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1. Introduction

Bruck [2] discussed the theory of groupoids, loops and quasigroups, and several algebraic structures.
Borúvka [1] stated the theory of decompositions of sets and its application to binary systems. Recently,
several researchers investigated groupoids, and obtained some interesting results [4,8,10]. The notions
of BCK-algebras and BCI-algebras were formulated in 1966 by Imai and Iséki [5], and were studied
by many researchers [3, 6, 11, 13].

Kim and Neggers [7] introduced the notion of Bin(X) of all binary systems (groupoids, algebras)
defined on a set X, and showed that it becomes a semigroup under suitable operation.

For the construction of the quotient group, we introduce the notion of a kernel by using group
homomorphisms, and construct left (right) cosets. In this paper, we introduce the notion of right and left
function ϕ-kernels, which was motivated from the kernel in groups, and we apply this notion to several
algebraic structures, e.g., groupoids, BCK-algebras, groups, semigroups, leftoids. Moreover, we apply
the left and right ϕ-kernels to the semigroup Bin(X) of all binary systems (groupoids, algebras) defined
on X, and investigate some roles of Rϕ(∗) and Lϕ(∗). We apply the notion of a kernel in groups
will be defined in general algebraic structures, i.e., groupoids, and investigate its roles with left and
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right cosets.
Moreover, we introduce the notion of left and right divisible groupoids, and obtain some relations

with function kernels. We show that every subgroup of a group is divisible, but the converse need not be
true. The identity axiom in groups, semigroups, BCK-algebras and other general algebraic structures
plays an important role for developing the theory. Finally, we introduce the notion of an idenfunction
by using functions. We investigate some relations between idenfunctions and function kernels. The
notions Fρ(∗, ϕ) and FRϕ(∗) will be discussed with function kernels and KER(∗, ϕ). The notion of the
idenfunction, which is a generalization of an identity axiom in algebras, will be applied to the notion
of function kernels, and obtain some useful results.

2. Preliminaries

A d-algebra [9,12] is a nonempty set X with a constant 0 and a binary operation “ ∗ ” satisfying the
following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A BCK-algebra [3, 6, 11] is a d-algebra X satisfying the following additional axioms:

(IV) (x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

A groupoid (X, ∗) is said to be a left zero semigroup if x ∗ y = x for any x, y ∈ X, and a groupoid
(X, ∗) is said to be a right zero semigroup if x ∗ y = y for any x, y ∈ X. A groupoid (X, ∗) is said to be
a leftoid for f : X → X if x ∗ y = f (x) for any x, y ∈ X. Similarly, a groupoid (X, ∗) is said to be a
rightoid for f : X → X if x ∗ y = f (y) for any x, y ∈ X. Note that a left (right, resp.) zero semigroup is
a special case of a leftoid (right, resp.) (see [7]).

Given two groupoids (X, ∗) and (X, •), we define a new binary operation � by x�y := (x ∗ y) • (y ∗ x)
for all x, y ∈ X. Then we obtain a new groupoid (X,�), i.e., (X,�) = (X, ∗)�(X, •). We denote the
collection of all binary systems (groupoid, algebras) defined on X by Bin(X) [7].

Theorem 2.1. [7] (Bin(X),�) is a semigroup and the left zero semigroup is an identity.

3. Function kernels

Given a groupoid (X, ∗), i.e., (X, ∗) ∈ Bin(X), and a function ϕ : X → Y , we define subsets Rϕ(∗)
and Lϕ(∗) as follows:

Rϕ(∗) := {t ∈ X |ϕ(x ∗ t) = ϕ(x),∀x ∈ X},

Lϕ(∗) := {t ∈ X |ϕ(t ∗ x) = ϕ(x),∀x ∈ X}.

We call Rϕ(∗) the right ϕ-kernel of a groupoid (X, ∗), and Lϕ(∗) the left ϕ-kernel of a groupoid (X, ∗).

Example 3.1. Let X := {0, 1, 2, 3} be a groupoid with the following table:
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∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 1
2 2 2 1 2
3 3 3 3 0

If we define a map ϕ : X → X by ϕ(0) = 0, ϕ(1) = ϕ(2) = 1 and ϕ(3) = 3, then it it easy to see that
Rϕ(∗) = {0, 2}, but Lϕ(∗) = ∅.

Example 3.2. Consider BCK-algebras (X, ∗, 0) and (Y, •, e) with the following tables [11, p. 245]:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 1 0 2
3 3 3 3 0

• e a b c
e e e e e
a a e a e
b b b e e
c c b a e

If we define a map ϕ : X → Y by ϕ(0) = ϕ(1) = ϕ(2) = e and ϕ(3) = a, then it it easy to see that ϕ is a
BCK-homomorphism and Rϕ(∗) = {0, 1, 2}, but Lϕ(∗) = ∅.

Proposition 3.1. If (X, ∗, 0) is a BCK-algebra, then 0 ∈ Rϕ(∗) for any map ϕ : X → Y.

Proof. If (X, ∗, 0) is a BCK-algebra, then x ∗ 0 = x for all x ∈ X. For any map ϕ : X → Y , we have
ϕ(x ∗ 0) = ϕ(x) for all x ∈ X. This shows that 0 ∈ Rϕ(∗). �

Proposition 3.2. If (X, ∗, e) is a group, then e ∈ Rϕ(∗) ∩ Lϕ(∗) for any map ϕ : X → Y.

Proof. If (X, ∗, e) is a group, then x∗ e = x = e∗ x for all x ∈ X. It follows that, for any map ϕ : X → Y ,
ϕ(x ∗ e) = ϕ(e ∗ x) = ϕ(x) for all x ∈ X, proving that e ∈ Rϕ(∗) ∩ Lϕ(∗). �

Example 3.3. Let R be the set of all real numbers and let “+” be the usual addition on R. Define a map
ϕ : R → R by ϕ(x) := ax + b, where a , 0, b ∈ R. Then Rϕ(+) = Lϕ(+) = {0}. In fact, if u ∈ Rϕ(+),
then ϕ(x+ u) = ϕ(x) for all x ∈ R. It follows that a(x+ u)+ b = ax+ b, and hence au = 0. Since a , 0,
we obtain u = 0. Hence Rϕ(+) = {0}. Similarly, we have Lϕ(+) = {0}.

Proposition 3.3. If ϕ : (X, ∗, e)→ (Y, •, e∗) is a group homomorphism, then Ker(ϕ) = Rϕ(∗) = Lϕ(∗).

Proof. If t ∈ Ker(ϕ), then ϕ(t) = e∗. Given x ∈ X, we have ϕ(x ∗ t) = ϕ(x) • ϕ(t) = ϕ(x) • e∗ = ϕ(x).
This shows that t ∈ Rϕ(∗). Similarly, we obtain t ∈ Lϕ(∗). If t ∈ Rϕ(∗), then ϕ(x∗ t) = ϕ(x) for all x ∈ X.
Since ϕ is a homomorphism, we obtain ϕ(x) = ϕ(x ∗ t) = ϕ(x) • ϕ(t), which shows that ϕ(t) = e∗. This
proves that t ∈ Ker(ϕ). Similarly, we prove that if t ∈ Lϕ(∗), then t ∈ Ker(ϕ). �

Proposition 3.3 shows that the notion of a left (right) ϕ-kernel is the same as the notion of the kernel
in groups.

Proposition 3.4. If (X, ∗) is a semigroup, then (Rϕ(∗), ∗) is also a semigroup.

Proof. Since Rϕ(∗) ⊆ X, it is enough to show that (Rϕ(∗), ∗) is a subgroupoid of (X, ∗). If u, t ∈ Rϕ(∗),
then ϕ(x ∗ u) = ϕ(x), ϕ(x ∗ t) = ϕ(x) for all x ∈ X. Since (X, ∗) is a semigroup, we obtain ϕ(x ∗ (u ∗ t)) =
ϕ((x ∗ u) ∗ t) = ϕ(x ∗ u) = ϕ(x) for all x ∈ X, and hence u ∗ t ∈ Rϕ(∗). This proves the proposition. �
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Let (X, ∗) be a groupoid (not necessarily a semigroup). Given a ∈ X, we define a map ra : X → X
by ra(x) := x ∗ a for all x ∈ X. The set of all such maps is defined by R∗ϕ(∗), i.e.,

R∗ϕ(∗) = {ra |ϕ(ra(x)) = ϕ(x),∀x ∈ X, a ∈ X},

where ϕ : X → Y is a map. We obtain the following proposition.

Proposition 3.5. (R∗ϕ(∗), ◦) is a semigroup, where “◦” is the composition of functions.

Proof. Given a, b ∈ R∗ϕ(∗) and x ∈ X, we have (ra ◦ rb)(x) = ra(rb(x)) = ra(x ∗ b) = (x ∗ b) ∗ a. Since
a, b ∈ R∗ϕ(∗), we obtain ϕ(x ∗ a) = ϕ(x), ϕ(x ∗ b) = ϕ(x) for all x ∈ X. It follows that ϕ((x ∗ b) ∗ a) =
ϕ(x ∗ b) = ϕ(x) for all x ∈ X. Hence, ϕ(x) = ϕ((x ∗ b) ∗ a) = ϕ((ra ◦ rb)(x)), which shows that
ra ◦ rb ∈ R∗ϕ(∗). Thus, (R∗ϕ(∗), ◦) is a semigroup. �

Similarly, given a ∈ X, we define a map la : X → X by la(x) := a ∗ x for all x ∈ X. The set of all
such maps is defined by L∗ϕ(∗), i.e.,

L∗ϕ(∗) = {la |ϕ(la(x)) = ϕ(x),∀x ∈ X, a ∈ X},

where ϕ : X → Y is a map. We obtain the following proposition.

Corollary 3.1. (L∗ϕ(∗), ◦) is a semigroup, where “◦” is the composition of functions.

Proposition 3.6. Let ϕ : (X, ∗) → (Y, •) be a homomorphism of groupoids. If a ∈ Rϕ(∗) and ϕ is
injective, then ra is an identity function on (X, ∗).

Proof. Assume that ra is not an identity function on (X, ∗). Then there exists x0 ∈ X such that ra(x0) ,
x0, i.e., x0 ∗ a , x0. Since ϕ is injective, we obtain ϕ(x0 ∗ a) , ϕ(x0), which means that a < Rϕ(∗),
which is a contradiction. �

Corollary 3.2. Let ϕ : (X, ∗)→ (Y, •) be a homomorphism of groupoids. If a ∈ Lϕ(∗) and ϕ is injective,
then la is an identity function on (X, ∗).

Proof. The proof is similar to Proposition 3.6. �

Remark 3.1. It is necessary to give a condition: ϕ is injective, in Proposition 3.6. The mapping ϕ in
Example 3.2 is a BCK-homomorphism, but not injective, and Rϕ(∗) = {0, 1, 2}. Since r2(1) = 1 ∗ 2 =
0 , 1 and r1(2) = 2 ∗ 1 = 1 , 2, i.e., r1 and r2 are not an identity function.

Example 3.4. Let + be the usual addition on R. If we define a map ϕ : R → R by ϕ(x) := sin x,
then Rϕ(+) = {2nπ | n ∈ Z}. In fact, if t ∈ Rϕ(+), then ϕ(x + t) = ϕ(x) for all x ∈ R, which shows that
sin(x + t) = sin x for all x ∈ R. Hence, t is a period of sin x, i.e., there exists n ∈ Z such that t = 2nπ.
Since sin(x+ 2(m± n)π) = sin x, (Rϕ(+),+) is a normal subgroup of (R,+), whence it is a kernel of the
map ν : (R,+)→ (R,+)/(Rϕ(+),+).

Proposition 3.7. Let (X, ∗) be a left zero semigroup.

(i) If ϕ : X → Y is any map, then Rϕ(∗) = X.
(ii) If ϕ : X → Y is not a constant map, then Lϕ(∗) = ∅.
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Proof. (i) Given a ∈ X, since (X, ∗) is a left zero semigroup, we have x ∗ a = x for all x ∈ X. It follows
that ϕ(x ∗ a) = ϕ(x) for all x ∈ X. This shows that a ∈ Rϕ(∗).
(ii) Assume that Lϕ(∗) , ∅. Then there exists a ∈ Lϕ(∗), which means that ϕ(a ∗ x) = ϕ(x) for all x ∈ X.
Since ϕ is not a constant function, there exists b ∈ X such that a , b and ϕ(a) , ϕ(b). Since (X, ∗) is a
left zero semigroup, we have ϕ(a) = ϕ(a ∗ b) = ϕ(b) , ϕ(a), which is a contradiction. �

Remark 3.2. Proposition 3.7 (i) does not hold for non-left zero semigroup in general. In fact, we see
that (R,+) is not a left zero semigroup and Rϕ(+) = {2nπ | n ∈ Z} , R in Example 3.4.

Theorem 3.1. Let (X, ∗) and (X, •) be groupoids and let (X,�) := (X, ∗)�(X, •), i.e., x�y = (x∗y)•(y∗x)
for all x, y ∈ X. If ϕ : X → Y is a mapping, then

(i) t ∗ x ∈ Rϕ(•), t ∈ Rϕ(∗) implies t ∈ Rϕ(�);
(ii) t ∗ x ∈ Lϕ(•), t ∈ Rϕ(∗) implies t ∈ Rϕ(�);

(iii) x ∗ t ∈ Lϕ(•), t ∈ Lϕ(∗) implies t ∈ Lϕ(�);
(iv) x ∗ t ∈ Rϕ(•), t ∈ Lϕ(∗) implies t ∈ Lϕ(�).

Proof. (i) If t ∗ x ∈ Rϕ(•), t ∈ Rϕ(∗), then ϕ(x�t) = ϕ((x ∗ t) • (t ∗ x)) = ϕ(x ∗ t) = ϕ(x), which shows
that t ∈ Rϕ(�).
(ii) If t ∗ x ∈ Lϕ(•), t ∈ Rϕ(∗), then ϕ(t�x) = ϕ((t ∗ x) • (x ∗ t)) = ϕ(x ∗ t) = ϕ(x), which shows that
t ∈ Rϕ(�).
(iii) If x ∗ t ∈ Lϕ(•), t ∈ Lϕ(∗), then ϕ(x�t) = ϕ((x ∗ t) • (t ∗ x)) = ϕ(t ∗ x) = ϕ(x), which shows that
t ∈ Lϕ(�).
(iv) If x ∗ t ∈ Rϕ(•), t ∈ Lϕ(∗), then ϕ(t�x) = ϕ((t ∗ x) • (x ∗ t)) = ϕ(t ∗ x) = ϕ(x), which shows that
t ∈ Lϕ(�). �

Let ϕ : (X, ∗)→ (Y, •) be a homomorphism of groupoids and let t ∈ X. Define a set KER(∗, ϕ) by

KER(∗, ϕ) := {(x, y)|ϕ(x) = ϕ(y)}.

Given t ∈ (X, ∗), we define the right coset ρ(∗, t) and the left coset λ(∗, t) respectively by

ρ(∗, t) := {(x ∗ t, x) | x ∈ X}

and
λ(∗, t) := {(t ∗ x, x) | x ∈ X}.

We define two sets RK(∗, ϕ) and LK(∗, ϕ) as follows:

RK(∗, ϕ) := {t ∈ X | ρ(∗, t) ⊆ KER(∗, ϕ)}

and
LK(∗, ϕ) := {t ∈ X | λ(∗, t) ⊆ KER(∗, ϕ)}.

Proposition 3.8. Given a groupoid (X, ∗), i.e., (X, ∗) ∈ Bin(X), and a function ϕ : X → Y, we have

(i) Rϕ(∗) = RK(∗, ϕ), (ii) Lϕ(∗) = LK(∗, ϕ).
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Proof. (i) Let t ∈ Rϕ(∗). If (x∗ t, x) ∈ ρ(∗, t), then ϕ(x∗ t) = ϕ(x), i.e., (x∗ t, x) ∈ KER(∗, ϕ). This shows
that ρ(∗, t) ⊆ KER(∗, ϕ), which means that t ∈ RK(∗, ϕ). If t ∈ RK(∗, ϕ), then ρ(∗, t) ⊆ KER(∗, ϕ). It
follows that (x ∗ t, x) ∈ KER(∗, ϕ) for all x ∈ X, and hence ϕ(x ∗ t) = ϕ(x). Hence, t ∈ Rϕ(∗). This
proves that RK(∗, ϕ) ⊆ Rϕ(∗).
(ii) The proof is similar to (i). �

Theorem 3.2. Let R be the set of all real numbers and let “+” be the usual addition on R and let
ϕ : R→ R be a map. Then

∪t∈Rϕ(+) ρ(+, t) ⊆ KER(+, ϕ) ⊆ ∪t∈R ρ(+, t).

Proof. If (α, β) ∈ ∪t∈Rϕ(+) ρ(+, t), then there exists t ∈ Rϕ(+) such that (α, β) ∈ ρ(+, t), and hence
α = β+ t. Since t ∈ Rϕ(+), we have ϕ(x+ t) = ϕ(x) for all x ∈ R. It follows that ϕ(α) = ϕ(β+ t) = ϕ(β),
i.e., (α, β) ∈ KER(+, ϕ). Hence, ∪t∈Rϕ(+) ρ(+, t) ⊆ KER(+, ϕ). If (x, y) ∈ KER(+, ϕ), then ϕ(x) = ϕ(y).
Let t ∈ R such that x = y + t. It follows that (x, y) = (y + t, y) ∈ ρ(+, t). Hence, (x, y) ∈ ∪t∈R ρ(+, t),
proving the theorem. �

4. Divisible groupoids

A groupoid (X, ∗) is said to be right divisible (resp., left divisible ) if for any x, y ∈ X, there exists
t ∈ X such that x = y ∗ t (resp., x = t ∗ y). Note that (Z,+) is divisible. We take t := x − y for any
x, y ∈ Z. It follows that x = (x − y) + y = t + y.

Proposition 4.1. If (X, ∗) is a right divisible groupoid, then

X × X = ∪t∈X ρ(∗, t).

Proof. For any (x, y) ∈ X × X, there exists t ∈ X such that x = y ∗ t, since (X, ∗) is right divisible. It
follows that (x, y) = (y ∗ t, y) ∈ ρ(∗, t), which proves that (x, y) ∈ ∪t∈X ρ(∗, t). �

Given a groupoid (X, ∗), we define a set Tϕ(∗) by

Tϕ(∗) := {t ∈ X | ρ(∗, t) ∩ KER(∗, ϕ) , ∅}.

Theorem 4.1. Let (X, ∗) be a right divisible groupoid. If ϕ : (X, ∗) → (Y, •) is a homomorphism of
groupoids, then

KER(∗, ϕ) ⊆ ∪t∈Tϕ(∗) ρ(∗, t).

Proof. If (x, y) ∈ KER(∗, ϕ), then ϕ(x) = ϕ(y). Since (X, ∗) is right divisible, there exists t ∈ X such
that x = y ∗ t. It follows that (x, y) = (y ∗ t, y) ∈ ρ(∗, t) and ϕ(y ∗ t) = ϕ(x) = ϕ(y). We claim that
t ∈ Tϕ(∗). In fact,

t ∈ Tϕ(∗) ⇐⇒ ρ(∗, t) ∩ KER(∗, ϕ) , ∅
⇐⇒ ∃ y ∈ X such that (y ∗ t, y) ∈ ρ(∗, t) ∩ KER(∗, ϕ)
⇐⇒ ϕ(y ∗ t) = ϕ(y) holds.

Hence, (x, y) ∈ ∪t∈Tϕ(∗) ρ(∗, t). �
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Corollary 4.1. If (X, ∗) is a left divisible groupoid, then

(i) X × X = ∪t∈X λ(∗, t),
(ii) KER(∗, ϕ) ⊆ ∪t∈Tϕ(∗) λ(∗, t).

Proof. The proof is similar to Proposition 4.1 and Theorem 4.1. �

Proposition 4.2. If (X, ∗) is a left zero semigroup, then it is left divisible, but not right divisible.

Proof. Given x, y ∈ X, if we let u := x, then u∗y = x∗y = x, since (X, ∗) is a left zero semigroup. Hence,
(X, ∗) is left divisible. We claim that (X, ∗) is not a right divisible. Assume (X, ∗) is right divisible. Let
x , y in X. Then there exists z ∈ X such that y = x ∗ z. Since (X, ∗) is a left-zero semigroup, we obtain
y = x ∗ z = x, which is a contradiction. �

Proposition 4.3. If (X, ∗) is a right zero semigroup, then it is right divisible, but not left divisible.

Proposition 4.4. Let (X, ∗) be a leftoid for ϕ : X → X. If ϕ is onto, then (X, ∗) is left divisible, but not
right divisible.

Proof. Given x, y ∈ X, since ϕ is onto, there exists u ∈ X such that y = ϕ(u). It follows that y = ϕ(u) =
u ∗ x. Hence, (X, ∗) is left divisible. Assume (X, ∗) is right divisible. Let y1 , y2 in X. Since ϕ is
onto, there exist u1, u2 ∈ X such that y1 = x ∗ u1, y2 = x ∗ u2. Since (X, ∗) is a leftoid for ϕ, we obtain
y1 = ϕ(x) = y2, which is a contradiction. �

Remark 4.1. It is necessary to add the condition, ϕ is onto, in Proposition 4.4. See the following
example.

Example 4.1. Let R be the set of all real numbers. If we define a map ϕ : R → R by ϕ(x) := x + 1,
then it is a bijective function. Define a binary operation “∗” on R by x ∗ y := ϕ(x) for all x, y ∈ R. Then
(R, ∗) is left divisible over ϕ. In fact, for any y ∈ R, if we let u := y−1, then u∗ x = ϕ(u) = ϕ(y−1) = y
for any x ∈ R. Define a map ψ : R → R by ψ(x) := x2. Given −3, 5 ∈ R, there exists no real number
t ∈ R such that −3 = t ∗ 5 = ψ(t) = t2 ≥ 0. This means that (R, ∗) is not left divisible over ψ.

Proposition 4.5. Let (X, ∗) be a rightoid for ϕ : X → X. If ϕ is onto, then (X, ∗) is right divisible, but
not left divisible.

Proof. The proof is similar to Proposition 4.4. �

Let (X, ∗) and (Y, •) be groupoids. Define maps ϕ : (X, ∗)→ (X, ∗) and ψ : (Y, •)→ (Y, •). We define
a binary operation “∇” on X × Y by (x, y)∇(u, v) := (x ∗ u, y • v) and a map ξ : (X × Y,∇)→ (X × Y,∇)
by ξ(x, y) := (ϕ(x), ψ(y)). We call (X × Y,∇) a direct product of (X, ∗) and (Y, •) with respect to (ϕ, ψ).

Theorem 4.2. Let (X × Y,∇) be a direct product of (X, ∗) and (Y, •) with respect to (ϕ, ψ). If we define
a map ξ : (X × Y,∇)→ (X × Y,∇) by ξ(x, y) := (ϕ(x), ψ(y)), then Rϕ(∗) × Rψ(•) = Rξ(∇).

Proof. If (α, β) ∈ Rϕ(∗)× Rψ(•), then α ∈ Rϕ(∗) and β ∈ Rψ(•), i.e., ϕ(x ∗ α) = ϕ(x) and ψ(y • β) = ψ(y)
for all x ∈ X and y ∈ Y . It follows that

ξ((x, y)∇(α, β))
= ξ(x ∗ α, y • β) = (ϕ(x ∗ α), ψ(y • β))
= (ϕ(x), ψ(y)) = ξ(x, y),

for all (x, y) ∈ X × Y . This shows that (α, β) ∈ Rξ(∇). The converse is similar, and we omit it. �
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Corollary 4.2. Let (X × Y,∇) be a direct product of (X, ∗) and (Y, •) with respect to (ϕ, ψ). If we define
a map ξ : (X × Y,∇)→ (X × Y,∇) by ξ(x, y) := (ϕ(x), ψ(y)), then Lϕ(∗) × Lψ(•) = Lξ(∇).

Proof. The proof is similar to Theorem 4.2. �

Proposition 4.6. Let (X × Y,∇) be a direct product of (X, ∗) and (Y, •). If (X, ∗) and (Y, •) are right
(resp., left) divisible, then (X × Y,∇) is also right (resp., left) divisible.

Proof. The proof is straightforward. �

Proposition 4.7. Every homomorphic image of a right (resp., left) divisible groupoid is right (resp.,
left) divisible.

Proof. Let ϕ : (X, ∗) → (Y, •) be an epimorphism of groupoids and let (X, ∗) be a right (resp., left)
divisible groupoid. Given x, y ∈ Y , since ϕ is onto, there exist a, b ∈ X such that x = ϕ(a), y = ϕ(b).
Since (X, ∗) is right divisible, there exists c ∈ X such that a = b∗c. Hence, ϕ(a) = ϕ(b∗c) = ϕ(b)•ϕ(c),
i.e., x = y • ϕ(c), which shows that (Y, •) is right divisible. �

Proposition 4.8. Every subgroup of a group is divisible.

Proof. Let (X, ∗, e) be a group and let H be a subgroup of X. Given x, y ∈ H, we let t := x−1 ∗ y. Then
x ∗ t = x ∗ (x−1 ∗ y) = (x ∗ x−1) ∗ y = e ∗ y = y. Hence, (H, ∗, e) is right divisible. Similarly, we proves
that (H, ∗, e) is left divisible. �

In Proposition 4.8, we showed that every subgroup of a group is divisible. But it does not hold for
subgroupoids which are not subgroups. Consider a set Uk = {k, k + 1, k + 2, · · · }. It is a subgroupoid
of an abelian group Z, but it is not a subgroup of Z. Clearly, it is not divisible, since there exists no
element t in Z such that (k + 1) + t = k.

5. Idenfunctions

Let (X, ∗) be a groupoid. A map ξ : X → X is said to be a right (resp., left) idenfunction of (X, ∗) if
x ∗ ξ(x) = x (resp., ξ(x) ∗ x = x) for all x ∈ X. If ξ is an identity map, i.e., ξ(x) := e for all x ∈ X, then e
is an right identity of a groupoid (X, ∗). The notion of an idenfunction is a generalization of an identity
axiom in groupoids.

Example 5.1. Consider a group (Z/(5), ·). For any x ∈ Z/(5), we have x5 = x. If we take ξ(x) := x4,
then x · ξ(x) = x · x4 = x5 = x for all x ∈ Z/(5). Now, 14 = 1, 24 = 16 = 1, 34 = 81 = 1, 44 = (−1)4 = 1,
04 = 0, so that ξ is an idenfunction which is not a constant function. Of course, ξ(x) ≡ 1 yields an
identity element.

Example 5.2. Define a binary operation “∗” on R by x ∗ y := 2x + 3y for all x, y ∈ R. Define a map
ξ : R → R satisfying x ∗ ξ(x) = x for all x ∈ R. Then x = x ∗ ξ(x) = 2x + 3ξ(x). It follows that
ξ(x) = −1

3 x is the right idenfunction of (R, ∗). Assume ψ : R→ R is a map satisfying ψ(x) ∗ x = x for
all x ∈ R. Then 2ψ(x) + 3x = x, and hence ψ(x) = −x is the left idenfunction of (R, ∗).

Given a map ϕ : (X, ∗)→ (Y, •), we define sets Fρ(∗, ϕ) and FRϕ(∗) by

Fρ(∗, ϕ) := {(x ∗ ϕ(x), x) | x ∈ X}
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and

FRϕ(∗) := {ψ : X → X |ϕ(x ∗ ψ(x)) = ϕ(x),∀x ∈ X}.

We may define Fλ(∗, ϕ) and FLϕ(∗) for a map ϕ : X → Y .
Let (X, ∗) be a groupoid and let a ∈ X. If we define a map δa : X → X by δa(x) := a for all x ∈ X,

then we may identify the map δa with a, i.e., δa ≡ a. If a groupoid (X, ∗) has a right identity e, then
e ∈ Fρ(∗, δe) = ρ(∗, e).

Proposition 5.1. If a groupoid (X, ∗) has a right identity e, then e ∈ Rϕ(∗).

Proof. If e is a right identity of (X, ∗), then x ∗ e = x for all x ∈ X. It follows that ϕ(x ∗ e) = ϕ(x) for all
x ∈ X. This proves that e ∈ Rϕ(∗). �

Proposition 5.2. Let (X, ∗) be a groupoid. If ψ : (X, ∗) → (X, ∗) is a right idenfunction of (X, ∗), then
ψ ∈ FRϕ(∗) for any map ϕ : X → Y.

Proof. The proof is straightforward. �

Example 5.3. (a) Let R be the set of all real numbers and let “·” be the usual multiplication on R.
Define a map ϕ : R→ R by ϕ(x) := sin x. Assume ψ : R→ R satisfies the condition: ϕ(x·ψ(x)) = ϕ(x).
Then sin(x · ψ(x)) = sin x and hence x · ψ(x) = x + 2n(x)π = x(1 + 1

x2n(x)π) for some n(x) ∈ Z with
x , 0. It follows that ψ(x) = 1 + 1

x2n(x)π ∈ FRϕ(·) for x , 0.
(b) Define ϕ : (R,+) → [−1, 1] by ϕ(x) := sin x. Assume δ : R → R satisfies the condition:
ϕ(x + δ(x)) = ϕ(x). Then sin(x + δ(x)) = sin x, and hence we obtain x + δ(x) = x + 2n(x)π, i.e.,
δ(x) = 2n(x)π ∈ FRϕ(+) for some n(x) ∈ Z.

Theorem 5.1. Let (X, ∗) be a groupoid and let ϕ : X → Y be a map. Then

Rϕ(∗) ⊆ FRϕ(∗).

Proof. If a ∈ Rϕ(∗), then ϕ(x ∗ a) = ϕ(x) for all x ∈ X. If we define a constant map δa : X → X by
δa(x) := a, then we may identify δa ≡ a. It follows that ϕ(x) = ϕ(x ∗ a) = ϕ(x ∗ δa(x)) for all x ∈ X, and
hence a ≡ δa ∈ FRϕ(∗). �

Proposition 5.3. Let (X, ∗) be a groupoid and let ϕ : X → Y be a map. If ξ ∈ FRϕ(∗), then Fρ(∗, ξ) ⊆
KER(∗, ϕ).

Proof. Since ξ ∈ FRϕ(∗), if (x ∗ ξ(x), x) ∈ Fρ(∗, ξ), then ϕ(x ∗ ξ(x)) = ϕ(x) for all x ∈ X, which proves
that (x ∗ ξ(x), x) ∈ KER(∗, ϕ). �

Example 5.4. In Example 5.2, we define a map ϕ(x) := x2 for all x ∈ R. We find all functions ξ(x) in
FRϕ(∗). If ξ(x) ∈ FRϕ(∗), then ϕ(x∗ξ(x)) = ϕ(x), and hence x2 = (2x+3ξ(x))2 = 4x2+12xξ(x)+9ξ(x)2.
It follows that ξ(x) = −1

3 x or ξ(x) = −x, i.e., FRϕ(∗) = {− 1
3 x,−x}. Similarly, we obtain FLϕ(∗) =

{−2x,−x}.
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6. Conclusions

In this paper, we introduced the notion of a function kernel, in which the idea came from the kernel
in group theory. We applied this concept to several algebraic structures, e.g., groupoids, BCK-algebras,
semigroups etc. By introducing the notions of left and right divisible groupoids, we discussed some
relations between function kernels and divisible groupoids. Finally, we introduced the notion of an
idenfunction, which is a generalized identity axiom in several algebraic structures. The notion can be
applied to several algebraic structures, e.g., groups, rings, fields and vector spaces in the sequel, since
these algebraic structures contain the identity axiom. This approach may open the new door of several
algebras in future.
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