sense that for every k there exist graphs whose sum is $\frac{1}{2}\left(\sqrt{k}+\frac{1}{2}\right) n-o\left(k^{-2 / 5}\right) n$. Das et al. [11] proved an upper bound on $S_{k}(A(G))$ in terms of vertex number and negative inertia index. Let $L(G)=D(G)-A(G)$ be the Laplacian matrix of a graph G. Based on the famous Grone-Merris-Bai
theorem [3, 14], Brouwer et al. [5] proposed the following conjecture.
Conjecture 1.1. (Brouwer's conjecture) Let G be a graph with n vertices and e(G) edges. For $1 \leq k \leq$ n, we have

$$
S_{k}(L(G)) \leq e(G)+\binom{k+1}{2}
$$

Inspired by Brouwer's conjecture, Ashraf et al. [2] proposed a similar conjecture as follows.
Conjecture 1.2. [2] Let G be a graph with n vertices and $e(G)$ edges. For $1 \leq k \leq n$, we have

$$
S_{k}(Q(G)) \leq e(G)+\binom{k+1}{2}
$$

where $Q(G)=D(G)+A(G)$ is called the signless Laplacian matrix of G.
The above two conjectures have been proven to be correct for all graphs with at most ten vertices [2], all graphs with $k=1,2, n-2, n-1, n$ [2,7], regular graphs [2], trees [17], unicyclic graphs [31, 32], bicyclic graphs [31,32], tricyclic graphs [31,32] and so on. In particular, Haemers et al. [17] proved that $S_{k}(L(T)) \leq e(T)+2 k-1$ when T is a tree with n vertices.

Another motivation to study $S_{k}(A(G))$ and $S_{k}(Q(G))$ came from the energy $\varepsilon(A(G))$ and signless Laplacian energy $\varepsilon(Q(G)$) of a graph G, which is very popular in mathematical chemistry. Let G be a graph with n vertices, m edges and the positive inertia index p. Then we have

$$
\varepsilon(G)=\varepsilon(A(G))=\sum_{k=1}^{n}\left|\lambda_{k}(A(G))\right|=2 S_{p}(A(G)),
$$

and

$$
\varepsilon(Q(G))=\sum_{k=1}^{n}\left|\lambda_{k}(Q(G))-\frac{2 m}{n}\right|=\max _{1 \leq k \leq n}\left\{2 S_{k}(Q(G))-\frac{4 k m}{n}\right\},
$$

where $\lambda_{k}(M)$ is the k-th largest eigenvalue of the matrix M. Thus, $S_{k}(A(G))$ and $S_{k}(Q(G))$ are close relation with the energy and signless Laplacian energy, respectively. For more details in this field, we refer the reader to [1, 11, 13,22]. In addition, $S_{k}(A(G))$ is related to Ky Fan norms of graphs introduced by Nikiforov [25], which are a fundamental matrix parameter anyway.

For any real $\alpha \in[0,1]$, Nikiforov [24] defined the matrix $A_{\alpha}(G)$ as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

where $D(G)$ is the diagonal matrix of its vertex degrees, and $A(G)$ is the adjacency matrix. It is easy to see that $A_{0}(G)=A(G)$ and $2 A_{1 / 2}(G)=Q(G)$. The new matrix $A_{\alpha}(G)$ not only can underpin a unified theory of $A(G)$ and $Q(G)$, but it also brings many new interesting problems, see [18-20,24,26]. This matrix has recently attracted the attention of many researchers, and there are several research papers published recently, see $[4,20,21,29]$ and the references therein.

Motivated by the above works, we study the sum of the k largest eigenvalues of $A_{\alpha}(G)$. Since $S_{k}\left(A_{0}(G)\right)=S_{k}(A(G))$ and $2 S_{k}\left(A_{1 / 2}(G)\right)=S_{k}(Q(G)), S_{k}\left(A_{\alpha}(G)\right)$ can be regard as a common generalization of $S_{k}(A(G))$ and $S_{k}(Q(G))$. Moreover, if G is a graph with n vertices and m edges, then

$$
\varepsilon_{\alpha}(G)=\sum_{k=1}^{n}\left|\lambda_{k}\left(A_{\alpha}(G)\right)-\frac{2 \alpha m}{n}\right|=\max _{1 \leq k \leq n}\left\{2 S_{k}\left(A_{\alpha}(G)\right)-\frac{4 \alpha k m}{n}\right\},
$$

where $\varepsilon_{\alpha}(G)$ is the α-energy of G defined by Guo and Zhou [15]. Thus, $S_{k}\left(A_{\alpha}(G)\right)$ is a close relation with the α-energy of G. It is not difficult to see that $\varepsilon_{0}(G)=\varepsilon(A(G))$ and $2 \varepsilon_{1 / 2}(G)=\varepsilon(Q(G))$.

In this paper, we obtain some upper and lower bounds on the sum of the k largest eigenvalues of $A_{\alpha}(G)$, which extend the results of $S_{k}(A(G))$ and $S_{k}(Q(G))$. In particular, we give new bounds on the energy of graphs in terms of the positive inertia index and the first Zagreb index. In addition, some graph operations on $S_{k}\left(A_{\alpha}(G)\right)$ are presented, which provides new bounds for the energy of graph operations.

The remainder of this paper is organized as follows. In Section 2, we recall some useful notions and lemmas used further. In Section 3, some upper bounds on $S_{k}\left(A_{\alpha}(G)\right)$ are obtained in terms of A_{α}-spectral radius and the first Zagreb index. Similarly to Conjecture 1.2, a conjecture is proposed for $\frac{1}{2} \leq \alpha<1$. In Section 4, the line graph and the square of graphs on $S_{k}\left(A_{\alpha}(G)\right)$ are presented.

2. Preliminaries

The line graph $\mathcal{L}(G)$ is the graph whose vertex set is the edges in G, where two vertices are adjacent if the corresponding edges in G have a common vertex. The square G^{2} of a graph G is a graph with the same set of vertices as G such that two vertices are adjacent in G^{2} if and only if their distance in G is at most 2. The second smallest eigenvalue of the Laplacian of a graph G, best-known as the algebraic connectivity of G, is denoted by $a(G)$.

Lemma 2.1. [12] Let M and N be two real symmetric matrices of order n. Then we have

$$
\sum_{i=1}^{k} \lambda_{i}(M+N) \leq \sum_{i=1}^{k} \lambda_{i}(M)+\sum_{i=1}^{k} \lambda_{i}(N)
$$

for any $1 \leq k \leq n$.
Lemma 2.2. [24] Let G be a graph with n vertices. Then we have

$$
\sqrt{\frac{M_{1}}{n}} \leq \lambda_{1}\left(A_{\alpha}(G)\right) \leq \Delta
$$

Lemma 2.3. [9] Let G be a graph with n vertices and $m \geq 1$ edges. Then, $\lambda_{i}(Q(G))=\lambda_{i}(A(\mathcal{L}(G)))+2$, $i=1,2, \ldots, s$, where $s=\min \{n, m\}$. Further, if $m>n$, we have $\lambda_{i}(A(\mathcal{L}(G)))=-2$ for $i \geq n+1$, and if $n>m$, we have $\lambda_{i}(Q(G))=0$ for $i \geq m+1$.

Lemma 2.4. [8] For any C_{3}-free and C_{4}-free graph $G, A\left(G^{2}\right)=A^{2}(G)-L(G)$.

3. Bounds on the sum of the largest A_{α}-eigenvalues

Theorem 3.1. Let G be a graph with n vertices.
(i) If $0 \leq \alpha<\frac{1}{2}$, then

$$
(1-\alpha) S_{k}(Q(G))+(2 \alpha-1) S_{k}(D(G)) \leq S_{k}\left(A_{\alpha}(G)\right) \leq \alpha S_{k}(Q(G))+(1-2 \alpha) S_{k}(A(G))
$$

for $1 \leq k \leq n$.
(ii) If $\frac{1}{2} \leq \alpha<1$, then

$$
\alpha S_{k}(Q(G))+(1-2 \alpha) S_{k}(A(G)) \leq S_{k}\left(A_{\alpha}(G)\right) \leq(1-\alpha) S_{k}(Q(G))+(2 \alpha-1) S_{k}(D(G))
$$

for $1 \leq k \leq n$.
If G is r-regular, then the equality in the above inequalities must hold.
Proof. (i) Since $A_{\alpha}(G)=\alpha Q(G)+(1-2 \alpha) A(G)$ for $0 \leq \alpha<\frac{1}{2}$, by Lemma 2.1, we have

$$
S_{k}\left(A_{\alpha}(G)\right) \leq \alpha S_{k}(Q(G))+(1-2 \alpha) S_{k}(A(G)) .
$$

If $0 \leq \alpha<\frac{1}{2}$, then $\frac{1}{2} \leq 1-\alpha \leq 1$. Note that $A_{1-\alpha}(G)=\alpha Q(G)+(1-2 \alpha) D(G)$. Since $A_{\alpha}(G)+$ $A_{1-\alpha}(G)=Q(G)$, by Lemma 2.1, we have

$$
\begin{aligned}
S_{k}\left(A_{\alpha}(G)\right) & \geq S_{k}(Q(G))-S_{k}\left(A_{1-\alpha}(G)\right) \\
& \geq S_{k}(Q(G))-\alpha S_{k}(Q(G))-(1-2 \alpha) S_{k}(D(G)) \\
& \geq(1-\alpha) S_{k}(Q(G))+(2 \alpha-1) S_{k}(D(G)) .
\end{aligned}
$$

(ii) Since $A_{\alpha}(G)=(1-\alpha) Q(G)+(2 \alpha-1) D(G)$ for $\frac{1}{2} \leq \alpha<1$, by Lemma 2.1, we have

$$
S_{k}\left(A_{\alpha}(G)\right) \leq(1-\alpha) S_{k}(Q(G))+(2 \alpha-1) S_{k}(D(G))
$$

If $\frac{1}{2} \leq \alpha \leq 1$, then $0 \leq 1-\alpha \leq \frac{1}{2}$. Note that $A_{1-\alpha}(G)=(1-\alpha) Q(G)+(2 \alpha-1) A(G)$. Since $A_{\alpha}(G)+A_{1-\alpha}(G)=Q(G)$, by Lemma 2.1, we have

$$
\begin{aligned}
S_{k}\left(A_{\alpha}(G)\right) & \geq S_{k}(Q(G))-S_{k}\left(A_{1-\alpha}(G)\right) \\
& \geq S_{k}(Q(G))-(1-\alpha) S_{k}(Q(G))-(2 \alpha-1) S_{k}(A(G)) \\
& \geq \alpha S_{k}(Q(G))+(1-2 \alpha) S_{k}(A(G))
\end{aligned}
$$

If G is r-regular, from [24], we have $S_{k}\left(A_{\alpha}(G)\right)=\alpha k r+(1-\alpha) S_{k}(A(G))$ and $S_{k}(Q(G))=k r+$ $S_{k}(A(G))$. Thus, the two above equations hold. This completes the proof.

It is well known that the spectrum of any symmetric matrix majorizes its main diagonal, that is, $S_{k}(Q(G)) \geq S_{k}(D(G))$, and by Theorem 3.1, we have the following corollary.
Corollary 3.1. Let G be a graph with n vertices. If $\frac{1}{2} \leq \alpha<1$, then

$$
S_{k}\left(A_{\alpha}(G)\right) \leq \alpha S_{k}(Q(G))
$$

for $1 \leq k \leq n$.
From Corollary 3.1 and Conjecture 1.1, we give a new conjecture.
Conjecture 3.1. Let G be a graph with n vertices and $e(G)$ edges. If $\frac{1}{2} \leq \alpha<1$, then

$$
S_{k}\left(A_{\alpha}(G)\right) \leq \alpha e(G)+\alpha\binom{k+1}{2}
$$

for $1 \leq k \leq n$.

Theorem 3.2. Let G be a graph with n vertices and m edges. If $0 \leq \alpha<1$, then

$$
\begin{equation*}
S_{k}\left(A_{\alpha}(G)\right) \leq \frac{(n-k) \lambda_{1}\left(A_{\alpha}(G)\right)+2 \alpha(k-1) m+\sqrt{(k-1)(n-k) \Upsilon}}{n-1}, \tag{3.1}
\end{equation*}
$$

where $\Upsilon=(n-1)\left(\alpha^{2} M_{1}+2 m(1-\alpha)^{2}-\lambda_{1}^{2}\left(A_{\alpha}(G)\right)\right)-\left(2 \alpha m-\lambda_{1}\left(A_{\alpha}(G)\right)\right)^{2}$. The equality holds for $k=1$. Moreover, the equality holds if and only if $\lambda_{2}\left(A_{\alpha}(G)\right)=\cdots=\lambda_{k}\left(A_{\alpha}(G)\right)$ and $\lambda_{k+1}\left(A_{\alpha}(G)\right)=$ $\cdots=\lambda_{n}\left(A_{\alpha}(G)\right)$ for $k \geq 2$.
Proof. Let $\lambda_{i}\left(A_{\alpha}(G)\right)=\lambda_{i}$ and $S_{k}\left(A_{\alpha}(G)\right)=S_{k}$ for $i=1,2, \ldots, n$. Since $\sum_{i=1}^{n} \lambda_{i}=2 \alpha m, \sum_{i=1}^{n} \lambda_{i}^{2}=$ $\alpha^{2} M_{1}+2 m(1-\alpha)^{2}$, and by the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
S_{k} & \leq \lambda_{1}+\sqrt{(k-1)\left(\lambda_{2}^{2}+\cdots+\lambda_{k}^{2}\right)} \\
& =\lambda_{1}+\sqrt{(k-1)\left(\alpha^{2} M_{1}+2 m(1-\alpha)^{2}-\lambda_{1}^{2}-\sum_{i=k+1}^{n} \lambda_{i}^{2}\right)} \\
& \leq \lambda_{1}+\sqrt{(k-1)\left(\alpha^{2} M_{1}+2 m(1-\alpha)^{2}-\lambda_{1}^{2}-\frac{1}{n-k}\left(2 \alpha m-S_{k}\right)^{2}\right)}
\end{aligned}
$$

with equality if and only if $\lambda_{2}=\cdots=\lambda_{k}$ and $\lambda_{k+1}=\cdots=\lambda_{n}$ for $k \geq 2$. Thus,

$$
(n-k)\left(S_{k}-\lambda_{1}\right)^{2}+(k-1)\left(S_{k}-2 \alpha m\right)^{2} \leq(k-1)(n-k)\left(\alpha^{2} M_{1}+2 m(1-\alpha)^{2}-\lambda_{1}^{2}\right),
$$

that is,

$$
S_{k} \leq \frac{(n-k) \lambda_{1}+2 \alpha(k-1) m+\sqrt{(k-1)(n-k) \Upsilon}}{n-1}
$$

where

$$
\begin{aligned}
\Upsilon & =(n-1)\left(\alpha^{2} M_{1}+2 m(1-\alpha)^{2}-\lambda_{1}^{2}\right)-\left(2 \alpha m-\lambda_{1}\right)^{2} \\
& =(n-1) \sum_{i=2}^{n} \lambda_{i}^{2}-\left(\sum_{i=2}^{n} \lambda_{i}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

This completes the proof.
Remark 3.1. If the equality in (3.1) holds, then this implies that G has at most three distinct A_{α} eigenvalues. If G is a connected graph with two distinct A_{α}-eigenvalues, then $G \cong K_{n}$. Clearly, the equality in (3.1) holds for K_{n}. If G is a graph with three distinct A_{α}-eigenvalues, then we refer to [30].

Corollary 3.2. Let G be a graph with n vertices and m edges. If p is the positive inertia index of $A(G)$, then

$$
\begin{equation*}
\mathcal{E}(G) \leq \frac{2(n-p) \lambda_{1}(A(G))+2 \sqrt{(p-1)(n-p)\left[2(n-1) m-n \lambda_{1}^{2}(A(G))\right]}}{n-1} . \tag{3.2}
\end{equation*}
$$

The equality holds for K_{n} and $K_{s, t}(s+t=n)$.

Remark 3.2. There are many graphs such that the equality in (3.2) holds, we may refer to [10, 28].
Let α_{0} be the smallest α such that $A_{\alpha}(G)$ is positive semidefinite for $\alpha_{0} \leq \alpha \leq 1$. Recently, Nikiforov et al. [27] and Brondani et al. [4] found α_{0} for some special classes of graphs.

Theorem 3.3. Let $0 \leq \alpha<\alpha_{0}$ and G be a graph with n vertices and m edges. Then we have

$$
S_{k}\left(A_{\alpha}(G)\right) \leq 2 \alpha m+\frac{1}{2}\left(2 m(1-\alpha)^{2}+\alpha^{2} M_{1}\right) \sqrt{\frac{n(n-k)}{M_{1}}}
$$

with equality if and only if $\left|\lambda_{k+1}\left(A_{\alpha}(G)\right)\right|=\cdots=\left|\lambda_{n}\left(A_{\alpha}(G)\right)\right|=\frac{2 m(1-\alpha)^{2}+\alpha^{2} M_{1}}{2} \sqrt{\frac{n}{(n-k) M_{1}}}$.
Proof. By Lemma 2.2, we have $\lambda_{1}\left(A_{\alpha}(G)\right) \geq \sqrt{\frac{M_{1}}{n}}$. We assume that

$$
\sum_{i=1}^{n-k} \lambda_{n-i+1}^{2}\left(A_{\alpha}(G)\right)>\frac{n\left(2 m(1-\alpha)^{2}+\alpha^{2} M_{1}\right)^{2}}{4 M_{1}}
$$

in which case

$$
\begin{aligned}
2 m(1-\alpha)^{2}+\alpha^{2} M_{1} & =\sum_{i=1}^{k} \lambda_{i}^{2}\left(A_{\alpha}(G)\right)+\sum_{i=1}^{n-k} \lambda_{n-i+1}^{2}\left(A_{\alpha}(G)\right) \\
& \geq \lambda_{1}^{2}\left(A_{\alpha}(G)\right)+\sum_{i=1}^{n-k} \lambda_{n-i+1}^{2}\left(A_{\alpha}(G)\right) \\
& >\frac{M_{1}}{n}+\frac{n\left(2 m(1-\alpha)^{2}+\alpha^{2} M_{1}\right)^{2}}{4 M_{1}} .
\end{aligned}
$$

This implies that

$$
\left(\sqrt{\frac{M_{1}}{n}}-\frac{1}{2}\left(2 m(1-\alpha)^{2}+\alpha^{2} M_{1}\right) \sqrt{\frac{n}{M_{1}}}\right)^{2}<0
$$

which is a contradiction. Thus,

$$
\sum_{i=1}^{n-k} \lambda_{n-i+1}^{2}\left(A_{\alpha}(G)\right) \leq \frac{n\left(2 m(1-\alpha)^{2}+\alpha^{2} M_{1}\right)^{2}}{4 M_{1}}
$$

By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
S_{k}\left(A_{\alpha}(G)\right) & =2 \alpha m-\sum_{i=1}^{n-k} \lambda_{n-i+1}\left(A_{\alpha}(G)\right) \\
& \leq 2 \alpha m+\sqrt{(n-k) \sum_{i=1}^{n-k} \lambda_{n-i+1}^{2}\left(A_{\alpha}(G)\right)} \\
& \leq 2 \alpha m+\frac{1}{2}\left(2 m(1-\alpha)^{2}+\alpha^{2} M_{1}\right) \sqrt{\frac{n(n-k)}{M_{1}}}
\end{aligned}
$$

with equality if and only if $\left|\lambda_{k+1}\left(A_{\alpha}(G)\right)\right|=\cdots=\left|\lambda_{n}\left(A_{\alpha}(G)\right)\right|=\frac{2 m(1-\alpha)^{2}+\alpha^{2} M_{1}}{2} \sqrt{\frac{n}{(n-k) M_{1}}}$. This completes the proof.

Corollary 3.3. Let G be a graph with n vertices and m edges. If p is the positive inertia index of $A(G)$, then

$$
\mathcal{E}(G) \leq 2 m \sqrt{\frac{n(n-p)}{M_{1}}}
$$

with equality if and only if $\left|\lambda_{p+1}(A(G))\right|=\cdots=\left|\lambda_{n}(A(G))\right|=m \sqrt{\frac{n}{(n-p) M_{1}}}$.
Let M be a real symmetric partitioned matrix of order n described in the following block form:

$$
\left(\begin{array}{ccc}
M_{11} & \cdots & M_{1 t} \\
\vdots & \ddots & \vdots \\
M_{t 1} & \cdots & M_{t t}
\end{array}\right)
$$

where the diagonal blocks $M_{i i}$ are $n_{i} \times n_{i}$ matrices for any $i \in\{1,2, \ldots, t\}$ and $n=n_{1}+\cdots+n_{t}$. For any $i, j \in\{1,2, \ldots, t\}$, let $b_{i j}$ denote the average row sum of $M_{i j}$, i.e., $b_{i j}$ is the sum of all entries in $M_{i j}$ divided by the number of rows. Then, $\mathcal{B}(M)=\left(b_{i j}\right)$ (or denoted simply by \mathcal{B}) is called the quotient matrix of M.

Lemma 3.1. [16] Let M be a symmetric partitioned matrix of order n with eigenvalues $\xi_{1} \geq \xi_{2} \geq \cdots \geq$ ξ_{n}, and let \mathcal{B} be its quotient matrix with eigenvalues $\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{r}$ and $n>r$. Then, $\xi_{i} \geq \eta_{i} \geq \xi_{n-r+i}$ for $i=1,2, \ldots, r$.

Let \mathcal{B} be the quotient matrix of $A_{\alpha}(G)$ corresponding to the partition for the color classes of G. Then, the following corollary is immediate.
Corollary 3.4. Let G be a connected graph with n vertices, m edges, chromatic number χ and independence number θ. If $0 \leq \alpha<1$, then

$$
S_{\chi}\left(A_{\alpha}(G)\right) \geq \frac{2 \alpha m}{\theta}
$$

Theorem 3.4. Let $0 \leq \alpha<1$ and G be a connected graph with n vertices and m edges. For any given vertices subset $U=\left\{u_{1}, \ldots, u_{k-1}\right\}$ with $1 \leq k \leq n$,

$$
S_{k}\left(A_{\alpha}(G)\right) \geq\left(\alpha-\frac{1}{n-k+1}\right) \sum_{u \in U} d_{u}+\frac{2 m-(1-\alpha)|\partial(U, V(G) \backslash U)|}{n-k+1}
$$

where $\partial(U, V(G) \backslash U)$ is the set of edges which connect vertices in U with vertices in $V(G) \backslash U$.
Proof. If $2 \leq k \leq n$, then the quotient matrix of $A_{\alpha}(G)$ corresponding to the partition $V(G)=\left(\bigcup_{x \in U}\{x\}\right) \cup$ $(V(G) \backslash U)$ of G is

$$
\mathcal{B}(G)=\left[\begin{array}{ccc|c}
& & & b_{1, k} \\
& A_{\alpha}(U) & & \vdots \\
& & & b_{k-1, k} \\
\hline b_{k, 1} & \cdots & b_{k, k-1} & b_{k, k}
\end{array}\right],
$$

where $A_{\alpha}(U)$ is the principal submatrix of $A_{\alpha}(G)$. By Lemma 3.1, we have

$$
\begin{aligned}
S_{k}\left(A_{\alpha}(G)\right) & \geq S_{k}(\mathcal{B}(G)) \\
& =\operatorname{tr}\left(A_{\alpha}(U)\right)+b_{k, k} \\
& =\alpha \sum_{u \in U} d_{u}+\frac{2 m-\sum_{u \in U} d_{u}-(1-\alpha)|\partial(U, V(G) \backslash U)|}{n-k+1} \\
& =\left(\alpha-\frac{1}{n-k+1}\right) \sum_{u \in U} d_{u}+\frac{2 m-(1-\alpha)|\partial(U, V(G) \backslash U)|}{n-k+1} .
\end{aligned}
$$

If $k=1$, then U is an empty set. Thus, $\sum_{u \in U} d_{u}=0$ and $|\partial(U, V(G) \backslash U)|=0$. Taking $X=(1, \ldots, 1)^{T}$, by Rayleigh's principle, we have

$$
S_{1}\left(A_{\alpha}(G)\right)=\lambda_{1}\left(A_{\alpha}(G)\right) \geq \frac{2 m}{n}
$$

Therefore, the above inequality still holds for $k=1$. This completes the proof.
Corollary 3.5. Let G be a connected graph with n vertices, m edges and the positive inertia index p. Then we have

$$
\mathcal{E}(G) \geq \frac{4 m-2|\partial(U, V(G) \backslash U)|}{n-p+1}-\frac{2 \sum_{u \in U} d_{u}}{n-p+1} .
$$

4. On the sum of the largest A_{α}-eigenvalues of graph operations

Theorem 4.1. Let G be a graph with n vertices and $m \geq 1$ edges. Then we have

$$
S_{k}\left(A_{\alpha}(\mathcal{L}(G))\right) \leq 2 k(\alpha \Delta-1)+(1-\alpha) S_{k}(Q(G))
$$

for $1 \leq k \leq s$, where $s=\min \{n, m\}$. If $m>n$, then

$$
S_{k}\left(A_{\alpha}(\mathcal{L}(G))\right) \leq 2 \alpha k(\Delta-1)+2(1-\alpha)(m-k)
$$

for $n+1 \leq k \leq m$.
Proof. If a vertex w is in one-to-one correspondence with the edge $u v$ of the graph G, then $d_{\mathcal{L}(G)}(w)=$ $d_{G}(u)+d_{G}(v)-2$. By Lemmas 2.1 and 2.3, we have

$$
\begin{aligned}
S_{k}\left(A_{\alpha}(\mathcal{L}(G))\right) & \leq \alpha S_{k}(D(\mathcal{L}(G)))+(1-\alpha) S_{k}(A(\mathcal{L}(G))) \\
& \leq \alpha k(2 \Delta-2)+(1-\alpha)\left(S_{k}(Q(G))-2 k\right) \\
& =2 k(\alpha \Delta-1)+(1-\alpha) S_{k}(Q(G))
\end{aligned}
$$

for $1 \leq k \leq s$, where $s=\min \{n, m\}$. If $m>n$, then we have

$$
S_{k}\left(A_{\alpha}(\mathcal{L}(G))\right) \leq \alpha k(2 \Delta-2)+(1-\alpha)(2 m-2 n-2(k-n))=2 \alpha k(\Delta-1)+2(1-\alpha)(m-k)
$$

for $n+1 \leq k \leq m$. This completes the proof.

By the special cases of Conjecture 1.2 and Theorem 4.1, we have the following corollaries.
Corollary 4.1. If T is a tree with n vertices, then $S_{k}\left(A_{\alpha}(\mathcal{L}(T))\right) \leq 2 k \alpha(\Delta-1)+(1-\alpha)(n-2)$ for $1 \leq k \leq$ $n-1$. If U is a unicyclic graph with n vertices, then $S_{k}\left(A_{\alpha}(\mathcal{L}(U))\right) \leq 2 k(\alpha \Delta-1)+(1-\alpha)\left(n+\frac{k^{2}+k}{2}\right)$ for $1 \leq k \leq n$. If B is a bicyclic graph with n vertices, then $S_{k}\left(A_{\alpha}(\mathcal{L}(B))\right) \leq 2 k(\alpha \Delta-1)+(1-\alpha)\left(n+1+\frac{k^{2}+k}{2}\right)$ for $1 \leq k \leq n$.

Corollary 4.2. If T is a tree with n vertices, then $\mathcal{E}(\mathcal{L}(T)) \leq 2(n-2)$. If U is a unicyclic graph with n vertices, then $\mathcal{E}(\mathcal{L}(U))) \leq 2 n+p^{2}-3 p$. If B is a bicyclic graph with n vertices, then $\mathcal{E}(\mathcal{L}(B)) \leq$ $2 n+p^{2}-3 p+2$.

Theorem 4.2. Let G be a C_{3}-free and C_{4}-free graph with n vertices, m edges and the algebraic connectivity $a(G)$. If $0 \leq \alpha \leq 1$, then

$$
S_{k}\left(A_{\alpha}\left(G^{2}\right)\right) \leq \alpha\left(M_{1}(G)-(n-k) \delta^{2}(G)\right)+(1-\alpha)\left(k \Delta^{2}(G)-(k-1) a(G)\right) .
$$

Proof. By Lemma 2.2, we have

$$
\begin{aligned}
S_{k}\left(A^{2}(G)\right) & =\lambda_{1}\left(A^{2}(G)\right)+\lambda_{2}\left(A^{2}(G)\right)+\cdots+\lambda_{k}\left(A^{2}(G)\right) \\
& \leq k \lambda_{1}^{2}(A(G)) \\
& \leq k \Delta^{2}(G) .
\end{aligned}
$$

Since $\sum_{u \in V\left(G^{2}\right)} d_{u}=M_{1}(G)$, by Lemmas 2.1 and 2.4, we have

$$
\begin{aligned}
S_{k}\left(A_{\alpha}\left(G^{2}\right)\right) & \leq \alpha S_{k}\left(D\left(G^{2}\right)\right)+(1-\alpha) S_{k}\left(A\left(G^{2}\right)\right) \\
& \leq \alpha S_{k}\left(D\left(G^{2}\right)\right)+(1-\alpha)\left(S_{k}\left(A^{2}(G)\right)+S_{k}(-L(G))\right) \\
& \leq \alpha\left(M_{1}(G)-(n-k) \delta^{2}(G)\right)+(1-\alpha)\left(k \Delta^{2}(G)-(k-1) a(G)\right) .
\end{aligned}
$$

This completes the proof.
Corollary 4.3. Let G be a C_{3}-free and C_{4}-free graph with n vertices, m edges and the algebraic connectivity $a(G)$. If p is the positive inertia index of $A\left(G^{2}\right)$, then

$$
\mathcal{E}\left(G^{2}\right) \leq 2 p \Delta^{2}(G)-2(p-1) a(G)
$$

5. Conclusions

In this paper, we study the sum of the k largest eigenvalues of the A_{α}-matrix of a graph, which not only extends the results of the sum of the k largest eigenvalues of the adjacency matrix and signless Laplacian matrix, but it also gives new bounds on graph energy.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 12071411).

Conflict of interest

The authors declare no conflicts of interest.

References

1. N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl., 435 (2011), 2365-2374. https://doi.org/10.1016/j.laa.2010.10.021
2. F. Ashraf, G. R. Omidi, B. Tayfeh-Rezaie, On the sum of signless Laplacian eigenvalues of a graph, Linear Algebra Appl., 438 (2013), 4539-4546. https://doi.org/10.1016/j.laa.2013.01.023
3. H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc., 363 (2011), 4463-4474. https://doi.org/10.1090/S0002-9947-2011-05393-6
4. A. E. Brondani, F. A. M. França, C. S. Oliveira, Positive semidefiniteness of $A_{\alpha}(G)$ on some families of graphs, Discrete Appl. Math., 2020. https://doi.org/10.1016/j.dam.2020.12.007
5. A. E. Brouwer, W. H. Haemers, Spectra of graphs, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1939-6
6. J. A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008.
7. X. D. Chen, G. L. Hao, D. Q. Jin, J. J. Li, Note on a conjecture for the sum of signless Laplacian eigenvalues, Czechoslovak Math. J., 68 (2018), 601-610. https://doi.org/10.21136/CMJ.2018.0548-16
8. Y. Y. Chen, D. Li, Z. W. Wang, J. X. Meng, A_{α}-spectral radius of the second power of a graph, Appl. Math. Comput., 359 (2019), 418-425. https://doi.org/10.1016/j.amc.2019.04.077
9. D. Cvetković, S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math. (Beograd) (N. S.), 85 (2009), 19-33. https://doi.org/10.2298/PIM0999019C
10. E. R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B, 73 (1998), 101-118. https://doi.org/10.1006/jctb.1998.1815
11. K. C. Das, S. A. Mojallal, S. W. Sun, On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs, Linear Algebra Appl., 569 (2019), 175-194. https://doi.org/10.1016/j.laa.2019.01.016
12. K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Natl. Acad. Sci. USA, 35 (1949), 652-655. https://doi.org/10.1073/pnas.35.11.652
13. H. A. Ganie, B. A. Chat, S. Pirzada, Signless Laplacian energy of a graph and energy of a line graph, Linear Algebra Appl., 544 (2018), 306-324. https://doi.org/10.1016/j.laa.2018.01.021
14. R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7 (1994), 221-229. https://doi.org/10.1137/S0895480191222653
15. H. Y. Guo, B. Zhou, On the α-spectral radius of graphs, Appl. Anal. Discrete Math., 14 (2020), 431-458. https://doi.org/10.2298/AADM180210022G
16. W. H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226-228 (1995), 593616. https://doi.org/10.1016/0024-3795(95)00199-2
17. W. H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl., 432 (2010), 2214-2221. https://doi.org/10.1016/j.laa.2009.03.038
18. S. T. Liu, K. C. Das, S. W. Sun, J. L. Shu, On the least eigenvalue of A_{α}-matrix of graphs, Linear Algebra Appl., 586 (2020), 347-376. https://doi.org/10.1016/j.laa.2019.10.025
19. H. Q. Lin, X. G. Liu, J. Xue, Graphs determined by their A_{α}-spectra, Discrete Math., 342 (2019), 441-450. https://doi.org/10.1016/j.disc.2018.10.006
20. Z. Lin, L. Y. Miao, S. G. Guo, Bounds on the A_{α}-spread of a graph, Electron. J. Linear Algebra, 36 (2020), 214-227. https://doi.org/10.13001/ela.2020.5137
21. Z. Lin, L. Y. Miao, S. G. Guo, The A_{α}-spread of a graph, Linear Algebra Appl., 606 (2020), 1-22. https://doi.org/10.1016/j.laa.2020.07.022
22. X. L. Li, Y. T. Shi, I. Gutman, Graph energy, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4220-2
23. B. Mohar, On the sum of k largest eigenvalues of graphs and symmetric matrices, J. Combin. Theory Ser. B, 99 (2009), 306-313. https://doi.org/10.1016/j.jctb.2008.07.001
24. V. Nikiforov, Merging the A - and Q-spectral theories, Appl. Anal. Discrete Math., 11 (2017), 81107. https://doi.org/10.2298/AADM1701081N
25. V. Nikiforov, On the sum of k largest singular values of graphs and matrices, Linear Algebra Appl., 435 (2011), 2394-2401. https://doi.org/10.1016/j.laa.2010.08.014
26. V. Nikiforov, O. Rojo, On the α-index of graphs with pendent paths, Linear Algebra Appl., 550 (2018), 87-104. https://doi.org/10.1016/j.laa.2018.03.036
27. V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163. https://doi.org/10.1016/j.laa.2016.12.042
28. P. Rowlinson, A problem concerning graphs with just three distinct eigenvalues, Linear Algebra Appl., 592 (2020), 260-269. https://doi.org/10.1016/j.laa.2020.01.024
29. G. X. Tian, Y. X. Chen, S. Y. Cui, The extremal α-index of graphs with no 4 -cycle and 5 -cycle, Linear Algebra Appl., 619 (2021), 160-175. https://doi.org/10.1016/j.laa.2021.02.022
30. M. A. Tahir, X. D. Zhang, Graphs with three distinct α-eigenvalues, Acta Math. Vietnam., 43 (2018), 649-659. https://doi.org/10.1007/s40306-018-0275-y
31. S. Z. Wang, Y. F. Huang, B. L. Liu, On a conjecture for the sum of Laplacian eigenvalues, Math. Comput. Model., 56 (2012), 60-68. https://doi.org/10.1016/j.mcm.2011.12.047
32. J. S. Yang, L. H. You, On a conjecture for the signless Laplacian eigenvalues, Linear Algebra Appl., 446 (2014), 115-132. https://doi.org/10.1016/j.laa.2013.12.032
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
