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Abstract: The formula of solution to a nonlinear ODE with an undetermined coefficient and a 
positive integer power term of dependent variable have been obtained by the transformation of 

dependent variable and ( )G
G
′

-expansion method. The travelling wave reduction ODEs (perhaps, 

after integration and identical deformation) of a class of nonlinear evolution equations with a 
dissipative term and a positive integer power term of dependent variable that includes GKdV-Burgers 
equation, GKP-Burgers equation, GZK-Burgers equation, GBoussinesq equation and GKlein-Gordon 
equation, are all attributed to the same type of ODEs as the nonlinear ODE considered. The kink type 
of travelling wave solutions for these nonlinear evolution equations are obtained in terms of the 
formula of solution to the nonlinear ODE considered. 
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1. Introduction 

It is well known that nonlinear waves are governed by nonlinear evolution equations and some 
problems related to nonlinear equations are very difficult to handle in a general way. So far, there is 
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no unified method that can deal with all types of nonlinear evolution equations. However, some 
special problems have been solved from time to time by methods suited to the special problems. In 
the present paper, we shall concentrate on a class of nonlinear evolution equations with both a 
dissipative term and a positive integer power term of dependent variable. These equations are all 
generalized form of important model equations in mathematical physics. Several examples of this 
class of nonlinear equations are listed below: 

The generalized KdV-Burgers equation (GKdV-Burgers) 

.n
t xxx x xxu u u u au= − +          (1) 

The generalized KP-Burgers equation (GKP-Burgers)  
2( ) 0.n

t xxx xx x x yyu u au bu u u+ + − +σ =        (2) 

The generalized Zakharov-Kuznetsov-Burgers equation (GZK-Burgers) 

( ) 0.n
t x xxx yy zz x xxu u u u u u au+a +β + γ + + =       (3) 

The generalized Boussinesq equation (GBoussinesq) 
2 1( ) 0.n

tt xx xx xxt xxxxu c u b u au u++ − + + =       (4) 

General (m + 1)-dimension Klein-Gordon equation (GKlein-Gordon) 
2 1 0,n

tt m tu c u au du bu ++ ∆ + + + =        (5) 

where m is positive integer, and so on.  

In particular, when 1n =  the Eqs (1)–(5) above become the famous model equations in 
mathematical physics, to be more precise, Eqs (1)–(5) become KdV-Burgers equation [1–2], 
KP-Burgers equation [3], ZKB equation [4], Boussinesq equation [5] and dissipative Klein-Gordon 
equation [6], respectively. Each of these model equations mentioned has been investigated 
extensively by many authors and methods during the past four decades or so. Especially, for 
GKdV-Burgers equation, GZK-Burgers equation, GBoussinesq equation, and GKlein-Gordon 
equation, some literatures [7–10] have obtained different types of soliton solutions by using HPM 
and tanh method etc. Nevertheless, as for the Eqs (1)–(5), which contains a dissipative term and a 
positive integer power term, to our knowledge, there are less systemic methods to solve them. Since 
Eqs (1)–(5) are all the generalized form of the important model equations, therefore the investigation 
of them is of great significance both mathematically and physically 

In recent years, the development of mathematical physics furtherly provides us with more 

detailed methods to seek exact solutions of NLDEs, for example, Hirota bilinear method [11], ( )G
G
′

-expansion method [12–14], exp-function method [15], complex method [16–19], 
exp(−ψ(ξ))-expansion method [20,21], the sub-ODE method [22] and so on. As one of the efficient 
computing techniques, there is the spectral collocation method for solving equations with a fractional 
integro-differential [23]. In addition, Ahmad El-Ajou also has suggested a new method that relies on 
a new fractional expansion in the Laplace transform space and residual power series method to 
construct exact solitary solutions to the nonlinear time-fractional dispersive PDEs in the literature [24]. 

AIMS Mathematics  Volume 7, Issue 8, 15029–15040. 



15031 

These developments have helped to open up various new mathematical branches and have led to 
immense enrichment therein. 

The main goal of this paper is to obtain travelling wave solutions of Eqs (1)–(5). Obviously the 
crucial problem is how to solve the travelling wave reduction ODEs of Eqs (1)–(5), since reduction 
ODEs contain an undetermined coefficient and a positive integer power term of dependent variable. 
In Section 2, the formula of solution as well as the undetermined coefficient of a nonlinear ODE with 
an undetermined coefficient and a positive integer power term of dependent variable has been 

obtained by using transformation of dependent variable and ( )G
G
′

-expansion method, we use a 

theorem to describe such a result briefly. In subsequent sections, from Section 3 to Section 7, we 
shall apply the theorem obtained in Section 2 to KdV-Burgers, GKP-Burgers, GZK-Burgers, 
GBoussinesq and GKlein-Gordon, respectively, to obtain the travelling wave solutions of these 
equations. In Section 8, the technique used in the paper is summarized briefly. 

2. A nonlinear ODE with an undetermined coefficient and a positive integer power term of 
dependent variable 

In this section, we considered the following ODE 
1( ) ( ) ( ) ( ) 0,nF aF VF bF +′′ ′ξ + ξ + ξ − ξ =       (6) 

where 1n ≥ , a positive integer; ,a b  and V  are constants, 0,b V>  to be determined later. Our 
aim is to find out V such that Eq (6) has a positive solution. We shall demonstrate the following: 
Theorem. The ODE (6) admits a positive solution 

1
2

2

02

0

2( 2) 1( ) , .
( 4) 1 exp ( )

4

n

n aF const
ann b

n

  
  +  x = x =
 +   + x + x   +   

   (7) 

Provided that 
2

2

2( 2) .
( 4)
n aV
n
+

=
+

         (8) 

Proof. Making transformation of dependent variable 
1

.nF u=           (9) 

Equation (6) is converted into the nonlinear ODE for ( )u u= ξ , 

2 2 31( 1) 0.uu u auu nVu bnu
n

′′ ′ ′+ − + + − =      (10) 

We shall use the ( )G
G
′

-expansion method [12] to solve ODE (10).  

First of all, considering the homogeneous balance between uu′  (or 2u′ ) and 3u

AIMS Mathematics  Volume 7, Issue 8, 15029–15040. 
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(2 2 3 2)m m m+ = ⇒ = , we can suppose that the solution of Eq (10) is of the form 

2

( ) ,Gu A
G
′ ξ =  

 
          (11) 

where ( )G G= ξ  satisfies 

0,G G′′ ′+ λ =          (12) 

A  and λ  are constants to be determined.    
Second, from (11) and using (12), it is derived that 

6 5 4
2 2 2 2

6 5 4
2 2 2 2 2

5 4
2 2

5 4
3 3 2 2

6 10 4 ,

4 8 4 ,

2 2 ,

, .

G G Guu A A A
G G G

G G Gu A A A
G G G

G Guu A A
G G

G Gu A u A
G G

′ ′ ′     ′′ = + λ + λ     
     

′ ′ ′     ′ = + λ + λ     
     

′ ′   ′ = − λ − λ   
   

′ ′   = =   
   

    (13) 

Substituting (13) into the left hand side of Eq (6), collecting all terms with ( 4,5,6)
iG i

G
′  = 

 
 

together and setting the coefficient of ( 4,5,6)
iG i

G
′  = 

 
 to zero, yields a set of algebraic equations 

for ,A λ  and V  as follows 

6

2 2 3

5
2 2 2

4 2 2 2 2 2 2

1: 6 ( 1)4 0,

1: 10 ( 1)8 2 0,

14 ( 1)4 2 0.:

G
A A bnAG n

G A A aA
G n

G A A aA nVA
nG

′ 
  + − − = 

′  λ + − λ − = 
 

′  λ + − λ − λ + =
 
 

   (14) 

Solving (14), yields 

2
2 2

2( 2) 2( 2), , .
4 ( 4)

n an nA V a
bn n n
+ +

= λ = =
+ +

 

Third, when 
4

an
n

λ =
+

, Eq (12) admits a solution 

0 0( ) 1 exp ( ) , .
4

anG const
n

 x = + − x + xx  = + 
 

Therefore 
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0

0 0

exp ( )
( ) 14 ,
( ) 4 41 exp ( ) 1 exp ( )

4 4

an
G an ann

an anG n n
n n

    − x + x    ′ x +    = − = −
x + +      + − x + x + x + x      + +      

   (15) 

substituting 2

2( 2)nA
bn
+

=  and G
G
′ 

 
 

 in (15) into (9), we obtain the solution of nonlinear ODE (10) 

2

2

2

0

2( 2) 1 ,
( p

( )
4) 1 ex ( )

4

n a
ann b

n

u

 
 +  

+   + x + x  +  

x =



      (16) 

provided 

2
02

2( 2) , .
( 4)

nx a t const
n

+
x = − x =

+
 

Last of all, substituting (16) into (9), we have the solution of Eq (6), which is expressed by (7), 

provided 2
2

2( 2) .
( 4)

nV a
n

+
=

+
 

The discussion above completes the proof of the theorem. 

3. Generalized KdV-Burgers equation 

Introducing travelling wave variables 

( , ) ( ), .u x t u x Vt= xx  = −         (17) 

Equation (1) is converted into an ODE for ( )u u= ξ  

.nVu u u u au′ ′′′ ′ ′′− = − +  

Integrating it with respect to ξ  once, and taking constant of integration to zero, yields 

11( ) ( ) ( ) 0.
1

nu au Vu u
n

+′′ ′ξ + ξ + ξ − =
+

      (18) 

Comparing Eq (18) with Eq (6) in Section 2, it is found that Eq (18) belongs to the same type ODE 
as Eq (6). According to the theorem in Section 2, the travelling wave solution of Eq (1) is given by 

2

2

0

2

1

2( 2)( 1) 1 ,
x

( , )
p

(
( 4) 1 e

)
( )

4

n

n
u x t u n n a

ann
n

 
 + +  

+





= x =  
   + x + x  +  

   (19) 

provided 2
2

2( 2)
( 4)

nV a
n

+
=

+
, in view of (17) 
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2
2

2( 2) .
( 4)

nx a t
n

+
x = −

+
 

In particular, when 1n = , (19) becomes 

0

2

2
2

0
12 1 6, , ,

125 251 exp
5

,
(

( )
)

u a x a t const
a

tx

 
 
 ⋅ x = − x =

  + x + x    

=   (20) 

which is the solution of KdV-Burgers equation 

.t xxx x xxu u uu au= − +         (21) 

When 2n = , (19) becomes 

( )
2

0

0

6 1 2, , ,)
3 91 ex

,
p

(

3

u ox a x a t stt c n
a

 
 
 ⋅ x = − x =

  + x + x 

=

   

  (22) 

which is the solution of mKdV-Burgers equation 
2 .t xxx x xxu u u u au= − +         (23) 

4. Generalized KP-Burgers equation 

Introducing travelling wave variables 

( , , ) ( ), .u x y t u x ly Vt= xx  = + −       (24) 

Equation (2) is converted into an ODE for ( ),u u= ξ  

2 2( ) 0.nVu u au bu u l u′ ′′′ ′′ ′ ′ ′′− + + − +σ =  

Integrating it with respect toξ  twice, and taking the constants of integration to zero, yields 

2 2 1( ) 0.
1

nbu au l V u u
n

+′′ ′+ + σ − − =
+

      (25) 

Comparing Eq (25) with Eq (6) in Section 2, it is found that Eq (25) belongs to the same type 
ODE as Eq (6), according to the theorem in Section 2, 

2 2 2
2

2( 2) ,
( 4)

nl V a
n

+
σ − =

+
 which implies 2 2 2

2

2( 2) .
( 4)

nV l a
n

+
= σ −

+
  (26) 

The travelling solution of general KP-Burgers equation is given by 

AIMS Mathematics  Volume 7, Issue 8, 15029–15040. 
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( )
0

2

1

2 2
2

0

2

2

2

2( 2)( 1) 1 , ,
( 4) 1 e

( , , ) ( )

2( 2) .
)

xp
4

( 4

n

n
u x y t u

nx ly

on

l a t
n

n n a c st
ann b

n

 
 + +   x =

+  +

 
= x =  

 

 +

 x +x  + 

x = + − s − + 

 



  (27) 

In particular, when 1n = , (27) becomes 

( )0

2 2 2

2

0

2

1 ,
1 exp

5
6 , ,

)

2

12( , ,
25

5

au

x

x y t
a

ly l a t co

b

nst





s


 


+ x + x  

 x = + − − x = 


= ⋅
 
 






      (28) 

which is the solution of KP-Burgers equation 
2( ) 0.t xxx xx x x yyu u au buu u+ + − +σ =       (29) 

When 2n = , (27) becomes 

( )
2 2 2

0

0

1 1, , ,
61

)
ex

,
p

6( ,
3

5

au xx y t ly l a t co st
b

n
a

 x = + −



s − x =    + x + x

 
 
 = ⋅


  
 



   (30) 

which is the solution of mKP-Burgers equation 
2 2( ) 0.t xxx xx x x yyu u au bu u u+ + − +σ =       (31) 

5. Generalized ZK-Burgers equation 

Introducing travelling wave variables 

( , , , ) ( ), ,u x y z t u lx my pz Vt= xx  = + + −      (32) 

where 2 2 2 1l m p+ + = . Substituting (32) into (3), integrating with respect to ξ , and taking the 
constants of integration to zero, yields 

1 3 2[( ) ] 0.
1

nlVu u l l u al u
n

+a ′′ ′− + + β− γ + γ + =
+

     (33) 

Suppose that 20, ( ) 0lα < β− γ + γ > , Eq (33) can be rewritten as 

1
2 3 2 0.

( ) ( ) ( 1)[( ) ]
nal Vu u u u

l l l n l
+a′′ ′+ − + =

β− γ + γ β− γ + γ + β− γ + γ
  (34) 

AIMS Mathematics  Volume 7, Issue 8, 15029–15040. 
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Equation (34) belongs to the same type ODE as Eq (6). According to the theorem in Section 2, 
2 2

3 2 2 2

2( 2) ,
( ) ( 4) [( ) ]

V n a l
l l n l

+
− = ⋅
β − γ + γ + β− γ + γ

 

which implies 
2 3

2 2 2

2( 2) ,
( 4) [( ) ]

n a lV
n l

+
= −

+ β− γ + γ
 

and the solution of Eq (3) is given by 

2

2 2

2

1
2

2

0

2( 2)( 1) 1 ,( ,
( 4) [( ) ] ( )1 exp

4

, , ) )

( )

(

n

n n a l
n l aln

l

u x y z t u

n

  
  + +  − ⋅  + β− γ + γ a  x + x + ⋅  + β− γ + γ

=

  

x



=



   (35) 

where 
2 3

0
2 2

2 2
22( 2)

( 4
1 .

) [( )
,

]
,lx my pz mn a l st

l
l p con t

n
+

x =
+ β−

x
γ

= + + + + +
+ γ

=  

In particular, when 1n = , (35) becomes 
2

2 2

2
0

2

12 1 ,
25 [( ) ] ( )11 ex

( , , , )

( )

( )
p

5

u x y a l
l al

l

z t u

 
 
 − ⋅
 β − γ + γ a  x + x
+  β − γ +

x

 

=

 

=

γ

 (36) 

where 2
2 3

2
2 2

0
6 , 1, .
25 ( )

lx my pz t l m p cona l
l

stx = + + + ⋅ + + = x =
β− γ + γ

 Then Eq (36) is a bounded 

solution of ZK-Burgers equation 

( ) 0.t x xxx yy zz x xxu uu u u u au+a +β + γ + + =        (37) 

6. Generalized Boussinesq equation 

Introducing travelling wave variables 

( , ) ( ), ,u x t u x Vt= xx  = −          (38) 

thus the Eq (4) can be reduced to ODE for ( ),u u= ξ  

2 2 1 (4)( ) ( ) 0.nV c u b u aVu u+′′ ′′ ′′′− − − + =  

Integrating it with respect to ξ  twice, and taking the constants of integration to zero, yields 

2 2 1( ) 0,nu aVu V c u bu +′′ ′− + − − =         (39) 

where Eqs (39) and (6) belong to the same type. According to the theorem in Section 2,

AIMS Mathematics  Volume 7, Issue 8, 15029–15040. 
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2 2
2 2

2

2( 2) ,
( 4)
n a VV c

n
+

− =
+

 

which implies 
2

2

,
2( 2)1

( 4)

cV
n a
n

= ±
+

−
+

and the travelling wave solution of the general Boussinesq 

equation (4) is given by 

[ ]

2
1

0

1 ,
1 ex

( , ) (
)

)
p (

n
nu x t A

B
u

 
  + x + x 

= x =


         (40) 

where variables 
2 2

2 2 2 2

2( 2) , ,
[( 4) 2( 2) ] ( 4) 2( 2)

n a c acnA B
n n a b n n a

+
= =

+ − + + − +


2

2
2( 2)1

( 4)

cx t
n a
n

x =
+

−
+

 , 

and 0 .constξ =  

7. Generalized (m+1)-dimension Klein-Gordon equation 

Introducing travelling wave variables 

2
1 2

1 1
( , , , , ) ( ), , 1,

m m

m i i i
i i

u x x x t u x Vt
= =

= xx  = α − α =∑ ∑     (41) 

the  Eq (5) can be reduced to the ODE for ( ),u u= ξ  

2 2 1( ) 0.nV c u au du bu +′′ ′− + + + =        (42) 

Let 2 2 , 0, 0V c b d< > < , the ODE (42) can be rewritten as 

1
2 2 2 2 2 2 0,na d bu u u u

c V c V c V
+′′ ′− − − =

− − −
    (43) 

where Eqs (43) and (6) belong to the same type. According to the theorem in Section 2, 
2

2 2 2 2 2 2

2( 2) ,
( 4) ( )

d n a
c V n c V

+
− =

− + −
 

which implies 

2
2

2

2( 2) ,
( 4)

n aV c
n d
+

= ± +
+

 
2

2 2
2

2( 2)
( 4)

n ac V
n d
+

− = −
+

 

and the travelling wave solution of the general Klein-Gordon equation (5) is given by 
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( )

2

1

1 2

0

2
2 2

02
1 1

1( , , , , ) ( ) ,
( 4)1 exp
2( 2)

2( 2) , 1, .
( 4)

n

n

m

m m

i i i
i i

du x x x t u
b n nd

n a

n ax c t const
n d= =

 
 

   = x = − ⋅    +  + x + x  +  

+
x = a + a = x =

+∑ ∑





   (44) 

In particular, when 1n = , (44) becomes 

( )

2

1 2

0

2
2 2

0
1 1

1( , , , , ) ( ) ,
51 exp
6

6 , 1, .
25

m

m m

i i i
i i

du x x x t u
db
a

ax c t const
d= =

 
 
 = x = − ⋅

  + ⋅ x + x    

x = a ⋅ + a = x =∑ ∑





    (45) 

Then (45) is a travelling wave solution of Klein-Gordon equation 
2 2 0.tt m tu c u au du bu− ∆ + + + =       (46) 

For 2 2 , 0, 0V c b d> < > , there are some similar conclusions, the same travelling wave solution 
of Eq (5) is given by 

( )

2

1

1 2

0

2
2 2

02
1 1

1( , , , , ) ( ) ,
( 4)1 exp
2( 2)

2( 2) , 1, .
( 4)

n

n

m

m m

i i i
i i

du x x x t u
b n nd

n a

n ax c t const
n d= =

 
 

   = x = − ⋅    +  + x + x  +  

+
x = a + a = x =

+∑ ∑





   (47) 

8. Conclusions 

In this paper, the nonlinear ODE equation (6) with an undetermined coefficient and a positive 
integer power term of dependent variable were introduced and solved. The formula of solution (7) 
with (8) to the nonlinear ODE (6) have played an important role for finding travelling wave solutions 
of a class of complicated nonlinear evolution equations with a dissipative term and a positive integer 
power term of dependent variable. We have successfully illustrated our technique in detail with five 
important model equations. The results show that the present method performs extremely well in 
terms of directness efficiency, simplicity and reliability to deal with various differential equations in 
the applied sciences, especially containing a dissipative term and a positive integer power term. It is 
worthy of note that the formula of solution (7) with (8) to the nonlinear ODE (6) can be also applied 
to other similar nonlinear evolution equations in complexity and nonlinear science to obtain their 
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travelling wave solutions. It is expected that other extended and improved ( )G
G
′

-expansion methods 

will be more applied to solve nonlinear differential equations involving a dissipative term and a 
positive integer power term of dependent variable. 
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