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Abstract: In this paper, we analyze a modified ratio-dependent predator-prey model with a strong
Allee effect and linear prey refugee. The model exhibits rich dynamics with the existence of
separatrices in the phase plane in-between basins of attraction associated with oscillation, coexistence,
and extinction of the interacting populations. We prove that if the initial values are positive, all
solutions are bounded and stay in the interior of the first quadrant. We show that the system undergoes
several bifurcations such as transcritical, saddle-node, Hopf, and Bogdanov-Takens bifurcations.
Consequently, a homoclinic bifurcation curve exists generating an unstable periodic orbit. Moreover,
we find that the Bogdanov-Takens bifurcation acts as an organizing center for the scenario of surviving
or extinction of both interacting species. Topologically different phase portraits with all possible
trajectories and equilibria are depicted illustrating the behavior of the system.
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1. Introduction

The dynamic of a population depends on its interactions with other species. Several kinds of
interactions among species have been observed, for instance, competition, predation, and mutualism.
The predator-prey interaction has long been and will remain to be one of the main subjects in both
Ecology and Mathematics because of its common existence and significance [11]. The predator-prey
model was first introduced by Volterra [44] and Lotka [35] in the 1920s, showing oscillating
behaviors in the interacted populations. After this work by Volterra and Lotka, various generalized
predator-prey models have been proposed by many researchers. Several aspects have been considered
in the predator-prey modeling including infectious diseases and age-structured [7], group defense
strategy [42, 45, 47], delayed, harvesting and prey social behavior [16], etc.
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A functional response is the main factor of the predator-prey model. It represents the change of the
prey density per unit of time per predator. In the classical model, the prey-dependent consumption rate
was considered. Different prey-dependent functional responses were researched extensively [4, 28, 37,
45]. However, several biologists questioned the sole dependence of the functional response on prey
density, see for instance [1, 13, 23, 25]. It has been shown that predators might seem to search, share,
or compete for food [1, 11, 23, 25, 26]. Predators might interfere with each other’s foraging and hence,
the functional response should depend on both prey and predator densities [1, 13]. In some cases, for
instance, perfect sharing, the functional response depends on the ratio of prey to predator density [1,11,
23, 25, 26]. The ratio-dependent predator-prey system displays rich, original, and reasonable dynamic
properties, which does not generate the so-called paradox of enrichment [29, 32, 48]. It also allows
the predator population or both populations to either become extinct or coexist, depending on the
initial values. The use of ratio-dependent functional response is supported by several experiments and
observations and is largely employed in the modeling of predator and prey interaction [1, 2, 8, 32, 46]
and references cited therein.

On the other hand, many species experience a decrease in fitness at a small population density
caused by the deficiency of conspecifics. This phenomenon is called the Allee effect [5]. If the Allee
effect is sufficiently strong, the species go through negative growth lower than a specific threshold
level and then extinct. A strong Allee effect triggers the Allee threshold, which the population needs
to overcome to prevent extinction [6, 43]. For example, in a predator-prey system, when the prey’s
density is too small, the prey may have difficulties protecting or hiding from the predator and in
displaying an antipredator behavior when its density is too small [45, 47]. Naturally, this phenomenon
generates an Allee effect on the prey caused by predation [20, 21]. The Allee effect has been used in
many predator-prey models [9, 14, 17, 18, 24, 39, 42], showing that it produces rich dynamics and
eliminates the possibility of prolonged oscillators. Many investigations have been carried out to study
the dynamical properties of predator-prey models with the ratio-dependent functional response and
Allee effect, see for instance [3, 22]. It was shown that including the Allee effect in the
ratio-dependent predator-prey model eliminates the chance of lasting oscillations of the populations
and produces a richer variety of behavior. It may also expand the basin of attraction of the extinction
equilibrium and therefore raises the possibility of extinction of the interacted populations. Prey refuge
can lower the predation threat and help in the management of the population caused by the Allee
effect. This phenomenon may reduce the risk of extinction of the species by decreasing the predation
risk. Several experiments and mathematical models concluded that refuge has a balancing effect on
the interactions of both populations. Many researchers have discussed the influence of prey refuge in
the dynamical properties of some predator-prey models [12, 27, 30, 31, 36, 38] and references cited
therein. The results showed that the prey refuge can increase the stability of the interior equilibrium.
For more biological backgrounds and findings on the effects of refuge of prey, we refer
to [12, 27, 30, 31, 33, 36, 38, 41] and the references therein.

The purpose of this paper is to investigate a Gause-type predator-prey system with a ratio-dependent
functional response, considering prey refuge and a strong Allee effect that affects the prey population.
We are interested in the existence and stability of equilibria and periodic orbits of the system, including
basins of attractions of stable equilibria and periodic orbits. Especially, the positive equilibria (and
periodic orbits) that imply the coexistence of the interacting populations. We are also interested in local
and global bifurcations and the organization of trajectories of the system. Under certain conditions, we
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show that the system possesses a positive equilibrium and undergoes transcritical, saddle-node, Hopf,
and Bogdanov–Takens bifurcations. It is known that the existence of Bogdanov-Takens bifurcation
induces a global phenomenon, namely homoclinic connection. With the help of the numerical package,
MATCONT [15], we illustrate these phenomena using a bifurcation diagram and associated phase
portraits, displaying basins of attraction of stable equilibria and periodic orbit. The boundaries of
basins of attraction are obtained as invariant manifolds of equilibria also computed with the package
MATCONT [15]. We reveal that the Bogdanov-Takens bifurcation acts as an organizing center of the
bifurcation diagram in the system. Additionally, to complete the work we prove that the system is
well-posed, that is, any solution in the first quadrant stays non-negative and is bounded.

This paper is organized as follows. The model and a preliminary result on the boundedness of
positive solutions are given in Section 2. We present results on equilibrium solutions in Section 3. In
Section 4, we discuss local and global bifurcations that involve equilibria, periodic orbit, and
homoclinic connection. Section 5 gives the changes of basins of attraction of equilibria and periodic
orbit. In section 6, we summarize and give concluding remarks on the main results of this paper.

2. The mathematical model

Consider the following family of vector fields describing the interaction of predators and prey
populations in an isolated environment:

U :


du
dτ
= ru(u − a)

(
1 −

u
K

)
−

buv
u + v

,

dv
dτ
=

bcuv
u + v

− ev, (a, b, c, e,K, r) ∈ R6.

(2.1)

System (2.1) is a modification of the simple Lotka-Volterra model [35, 44] and is of a Gauss-type
model [19]. The functions u(τ) and v(τ) represent the sizes of prey and predator populations depending
on time τ, respectively. The constant r denotes the prey intrinsic growth rate; K is the prey carrying
capacity; a stands for the Allee threshold of the prey population; e denotes the predator natural death
rate; the coefficient b represents the predation rate; c is the rate of conversion representing the size of
newly born predators for every eaten prey. The expression uv/(u + v) denotes the response function
depending on the ratio of prey to predator populations.

Introducing the prey refuge in (2.1) yields the following modified system

V :


du
dτ
= ru(u − a)

(
1 −

u
K

)
−

b(1 − m)uv
(1 − m)u + v

,

dv
dτ
=

bc(1 − m)uv
(1 − m)u + v

− ev,
(2.2)

where m ∈ [0, 1) represents the rate of prey refuge that protects mu of the prey and leaves (1 − m)x of
the prey available to the predator. By means of a rescaling of parameters and time, it can be shown that
system (2.2) is topologically equivalent to the system

X :


ẋ = x(x − A)(1 − x) −

B(1 − µ)xy
(1 − µ)x + y

,

ẏ =
α(1 − µ)xy
(1 − µ)x + y

− δy,
(2.3)
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with (A, α, B, δ, µ) ∈ (0, 1) × R3
+ × (0, 1), and

ẋ =
dx
dt
, ẏ =

dy
dt
, A =

a
K
, B =

b
Kr
, α =

bc
Kr
, µ =

M
K
, δ =

e
Kr
.

In the above re-parameterization, we construct a diffeomorphism ϕ : R3 → R3 defined by

ϕ(x, y, t) = (Kx, rKy/b, t/r) = (u, v, τ).

The diffeomorphism ϕ preserves the time orientation. We set ẋ = ẏ = 0 for (x, y) = (0, 0). Observe that
system (2.3) is continuous in the closed first quadrant in the xy-plane. Define the set

Ω = {(x, y) ∈ R2, x ≥ 0, y ≥ 0}.

As a typical deterministic predator-prey system, all orbits of system (2.3) are trapped in the first
quadrant for any positive initial data.

Theorem 2.1. Solutions of system (2.3) in Ω are uniformly bounded.

Proof. Define z(t) = αx(t) + By(t). We obtain

dz
dt
= α

dx
dt
+ B

dy
dt
= αx(x − A)(1 − x) − Bδy.

For every γ > 0,
dz
dt
+ γz = αx[(x − A)(1 − x) − γ] − (Bδ − γ)y.

The function
f (x) = αx[(x − A)(1 − x) − γ]

has a global maximum at

x̃ =
1
3

(1 + A +
√

1 + A2 − A − 3γ)

with the maximum value

f (x̃) =
α

27

(
1 + A +

√
1 + A2 − A − 3γ

) (
1 + A2 − 4A − 6γ + (1 + A)

√
1 + A2 − A − 3γ

)
.

Thus,
dz
dt
+ γz ≤ f (x̃) − (Bδ − γ)y.

If 0 < γ ≤ Bδ and 6γ ≤ 1 + A2 − 4A + (1 + A)
√

1 + A2 − A − 3γ, then there exists ψ > 0 such that

dz
dt
≤ ψ − γz.

Applying the differential inequality [34, 40] yields

0 < z(x, y) <
ψ

γ
(1 − e−γt) + z(x(0), y(0))e−γt.

As t → ∞, we obtain 0 < z < ψ/γ. Therefore, there exists a trapping region in Ω given by

Q = {(x, y) ∈ Ω| z = ψ/γ + ψ, ψ > 0}

in which all positive solutions are attracted.
□
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3. Stability of equilibrium solutions

An equilibrium of (2.3) is the point of intersection of the curve

y =
x(1 − µ)(x − A)(1 − x)

B(1 − µ) − (x − A)(1 − x)
(3.1)

and the line

y =
x(α − δ)(1 − µ)

δ
(3.2)

within the first quadrant. System (2.3) has a critical point at the origin O(0, 0). However, the system
cannot be linearized at O. Hence, we cannot study the local stability of O(0, 0). Note that our interest
is in the dynamics of the system in the interior of the first quadrant. Nevertheless, several authors have
discussed this equilibrium for the ratio-dependent predator-prey system, see for instance [3,22,32,48].
By means of a time rescaling, the system changed to an equivalent polynomial dynamical system in
the interior of the first quadrant. In the new system, the origin is an isolated critical point of higher
order. In [3, 22], a ratio-dependent predator-prey system with a strong Allee effect was discussed. The
authors showed that the origin was a non-hyperbolic attractor. It is easy to see that the conclusion is
the same when the linear prey refuge is added to the system.

If y = 0, then two equilibria E1(1, 0) and EA(A, 0) coexist on the positive x-axis. Since µ ∈ [0, 1),
the line (3.2) lies in the first quadrant if

(H1) : α ≥ δ.

This means that to have a positive equilibrium, the predation rate should be strictly larger than the
natural death rate of the predator. Recall that A ∈ (0, 1). Thus, the numerator of (3.1) is positive only
for A < x < 1. Observe that f (x) = (x − A)(1 − x) has a maximum value at x = (1 + A)/2 and

max
A<x<1
{ f (x)} ≡ M =

(1 − A)2

4
.

We have the following two cases:
Case (i) If

(H2) : B >
M

1 − µ
,

then y > 0 for A < x < 1. The nullcline of prey is a smooth convex curve connecting equilibria E1 and
EA and has a maximum in the interval (A, 1).
Case (ii) If

(H3) : B <
M

1 − µ
,

then the denominator of (3.1) is positive for A < x < x1 and x2 < x < 1, where x1 and x2 satisfy the
equation

B(1 − µ) = (xi − A)(1 − xi), i = 1, 2.

The prey zero growth isocline is discontinuous and possesses a couple of vertical asymptotes at x = x1

and x = x2.

AIMS Mathematics Volume 7, Issue 8, 14875–14894.



14880

System (3.1) has at most two positive equilibria obtained by the intersection between the zero
growth isoclines of both populations; P1(x∗1, y

∗
1) and P2(x∗2, y

∗
2),

x∗i =
1
2

(
1 + A + (−1)i

√
∆
)
, y∗i =

x∗i
δ

(α − δ)(1 − µ), i = 1, 2,

where
∆ = (A − 1)2 −

4B
α

(1 − µ)(α − δ).

Note that if we increase the value of µ, then both positive equilibria approaches the x-axis. Observe
that ∆ is always positive under conditions (H1) and (H3). In this case, both P1 and P2 always coexist.
Under restriction (H2), an extra condition is needed for the existence of positive equilibrium points,
namely

(H4) : δ ≥ α −
α(A − 1)2

4B(1 − µ)
.

Hence, if conditions (H1), (H2) and (H4) hold, then two positive equilibria P1 and P2 appear in the first
quadrant. In the case of equality in condition (H4), equilibria P1 and P2 collide and there is only a
single positive equilibrium P∗(x∗, y∗), where

x∗ =
1 + A

2
, y∗ =

(α − δ)(1 − µ)(1 + A)
2δ

.

Based on the standard linearization technique, we discuss the stability (locally) of equilibrium solutions
of system (2.3). The linearized matrix of the system is

J(x, y) =


(−3x2 + 2(1 + A)x − A −

B(1 − µ)y2[
(1 − µ)x + y

]2 −
(B(1 − µ)2x2)[
(1 − µ)x + y

]2

(α(1 − µ)y2)[
(1 − µ)x + y

]2

α(1 − µ)2x2[
(1 − µ)x + y

]2 − δ

 .
At the equilibrium E1 = (1, 0), we obtain

J(E1) =
(
A − 1 −B

0 α − δ

)
,

with eigenvalues λ1 = A − 1 (always negative since 0 < A < 1) and λ2 = α − δ. Hence, the equilibrium
E1 is locally stable for α < δ and is a saddle point for α > δ. The stable manifold of E1 lies on the
x-axis, see Figure 1. It can be deduced that the local stability of E1 implies the nonexistence of positive
equilibria.

The linearized matrix computed at EA = (A, 0) is

J(EA) =
(
A(1 − A) −B

0 α − δ

)
,

with eigenvalues λ1 = A(1 − A) (always positive since 0 < A < 1) and λ2 = α − δ. Thus, EA is an
unstable equilibrium for α > δ and is a saddle point for α < δ with unstable manifold on the x-axis,
see Figure 1. Therefore, the presence of positive equilibria implies the local instability of EA.

AIMS Mathematics Volume 7, Issue 8, 14875–14894.
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Figure 1. Phase portraits associated to the bifurcation diagram in Figure 2 for (α, A, µ) =
(0.25, 0.26, 0.3); (a) (B, δ) = (0.4, 0.3); (b) (B, δ) = (0.2, 0.12); (c) (B, δ) = (0.68, 0.18);
(d) (B, δ) = (0.7, 0.181); (e) (B, δ) = (0.68, 0.1784); (f) (B, δ) = (0.6, 0.15). Attractors are
depicted with filled circles. Saddle points and repeller are depicted with blank circles. Basin
of attraction of the origin is in white, and that of the equilibrium P2 is colored yellow. Grey
region is the basin of attraction of the equilibrium E1.
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Figure 2. Parametric space of system (2.3) in the Bδ-plane for (α, A, µ) = (0.25, 0.26, 0.3)
generated by the numerical bifurcation package MATCONT [15]. Topologically different
phase portraits are depicted in Figure 1. BT represents Bogdanov-Takens; SN (blue curve) is
saddle-node bifurcation; H (black curve) is Hopf bifurcation; Hom (red curve) is homoclinic
connection; Tr (green curve) is transcritical bifurcation.

Let J(Pi) be the linearized matrix computed at the positive equilibria Pi, i = 1, 2. We obtain

det(J(P1)) = −
δ(α − δ)

2α

[
(1 + A)

√
∆ − ∆

]
.

Under condition (H1), if α, B, and δ are all positive, then (1 + A) >
√
∆. This fact and restriction (H3)

imply that det(J(P1)) < 0. Thus, P1 is always a saddle point. At P2,

det(J(P2)) =
δ(α − δ)

2α

[
(1 + A)

√
∆ + ∆

]
> 0. (3.3)

Hence, the equilibrium P2 is a local attractor if Tr(J(P2)) < 0 and is a source if Tr(J(P2)) > 0, where

Tr(J(P2)) =
B
α2 (1 − µ)(α − δ)(2α + δ) −

δ

α
(α − δ) −

1
2

[
(1 − A)2 + (1 + A)

√
∆
]
. (3.4)

In Table 1, we summarize our results on the analysis of stability of the steady states of system (2.3).
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Table 1. Stability of equilibria of system (2.3).

Steady state Existence Local stability
O(0, 0) Always exists Non-hyperbolic attractor [3, 22]
E1(1, 0) Always exists Saddle point (α < δ) and unstable (α > δ)
EA(A, 0) Always exists Stable (α < δ) and saddle point (α > δ)
P1(x∗1, y

∗
1) (H1), (H3), α > 0, B > 0, δ > 0 Saddle point

or (H1), (H2), (H4)
P2(x∗2, y

∗
2) (H1), (H3) Stable (Tr(J(P2)) < 0)

or (H1), (H2), (H4) Unstable (Tr(J(P2)) > 0)

P∗(x∗, y∗) (H1), δ = α
(
1 −

(A − 1)2

4B(1 − µ)

)
> 0 Non-hyperbolic saddle point

4. Local and global bifurcations

Now we show that system (2.3) exhibits several local and global bifurcations, namely, transcritical,
saddle-node, Hopf, heteroclinic and Bogdanov-Takens bifurcations. Sotomayor’s theorem [40] and the
algorithm introduced in [34] are applied to prove the existence and nondegeneracy of local bifurcations.

Theorem 4.1. (Saddle-node bifurcation) If 4B(1−µ) , (A−1)2, then system (2.3) undergoes saddle-
node bifurcation at P∗(x∗, y∗),

x∗ =
1 + A

2
, y∗ =

(α − δ)(1 − µ)(1 + A)
2δ

, (4.1)

whenever the parameters satisfy the condition

δ = δS N = α

(
1 −

(A − 1)2

4B(1 − µ)

)
> 0.

Proof. The linearized matrix evaluated at P∗ is

J(P∗) =


−

(A − 1)2
(
(A − 1)2 − 4B(1 − µ)

)
16B(1 − µ)

−

(
(A − 1)2 − 4B(1 − µ)

)2

16B(1 − µ)2

α(A − 1)4

16B2(1 − µ)

α(A − 1)2
(
(A − 1)2 − 4B(1 − µ)

)
16B2(1 − µ)2


. (4.2)

It is easy to check that det(J(P∗)) = 0 and hence, λ = 0 is an eigenvalue of J(P∗) with corresponding
eigenvector

V =


1

µ − 1
+

4B
(A − 1)2

1

 .
The eigenvector corresponding to λ = 0 for J(P∗)T is given by

W =


(A − 1)2α

B(A − 1)2 − 4B2(1 − µ)

1

 .
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Define

G =


x(x − A)(1 − x) −

B(1 − µ)xy
(1 − µ)x + y

α(1 − µ)xy
(1 − µ)x + y

− δy

 , (4.3)

which is a vector form of the right hand side of equations in (2.3). Since A ∈ (0, 1) and µ ∈ [0, 1), one
can compute that

WT [Gδ(x∗, y∗, δS N)V] = −
(A − 1)2(A + 1)(1 − µ)

2((A − 1)2 − 4B(1 − µ))
, 0

and verify that if 4B(1 − µ) , (A − 1)2, then

WT [D2G(x∗, y∗, δS N)(V,V)] =
α(A + 1)[4B(1 − µ) − (A − 1)2]

B(A − 1)2(1 − µ)2 , 0.

Sotomayor’s theorem [40] signifies that system (2.3) undergoes a saddle-node bifurcation when
δ = δS N . □

Theorem 4.2. (Transcritical bifurcation) System (2.3) exhibits transcritical bifurcation at E1(1, 0)
and EA(A, 0) whenever the parameters satisfy the condition δ = δT = α.

Proof. The linearized matrix at E1(1, 0) is

J(E1) =
(
A − 1 −B

0 0

)
.

It is easy to check that det(J(E1)) = 0 and hence, λ = 0 is an eigenvalue of J(E1). If V1 and W1 are
eigenvectors associated to λ = 0 for J(E1) and J(E1)T , respectively, then one can compute

V1 =


B

A − 1
1

 and W1 =

01


and obtain

WT
1 Gδ(1, 0, δT ) =

(
0 1

) (0
0

)
= 0,

WT
1 [DGδ(1, 0, δT )V1] =

(
0 1

) ( 0
−1

)
= −1,

and
WT

1

[
D2G(1, 0, δT )(V1,V1)

]
= −

2α
1 − µ

, 0,

where G is given in (4.3). Sotomayor’s theorem implies that system (2.3) exhibits a transcritical
bifurcation when δ = δT .

The Jacobian (linearization) matrix at EA(A, 0) is given by(
A(1 − A) −B

0 0

)
.
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It is easy to check that det(J(EA)) = 0 and hence, λ = 0 is an eigenvalue of J(EA). If V2 and W2 are
eigenvectors associated to λ = 0 for J(EA) and J(EA)T , respectively, then one can compute

V2 =


B

A(1 − A)
1

 and W2 =

(
0
1

)
and obtain

WT
2 Gδ(1, 0, δT ) =

(
0 1

) (0
0

)
= 0,

WT
2 [DGδ(1, 0, δT )V2] =

(
0 1

) ( 0
−1

)
= −1,

and
WT

2

[
D2G(1, 0, δT )(V2,V2)

]
= −

2α
A(1 − µ)

, 0.

Sotomayor’s theorem implies that system (2.3) exhibits a transcritical bifurcation at EA(A, 0) when
δ = δT = α. □

Remark 4.3. Recall that the parameter 0 < A < 1, is an Allee threshold for the prey in the absence
of predators. However, it is worth mentioning that when A = 1, equilibria P1, P2, EA and E1 collide at
E1. It is an interesting phenomenon when transcritical and saddle-node bifurcations occur at the same
time. In this case, the Jacobian matrix at E1 is given by(

0 −B
0 0

)
.

It is a phenomenon called degenerate transcritical bifurcation where the transcritical and saddle-node
bifurcations meet tangently [10].

As mentioned in the previous section, the equilibrium P1 (if it exists) is a saddle-point for any
parameter values. Therefore, a Hopf bifurcation only occurs at P2 with the following conditions

Tr(J(P2))|δ=δH = 0 and det(J(P2))|δ=δH , 0.

We refer to Eq (3.4) for the trace of J(P2). We obtain an implicit expression of δH as follows.

2α2
[
(1 − A)2 + (1 + A)K

]
+ 4(α − δH)

[
αδH − B(1 − µ)(δH + 2α)

]
= 0, δH > 0, (4.4)

where K =

√
(1 − A)2 −

4B
α

(1 − µ)(α − δH). From (3.3) we see that if the positive equilibrium P2

exists, then det(J(P2))|δ=δH > 0. Differentiating Tr(J(P2)) with respect to δ, we obtain

d
dδ

Tr[J(P2)]|δ=δH =
1
α2

[
2αδ − α2 − B(1 − µ)

(
α + 2δ +

1 + A

α
√
∆

)]
, 0,

1 −
(A − 1)2

4B(1 − µ)
<
δ

α
< 1.

Therefore, the Hopf bifurcation is transversal [40]. As a result of the Hopf bifurcation, a periodic orbit
appears in the interior of the first quadrant with negative first Lyapunov number. This implies that the
periodic orbit is unstable. Thus, the following statements are valid.
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Theorem 4.4.

(a) For the values of parameters satisfying (4.4), the equilibrium P2 is a stable weak focus.
(b) System (2.3) has a unique unstable limit cycle for certain values of parameters.

System (2.3) exhibits a Bogdanov-Takens (BT) bifurcation of codimension two whenever the
parameters satisfy the condition

αBT = δ +
1
4

(1 − A)2 > 0, BBT =
(A − 1)2 + 4δ

4(1 − µ)
> 0.

Using the algorithm introduced in [34], we show that BT bifurcation is nondegenerate. Let λ = (λ1, λ2)
be a small parameter. System (2.3) about the BT point (αBT , BBT ) reads

dx
dt
= x(x − A)(1 − x) −

(B + λ2)(1 − µ)xy
(1 − µ)x + y

≡ F1(x, y, λ1)

dy
dt
=

(α + λ1)(1 − µ)xy
((1 − µ)x + y)

− δy ≡ F2(x, y, λ2).

Translating the equilibria (x∗, y∗) to (0, 0) and expanding F1 and F2 in power series about (x, y) =
(0, 0) yields the following system:

du1

dt
=

c11 −
(1 − µ)2λ1(y∗)2[
(1 − µ)x∗ + y∗

]2

 u1 +

c12 −
(1 − µ)2λ1(x∗)2[
(1 − µ)x∗ + y∗

]2

 u2 + a11u2
1

+ a12u1u2 + a13u2
2 + R1(u1, u2) (4.5)

du2

dt
=

c21 +
((1 − µ)2λ2(y∗)2)[
(1 − µ)x∗ + y∗

]2

 u1 +

c22 +
(1 − µ)2λ2(x∗)2[
(1 − µ)x∗ + y∗

]2

 u2 + a21u2
1

+ a22u1u2 + a23u2
2 + R2(u1, u2),

where u1 = x − x∗, u2 = y − y∗. The constants ci j are the entries of the Jacobian matrix J(P∗) given
in (4.2). The coefficients ai j are determined by

a11 = 1 + A − 3y∗ +
(1 − µ)2(B + λ1)(y∗)2

[(1 − µ)x∗ + y∗]3 , a12 = −
2(1 − µ)2(B + λ1)x∗y∗

[(1 − µ)x∗ + y∗]3 ,

a13 =
((1 − µ)2(B + λ1)(x∗)2)

[(1 − µ)x∗ + y∗]3 , a21 = −
(1 − µ)2(α + λ2)(y∗)2

[(1 − µ)x∗ + y∗]3 ,

a22 =
2(1 − µ)2(α + λ2)x∗y∗

[(1 − µ)x∗ + y∗]3 , a23 = −
2(1 − µ)2(α + λ2)(x∗)2

[(1 − µ)x∗ + y∗]3 .

Put v1 = u1, v2 = c11u1 + c12u2. System (4.5) becomes

dv1

dt
= ϕ00(λ) + ϕ01(λ)v1 + ϕ02(λ)v2 + ϕ11(λ)v2

1 + ϕ12(λ)v1v2 + ϕ13(λ)v2
2 + R3(v1, v2),

dv2

dt
= ψ00(λ) + ψ01(λ)v1 + ψ02(λ)v2 + ψ11(λ)v2

1 + ψ12(λ)v1v2 + ψ13(λ)v2
2 + R4(v1, v2). (4.6)
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The expressions of ϕi j(λ) and ψi j(λ) are too long to include in the text. We put values of these functions
evaluated at λ = 0 :

ϕ00(0) = ϕ01(0) = ϕ12(0) = 0, ϕ02(0) = 1,

ϕ11(0) = −
1
2

(1 + A), ϕ13(0) =
2

δ(1 + A)
,

ψ00(0) = ψ01(0) = ψ02(0) = ψ12(0) = 0,

ψ11(0) = −
(1 − A)2(1 + A)δ
2((1 − A)2 + 4δ)

, ψ13(0) =
2

1 + A
.

We can see that the matrix (
ϕ01(0) ϕ02(0)
ψ01(0) ψ02(0)

)
=

(
0 1
0 0

)
,

ϕ11(0) + ψ12(0) = −
1
2

(1 + A) , 0

and

ψ11(0) = −
(1 − A)2(1 + A)δ
2((1 − A)2 + 4δ)

, 0.

To determine the structure of the Bogdanov-Takens bifurcation [34], we calculate

σ = sign([ϕ11(0) + ψ12(0)]ψ11(0)) = (−1)(−1) = 1.

This indicates that the limit cycle appears in the system is unstable, see Figure 1 panel (d). As a result
of BT bifurcation [34] we have the following theorem.

Theorem 4.5. System (2.3) possesses a unique unstable limit cycle for some parameter values and has
a homoclinic connection for other parameter values.

Figure 3 displays the behavior of the system at a Bogdanov-Takes bifurcation point which was
detected using MATCONT [15]. There is a non-hyperbolic equilibrium point P in the interior of the
first quadrant. Two orbits meet at this point tangentially in a cusp-like configuration with opposite
time direction. All orbits in the interior of the first quadrant converge to the origin except the orbit
on the stable manifold of P. Hence, biologically both species survive if the initial data is on the stable
manifold of P and go extinct otherwise.

Finally, we depict the bifurcation diagram of system (2.3) using MATCONT [15] in Figure 2. The
Bogdanov-Takens bifurcation acts as an organizing center of the bifurcations at which saddle-node,
Hopf and homoclinic bifurcations emanated.
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Figure 3. Phase portrait obtained numerically at the Bogdanov-Takens bifurcation for
(α, A, µ) = (0.25, 0.26, 0.3) and (B, δ) ≈ (0.357143, 0.1131).

5. Basins of attraction

In this section, we describe the orbits of system (2.3) in different regions of the parametric space
separated by the bifurcation curves. We start with Region 1 in which δ > α. There is no equilibrium in
the interior of the first quadrant, see Figure 1 panel (a). The solution curves tend to either the origin or
the equilibrium E1. Basins of attraction of the origin and E1 are separated by the unstable manifold of
EA. Biologically, predators go extinct for any initial value. This is because the rate of natural death of
predators is larger than the rate of conversion representing the size of newly born predators for every
eaten prey. In this case, if the initial densities of the populations fall in the basin of attraction of E1, then
the prey survive. Similar to trajectories for parameter values in Region 1, the solution curves approach
either the origin or the equilibrium E1 if the parameter values are on the Transcritical bifurcation line,
see Figure 5 panel (d). Hence, we have the same biological conclusion as that in Region 1.

For parameter values in Region 2, two positive equilibria appear in the first quadrat via E1 and EA

as the transcritical bifurcation occurs, see Figure 1 panels (b) and (c). See Figure 4 for the scenario
of the transcritical bifurcation. In Region 2, there exists a stable equilibrium P2 with a large basin of
attraction. The orbits of system (2.3) attracted to either the origin or P2. Basins of attraction of both
equilibria are separated by the stable manifold of the equilibrium P1. Biologically, the survival of both
prey and predator populations is guaranteed if the initial densities are in the basin of attraction of P2.
Otherwise, both populations go extinct as the orbits tend to the origin.

A homoclinic orbit is created if the value of (B, δ) is on the homoclinic bifurcation curve surrounding
a stable equilibrium, see Figure 5 panel (c). This equilibrium has a narrow basin of attraction which
is the interior of the homoclinic orbit. All orbits outside the homoclinic connection tend to the origin.
This means that both populations do not survive in a long term. However, there is a small probability
for the prey and predators to survive if the initial data is on or in the interior of the homoclinic orbit.
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Figure 4. A scenario of transcritical bifurcation in system (2.3). (a) Before transcritical
(δ > α). (b) At transcritical (δ = α), equilibria P′1 and EA collide at EA, and the two equilibria
E1 and P′2 coincide at E1. Both equilibria EA and E1 are non-hyperbolic. (c) After transcritical
(δ < α), two equilibria P1 and P2 enter the first quadrant via EA and E1.

Figure 5. Phase portraits obtained numerically at the codimension-one bifurcation points
for (α, A, µ) = (0.25, 0.26, 0.3); (a) (B, δ) = (0.7, 0.180153); (b) (B, δ) = (0.7, 0.180816); (c)
(B, δ) = (0.7, 0.181175); (d) (B, δ) = (0.2, 0.25).
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Since the parameter values pass through the homoclinic bifurcation, an unstable periodic orbit is
generated if (B, δ) is in Region 3. The equilibrium P1 remains a saddle point and P2 is an attractor
with a small basin of attraction, namely, the interior of the periodic orbit. All trajectories outsides the
periodic orbit are attracted to the origin. In this case, both populations are most likely to go extinct
except when the initial densities fall in the basin of attraction of P2 or on the periodic orbit or on the
stable manifold of P1 for which both populations survive.

The periodic orbit collide with the equilibrium P2 when (B, δ) is on the Hopf bifurcation curve, see
Figure 5 panel (b). The focus P2 is not hyperbolic and it is now a repeller. In this case, the extinction
of both populations is expected for most of the choices of the initial data. If the parameter (B, δ) passes
the Hopf curve towards Region 4, the periodic orbit disappears and the focus P2 remain a repeller, see
Figure 1 panel (e). All orbits tend to the origin if the initial values are not on the stable manifold of P1

or that of E1. This means that both species are most likely to go extinct.
Equilibria P1 and P2 collide at the non-hyperbolic saddle P∗ when (B, δ) is on the saddle-node

bifurcation curve, see Figure 5 panel (a). Equilibrium P∗ has a stable manifold as its basin of attraction.
Other points in the interior of the first quadrant belong to the basin of attraction of the origin. Hence,
the extinction of both population is observed for this case.

Finally, if (B, δ) crosses the segment S N, both equilibria P1 and P2 disappear as the system
experience saddle-node bifurcation, see Figure 1 panel (f). Since there is no equilibrium and no
periodic orbit in the interior of the first quadrant, all orbits that start in the interior of the first quadrant
are attracted to the origin. In this case, both species go extinct for any positive initial densities.

6. Conclusions

We have discussed the dynamical properties of a predator-prey model with a strong Allee effect,
a linear prey refuge, and a response function depending on the predator density. We proved that all
solutions that started in the first quadrant were trapped in a bounded region in the phase plane, showing
that the system is well-posed. Two equilibria always coexist on the positive x-axis, namely EA and E1.

For certain reasonable parameter values, E1 is an attractor with a large region of the basin of attraction.
This indicates that the prey has a big chance of surviving. The basin of attraction of E1 becomes larger
when we increase the prey refuge rate parameter. Moreover, the origin is always an attractor and hence,
for any choice of parameter values, there is an open region in the first quadrant as a basin of attraction
of the origin. Consequently, both populations go extinct with initial densities lying in this region.

However, the existence of positive equilibrium solutions gives the chance of survival of both
interacting species. At most two equilibria may coexist in the interior of the first quadrant. We
discovered certain conditions on parameters at which the system exhibits transcritical, saddle-node,
Hopf, and Bogdanov-Takens bifurcations. We found that the Bogdanov-Takens bifurcation acts as an
organizing center of the bifurcation diagram. It is worth mentioning that the rate of prey refuge (µ)
appeared in the expression of these bifurcations except in the condition for the transcritical
bifurcation. The saddle-node curve approached the transtrical bifurcation line if we increase the value
of µ. The value of BBT in the Bogdanov-Takens bifurcation is very large if µ is closed to 1.

As shown in Figure 2, there is a large region in the parameter space (Region 2) where for any choice
of parameter values in this region, a stable positive equilibrium exists with a big basin of attraction,
see Figure 1 panels (b) and (c). This shows that the survival of both species has a big possibility. The
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Basin boundary of this attractor is the stable invariant manifold of a positive saddle equilibrium. In this
case, both populations may survive when the initial values fall in the basin of attraction of the positive
attractor or go extinct if the initial density is in the basin of attraction of the origin. We noted that the
Allee effects can narrow the size of the basin of attraction of the stable positive equilibrium. We also
observed that if the rate of prey refuge (µ) is increasing, then the positive attractor is approaching the
x-axis with a smaller number of survived predator and a larger number of survived prey. In this case,
the basin of attraction of the attractor is also narrowed.

Overall, from our results, we conclude that for a certain set of parameters, the following can occur:
(a) The extinction of both species due to the appearance of the zero equilibrium; (b) The survival of
both populations associated with the existence of a positive attractor; (c) The survival of prey and
extinction of predators related to the detection of a stable equilibrium on the positive x-axis; (d) Both
species oscillate for a long-term caused by the existence of a periodic orbit from the Hopf bifurcation.
We would like to mention that the mathematical tools used in this paper may also be helpful to analyze
any planar dynamical system. For future research, one may consider harvesting and periodic forcing
in some parameters. This may lead to the existence of strange attractors (chaotic dynamic) as the
autonomous system experience homoclinic bifurcation.
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