Research article

Number of maximal 2-component independent sets in forests

Shuting Cheng and Baoyindureng Wu*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China

* Correspondence: Email: baoywu@163.com.

Abstract

Let $G=(V(G), E(G))$ be a graph. For a positive integer k, we call $S \subseteq V(G)$ a k-component independent set of G if each component of $G[S]$ has order at most k. Moreover, S is maximal if there does not exist a k-component independent set S^{\prime} of G such that $S \subseteq S^{\prime}$ and $|S|<\left|S^{\prime}\right|$. A maximal k-component independent set of a graph G is denoted briefly by Mk-CIS. We use $t_{k}(G)$ to denote the number of Mk-CISs of a graph G. In this paper, we show that for a forest G of order n,

$$
t_{2}(G) \leq \begin{cases}3^{\frac{n}{3}}, & \text { if } n \equiv 0(\bmod 3) \text { and } n \geq 3, \\ 4 \cdot 3^{\frac{n-4}{3}}, & \text { if } n \equiv 1(\bmod 3) \text { and } n \geq 4, \\ 5, & \text { if } n=5, \\ 4^{2} \cdot 3^{\frac{n-8}{3}}, & \text { if } n \equiv 2(\bmod 3) \text { and } n \geq 8\end{cases}
$$

with equality if and only if $G \cong F_{n}$, where

$$
F_{n} \cong \begin{cases}\frac{n}{3} P_{3}, & \text { if } n \equiv 0(\bmod 3) \text { and } n \geq 3, \\ \frac{n-4}{3} P_{3} \cup K_{1,3}, & \text { if } n \equiv 1(\bmod 3) \text { and } n \geq 4, \\ K_{1,4}, & \text { if } n=5, \\ \frac{n-8}{3} P_{3} \cup 2 K_{1,3}, & \text { if } n \equiv 2(\bmod 3) \text { and } n \geq 8 .\end{cases}
$$

Keywords: tree; forest; independent set; k-component independent set
Mathematics Subject Classification: 05C30, 05C69

1. Introduction

Let $G=(V(G), E(G))$ be a graph. A set $S \subseteq V(G)$ is called an independent set of G if no two vertices of S are adjacent in G. A maximal independent set is an independent set that is not a proper subset of any other independent set. Let k be a positive integer. We call S a k-component independent set of G if each component of $G[S]$ has order at most k. Clearly, the 1 -component independent sets are the usual independent sets. A k-component independent set is maximal (maximum) if the set cannot be
extended to a larger k-component independent set (if no k-component independent set of G has larger cardinality). A maximal k-component independent set of a graph G is denoted briefly by Mk-CIS. We use $t_{k}(G)$ to denote the number of Mk-CISs of G.

In 1986, Wilf [12] proved that the maximum number of maximal independent sets for a tree of order n is $2^{\frac{n-1}{2}}$ if n is odd and $2^{\frac{n}{2}-1}+1$ if $n \geq 2$ is even. In 1988, Sagan [9] gave a simple graph-theoretical proof and characterized all extremal trees. In 1991, Zito [15] determined that the maximum number of maximum independent sets for a tree of order n is $2^{\frac{n-3}{2}}$ if $n>1$ is odd and $2^{\frac{n-2}{2}}+1$ if n is even, and also characterized all extremal trees. In 1993, Hujter and Tuza [4] proved that the maximal number of maximal independent sets in triangle-free graphs is at most $2^{\frac{n}{2}}$ if $n \geq 4$ is even and $5 \cdot 2^{\frac{n-5}{2}}$ if $n \geq 5$ is odd, and characterized the extremal graphs. The number of the maximal independent sets on some classes of graphs were also studied in $[5,6,10,13]$.

In 2021, Tu, Zhang and Shi [11] showed that the maximum number of maximum 2-component independent sets in a tree of order n is $3^{\frac{n}{3}-1}+\frac{n}{3}+1$ if $n \equiv 0(\bmod 3), 3^{\frac{n-1}{3}-1}+1$ if $n \equiv 1(\bmod 3)$, and $3^{\frac{n-2}{3}-1}$ if $n \equiv 2(\bmod 3)$, and also characterized the extremal graphs.

In 1981, Yannakakis [14] proved that the problem of computing the number of maximum 2component independent sets for bipartite graphs is NP-complete. The complexity of the problem on some special families of graphs were studied in [1,2,7,8].

In this paper, we establish a sharp upper bound for $t_{2}(G)$ of a forest G of order n and characterize all forests achieving the upper bound.

2. The main result

Let G be a graph and v a vertex in G. The neighborhood $N_{G}(v)$ is the set of vertices adjacent to v and the closed neighborhood $N_{G}[v]$ is $N_{G}(v) \cup\{v\}$. In the sequel, we use $t(G)$ to present $t_{2}(G)$ for simplicity and S denotes an M2-CIS of a tree T under consideration.

Theorem 2.1. For any forest F of order $n \geq 3, t(F) \leq f(n)$, where

$$
f(n)= \begin{cases}3^{\frac{n}{3}}, & \text { if } n \equiv 0(\bmod 3) \text { and } n \geq 3 \\ 4 \cdot 3^{\frac{n-4}{3}}, & \text { if } n \equiv 1(\bmod 3) \text { and } n \geq 4, \\ 5, & \text { if } n=5, \\ 4^{2} \cdot 3^{\frac{n-8}{3}}, & \text { if } n \equiv 2(\bmod 3) \text { and } n \geq 8\end{cases}
$$

with equality if and only if

$$
F_{n} \cong \begin{cases}\frac{n}{3} P_{3}, & \text { if } n \equiv 0(\bmod 3) \text { and } n \geq 3, \\ \frac{n-4}{3} P_{3} \cup K_{1,3}, & \text { if } n \equiv 1(\bmod 3) \text { and } n \geq 4, \\ K_{1,4}, & \text { if } n=5, \\ \frac{n-8}{3} P_{3} \cup 2 K_{1,3}, & \text { if } n \equiv 2(\bmod 3) \text { and } n \geq 8\end{cases}
$$

Lemma 2.2. (Cheng, Wu [3]) Let n and k be two integers with $n \geq k+1 \geq 2$. For any tree T of order n, there exists a vertex v such that $T-v$ has $d(v)-1$ components, each of which has order at most k, but the sum of their order is at least k. In particular, every nontrivial tree T has a vertex v such that all its neighbors but one are leaves.

Lemma 2.3. For any positive integer $n \geq 1$,

$$
t\left(K_{1, n-1}\right)= \begin{cases}1, & \text { if } 1 \leq n \leq 2 \\ n, & \text { if } n \geq 3\end{cases}
$$

We define five special trees, denoted by T_{i} for each $i \in\{1, \ldots, 5\}$:
T_{1} is a tree of order n obtained from $K_{1,3}$ by subdividing an edge of $K_{1,3} n-4$ times, where $5 \leq n \leq 9$.
T_{2} is obtained from $2 P_{4} \cup P_{3}$ by adding edges connecting a leaf of each copy of P_{4} to a leaf x of P_{3}.
T_{3} is obtained from $\left(K_{1,3} \cup P_{4}\right) \cup P_{3}$ by adding edges connecting a leaf of $K_{1,3}$ and P_{4} to a leaf x of P_{3}.
T_{4} is obtained from $a K_{1,3} \cup P_{3}$ by adding edges connecting a leaf of each copy of $K_{1,3}$ to a leaf x of P_{3} for an integer $a \geq 2$.
T_{5} is obtained from $b K_{1,3}$ by adding edges connecting a leaf of each copy of $K_{1,3}$ to a fixed vertex x for an integer $b \geq 2$, as shown in Figure 1.

Figure 1. $T_{i}, i \in\{2, \ldots, 5\}$.
Lemma 2.4. $t\left(T_{i}\right) \leq t\left(F_{n}\right)$ for each $i \in\{1, \ldots, 5\}$.
Proof. By a straightforward calculation,

$$
t\left(T_{1}\right)= \begin{cases}4<5=t\left(K_{1,4}\right)=t\left(F_{5}\right), & \text { if } n=5, \\ 6<3^{2}=t\left(2 P_{3}\right)=t\left(F_{6}\right), & \text { if } n=6, \\ 10<4 \cdot 3=t\left(P_{3} \cup K_{1,3}\right)=t\left(F_{7}\right), & \text { if } n=7, \\ 13<4^{2}=t\left(2 K_{1,3}\right)=t\left(F_{8}\right), & \text { if } n=8, \\ 17<3^{3}=t\left(3 P_{3}\right)=t\left(F_{9}\right), & \text { if } n=9 .\end{cases}
$$

Obviously, $\left|V\left(T_{2}\right)\right|=\left|V\left(T_{3}\right)\right|=11, t\left(T_{2}\right)=28<4^{2} \cdot 3=t\left(2 K_{1,3} \cup P_{3}\right)=t\left(F_{11}\right)$, and $t\left(T_{3}\right)=31<$ $4^{2} \cdot 3=t\left(2 K_{1,3} \cup P_{3}\right)=t\left(F_{11}\right)$.

Note that $\left|V\left(T_{4}\right)\right|=4 a+3$. Observe that for an M2-CIS S of T_{4}, either $x \notin S$ or $x \in S$ with $d_{T[S]}(x) \leq 1$. Let us define $t_{x}^{0}=\left|\left\{S: d_{T[S]}(x)=0\right\}\right|=2^{a}$, $t_{x}^{1}=\left|\left\{S: d_{T[S]}(x)=1\right\}\right|=(a+3) \cdot 3^{a-1}$, $t_{\bar{x}}=|\{S: x \notin S\}|=4^{a}$. Thus, $t\left(T_{4}\right)=t_{x}^{0}+t_{x}^{1}+t_{\bar{x}}=4^{a}+(a+3) \cdot 3^{a-1}+2^{a}$. We consider three cases in terms of the modularity of $a(\bmod 3)$.

If $a=3 s, s \geq 1$, then $\left|V\left(T_{4}\right)\right|=12 s+3$ and $t\left(F_{12 s+3}\right)=3^{4 s+1}$. Moreover, since $4^{3 s} \leq 3^{4 s}$ and $(s+1) \cdot 3^{3 s}+2^{3 s} \leq 2 \cdot 3^{4 s}$ for any $s \geq 1$, it follows that for any $s \geq 1$,

$$
\begin{aligned}
t\left(T_{4}\right) & =4^{3 s}+(s+1) \cdot 3^{3 s}+2^{3 s} \leq 3^{4 s}+2 \cdot 3^{4 s} \\
& =3^{4 s+1}=t\left(F_{12 s+3}\right) .
\end{aligned}
$$

If $a=3 s+1, s \geq 1$, then $\left|V\left(T_{4}\right)\right|=12 s+7$ and $t\left(F_{12 s+7}\right)=4 \cdot 3^{4 s+1}$. Moreover, since $4^{3 s+1} \leq 4 \cdot 3^{4 s}$ and $(3 s+4) \cdot 3^{3 s}+2^{3 s+1} \leq 8 \cdot 3^{4 s}$ for any $s \geq 1$, it follows that for any $s \geq 1$,

$$
\begin{aligned}
t\left(T_{4}\right) & =4^{3 s+1}+(3 s+4) \cdot 3^{3 s}+2^{3 s+1} \\
& \leq 4 \cdot 3^{4 s}+8 \cdot 3^{4 s}=4 \cdot 3^{4 s+1}=t\left(F_{12 s+7}\right) .
\end{aligned}
$$

If $a=3 s+2, s \geq 0$, then $\left|V\left(T_{4}\right)\right|=12 s+11$ and $t\left(F_{12 s+11}\right)=4^{2} \cdot 3^{4 s+1}$. Moreover, since $4^{3 s+2} \leq 4^{2} \cdot 3^{4 s}$ and $(3 s+5) \cdot 3^{3 s+1}+2^{3 s+2} \leq 32 \cdot 3^{4 s}$ for any $s \geq 0$, it follows that for any $s \geq 0$,

$$
\begin{aligned}
t\left(T_{4}\right) & =4^{3 s+2}+(3 s+5) \cdot 3^{3 s+1}+2^{3 s+2} \\
& \leq 4^{2} \cdot 3^{4 s}+32 \cdot 3^{4 s}=4^{2} \cdot 3^{4 s+1}=t\left(F_{12 s+11}\right) .
\end{aligned}
$$

Note that $\left|V\left(T_{5}\right)\right|=4 b+1$ and $t\left(T_{5}\right)=4^{b}+b \cdot 3^{b-1}-b \cdot 2^{b-1}$. We consider three cases in terms of the modularity of $b(\bmod 3)$.

If $b=3 s, s \geq 1$, then $\left|V\left(T_{5}\right)\right|=12 s+1$ and $t\left(F_{12 s+1}\right)=4 \cdot 3^{4 s-1}$. Moreover, since $4^{3 s} \leq 3^{4 s}$ and $s \cdot 3^{3 s} \leq 3^{4 s-1}$ for any $s \geq 1$, it follows that for any $s \geq 1$,

$$
\begin{aligned}
t\left(T_{5}\right) & =4^{3 s}+s \cdot 3^{3 s}-3 s \cdot 2^{3 s-1} \leq 3^{4 s}+3^{4 s-1} \\
& =4 \cdot 3^{4 s-1}=t\left(F_{12 s+1}\right) .
\end{aligned}
$$

If $b=3 s+1, s \geq 1$, then $\left|V\left(T_{5}\right)\right|=12 s+5$ and $t\left(F_{12 s+5}\right)=4^{2} \cdot 3^{4 s-1}$. Moreover, since $4^{3 s+1} \leq 4 \cdot 3^{4 s}$ and $(3 s+1) \cdot 3^{3 s} \leq 4 \cdot 3^{4 s-1}$ for any $s \geq 1$, it follows that for any $s \geq 1$,

$$
\begin{aligned}
t\left(T_{5}\right) & =4^{3 s+1}+(3 s+1) \cdot 3^{3 s}-(3 s+1) \cdot 2^{3 s} \\
& \leq 4 \cdot 3^{4 s}+4 \cdot 3^{4 s-1}=4^{2} \cdot 3^{4 s-1}=t\left(F_{12 s+5}\right) .
\end{aligned}
$$

If $b=3 s+2, s \geq 0$, then $\left|V\left(T_{5}\right)\right|=12 s+9$ and $t\left(F_{12 s+9}\right)=3^{4 s+3}$. Moreover, since $4^{3 s+2} \leq 4^{2} \cdot 3^{4 s}$ and $(3 s+2) \cdot 3^{3 s+1} \leq 11 \cdot 3^{4 s}$ for any $s \geq 0$, it follows that for any $s \geq 0$,

$$
\begin{aligned}
t\left(T_{5}\right) & =4^{3 s+2}+(3 s+2) \cdot 3^{3 s+1}-(3 s+2) \cdot 2^{3 s+1} \\
& \leq 4^{2} \cdot 3^{4 s}+11 \cdot 3^{4 s}=3^{4 s+3}=t\left(F_{12 s+9}\right) .
\end{aligned}
$$

3. The proof of Theorem 2.1

In this section, we give the proof of Theorem 2.1.
Proof. Let F be a forest of order n. It is straightforward to check that the result is true if $n \leq 5$. We proceed with the induction on the order n of F. If $F \cong K_{1, n-1}$, then by Lemma 2.3, the result trivially holds. Next we assume that F is not a star. By Lemma 2.2, for a tree T, there exists a vertex x with $d(x)-1$ neighbors being leaves. Let $N(x)=\left\{x_{1}, \ldots, x_{d(x)-1}, y\right\}$, where y is the neighbor of x which is not a leaf of T, as shown in Figure 2.

Figure 2. T.

Claim 1. If $d(x) \geq 6$, then $t(T) \leq t\left(F_{n}\right)$.
Proof. Let T_{x} and T_{y} be two components of $T-x y$ containing x and y respectively. Then $\left|V\left(T_{x}\right)\right|=d(x)$.
Observe that for an M2-CIS S of T, either $x \notin S$ or $x \in S$ with $d_{T[S]}(x)=1$. Let us define
$t_{\bar{x}}=|\{S: x \notin S\}|$,
$t_{x}^{1}=\left|\left\{S: d_{T[S]}(x)=1\right\}\right|$
$=\left|\left\{S: d_{T[S]}(x)=1,\{x, y\} \subseteq S\right\}\right|+\mid\left\{S: d_{T[S]}(x)=1,\left\{x, x_{i}\right\} \subseteq S\right.$, $i \in\{1, \ldots, d(x)-1\}\} \mid$.
Thus, $t(T)=t_{\bar{x}}+t_{x}^{1}$. Since $t_{\bar{x}}=t\left(T_{y}\right)$ and $t_{x}^{1} \leq d(x) \cdot t\left(T_{y}\right)$, we have

$$
\begin{equation*}
t(T) \leq(d(x)+1) \cdot t\left(T_{y}\right) . \tag{3.1}
\end{equation*}
$$

Let $V\left(T_{x}^{\prime}\right)=V\left(T_{x}\right)$. We consider three cases in terms of the modularity of $d(x)(\bmod 3)$.
Case 1. $d(x)=3 s, s \geq 2$
Let $T_{x}^{\prime}=s P_{3}$. Then $t\left(T_{x}^{\prime}\right)=3^{s}$. By (3.1), it follows that for any $s \geq 2$,

$$
t(T) \leq(3 s+1) \cdot t\left(T_{y}\right) \leq 3^{s} \cdot t\left(T_{y}\right)
$$

By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-d(x)}\right)$. Hence, $t(T) \leq t\left(F_{n}\right)$.
Case 2. $d(x)=3 s+1, s \geq 2$
Let $T_{x}^{\prime}=(s-1) P_{3} \cup K_{1,3}$. Then $t\left(T_{x}^{\prime}\right)=4 \cdot 3^{s-1}$. By (3.1), it follows that for any $s \geq 2$,

$$
t(T) \leq(3 s+2) \cdot t\left(T_{y}\right) \leq 4 \cdot 3^{s-1} \cdot t\left(T_{y}\right)
$$

By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-d(x)}\right)$. Hence, $t(T) \leq t\left(F_{n}\right)$.
Case 3. $d(x)=3 s+2, s \geq 2$
Let $T_{x}^{\prime}=(s-2) P_{3} \cup 2 K_{1,3}$. Then $t\left(T_{x}^{\prime}\right)=4^{2} \cdot 3^{s-2}$. By (3.1), it follows that for any $s \geq 2$,

$$
t(T) \leq(3 s+3) \cdot t\left(T_{y}\right) \leq 4^{2} \cdot 3^{s-2} \cdot t\left(T_{y}\right)
$$

By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-d(x)}\right)$. Hence, $t(T) \leq t\left(F_{n}\right)$.
Claim 2. If $d(x)=4$ or 5 , then $t(T) \leq t\left(F_{n}\right)$.
Proof. The meanings of notations here are same as those adopted in Claim 1. Let $F_{1}=T-(N[x] \backslash\{y\})$, $F_{2}=T-N(x)-N(y)$ and $F_{3}=T-N[x]$. Combining these observations with the definition of F_{i}, we get that $t_{\bar{x}}=t\left(F_{1}\right), t_{x}^{1}=t\left(F_{2}\right)+(d(x)-1) \cdot t\left(F_{3}\right)$. Since $t(T)=t_{\bar{x}}+t_{x}^{1}$, we have

$$
\begin{equation*}
t(T)=t\left(F_{1}\right)+t\left(F_{2}\right)+(d(x)-1) \cdot t\left(F_{3}\right) . \tag{3.2}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for each $i \in\{1,2,3\}$. Then $n_{1}=n-d(x), n_{2}=n-d(x)-d(y)$ and $n_{3}=n-d(x)-1$. We consider three cases in terms of the modularity of $n(\bmod 3)$.
Case 1. $n=3 s, s \geq 2$
Subcase 1.1. $d(y)=3 l, l \geq 1$

If $d(x)=4$, then $n_{1}=3(s-2)+2, n_{2}=3(s-l-2)+2$ and $n_{3}=3(s-2)+1$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4^{2} \cdot 3^{s-4}, t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$ and $t\left(F_{3}\right) \leq 4 \cdot 3^{s-3}$. Moreover, since $\frac{4^{2}}{3^{l}}+52 \leq 3^{4}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4^{2}+\frac{4^{2}}{3^{l}}+4 \cdot 3^{2}\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+52\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{1}=3(s-2)+1, n_{2}=3(s-l-2)+1$ and $n_{3}=3(s-2)$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-3}, t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$ and $t\left(F_{3}\right) \leq 3^{s-2}$. Moreover, since $\frac{4}{3^{l}}+16 \leq 3^{3}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4+\frac{4}{3^{l}}+12\right) \cdot 3^{s-3}=\left(\frac{4}{3^{l}}+16\right) \cdot 3^{s-3} \leq 3^{s}=t\left(F_{n}\right) .
$$

Subcase 1.2. $d(y)=3 l+1, l \geq 1$
If $d(x)=4$, then $n_{2}=3(s-l-2)+1$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{12}{3^{l}}+52 \leq 3^{4}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4^{2}+\frac{12}{3^{l}}+4 \cdot 3^{2}\right) \cdot 3^{s-4}=\left(\frac{12}{3^{l}}+52\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{2}=3(s-l-2)$. By the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{3}{3^{l}}+16 \leq 3^{3}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4+\frac{3}{3^{l}}+12\right) \cdot 3^{s-3}=\left(\frac{3}{3^{l}}+16\right) \cdot 3^{s-3} \leq 3^{s}=t\left(F_{n}\right) .
$$

Subcase 1.3. $d(y)=3 l+2, l \geq 0$
If $d(x)=4$, then $n_{2}=3(s-l-2)$. By the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{9}{3^{l}}+52 \leq 3^{4}$ for any $l \geq 0$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T)=\left(4^{2}+\frac{9}{3^{l}}+4 \cdot 3^{2}\right) \cdot 3^{s-4}=\left(\frac{9}{3^{l}}+52\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{2}=3(s-l-3)+2$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-5}$. Moreover, since $\frac{4^{2}}{3^{l}}+144 \leq 3^{5}$ for any $l \geq 0$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T)=\left(4 \cdot 3^{2}+\frac{4^{2}}{3^{l}}+4 \cdot 3^{3}\right) \cdot 3^{s-5}=\left(\frac{4^{2}}{3^{l}}+144\right) \cdot 3^{s-5} \leq 3^{s}=t\left(F_{n}\right) .
$$

Case 2. $n=3 s+1, s \geq 2$
Subcase 2.1. $d(y)=3 l, l \geq 1$
If $d(x)=4$, then $n_{1}=3(s-1), n_{2}=3(s-l-1)$ and $n_{3}=3(s-2)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-1}, t\left(F_{2}\right) \leq 3^{s-l-1}$ and $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-4}$. Moreover, since $\frac{9}{3^{l}}+25 \leq 4 \cdot 3^{2}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(3^{2}+\frac{9}{3^{l}}+4^{2}\right) \cdot 3^{s-3}=\left(\frac{9}{3^{l}}+25\right) \cdot 3^{s-3} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right)
$$

If $d(x)=5$, then $n_{1}=3(s-2)+2, n_{2}=3(s-l-2)+2$ and $n_{3}=3(s-2)+1$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4^{2} \cdot 3^{s-4}, t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$ and $t\left(F_{3}\right) \leq 4 \cdot 3^{s-3}$. Moreover, since $\frac{4^{2}}{3^{l}}+64 \leq 4 \cdot 3^{3}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4^{2}+\frac{4^{2}}{3^{l}}+4^{2} \cdot 3\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+64\right) \cdot 3^{s-4} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Subcase 2.2. $d(y)=3 l+1, l \geq 1$
If $d(x)=4$, then $n_{2}=3(s-l-2)+2$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{l+1}}+25 \leq 4 \cdot 3^{2}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(3^{2}+\frac{4^{2}}{3^{l+1}}+4^{2}\right) \cdot 3^{s-3}=\left(\frac{4^{2}}{3^{l+1}}+25\right) \cdot 3^{s-3} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{2}=3(s-l-2)+1$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{12}{3^{l}}+64 \leq 4 \cdot 3^{3}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4^{2}+\frac{12}{3^{l}}+4^{2} \cdot 3\right) \cdot 3^{s-4}=\left(\frac{12}{3^{l}}+64\right) \cdot 3^{s-4} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right)
$$

Subcase 2.3. $d(y)=3 l+2, l \geq 0$
If $d(x)=4$, then $n_{2}=3(s-l-2)+1$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{4}{3^{l}}+25 \leq 4 \cdot 3^{2}$ for any $l \geq 0$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T)=\left(3^{2}+\frac{4}{3^{l}}+4^{2}\right) \cdot 3^{s-3}=\left(\frac{4}{3^{l}}+25\right) \cdot 3^{s-3} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{2}=3(s-l-2)$. By the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{3^{2}}{3^{l}}+64 \leq 4 \cdot 3^{2}$ for any $l \geq 0$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T)=\left(4^{2}+\frac{3^{2}}{3^{l}}+4^{2} \cdot 3\right) \cdot 3^{s-4}=\left(\frac{3^{2}}{3^{l}}+64\right) \cdot 3^{s-4} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Case 3. $n=3 s+2, s \geq 2$
Subcase 3.1. $d(y)=3 l, l \geq 1$
If $d(x)=4$, then $n_{1}=3(s-1)+1, n_{2}=3(s-l-1)+1$ and $n_{3}=3(s-1)$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-2}, t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-2}$ and $t\left(F_{3}\right) \leq 3^{s-1}$. Moreover, since $\frac{4}{3^{l}}+13 \leq 4^{2}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4+\frac{4}{3^{l}}+3^{2}\right) \cdot 3^{s-2}=\left(\frac{4}{3^{l}}+13\right) \cdot 3^{s-2} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{1}=3(s-1), n_{2}=3(s-l-1)$ and $n_{3}=3(s-2)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-1}, t\left(F_{2}\right) \leq 3^{s-l-1}$ and $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-4}$. Moreover, since $\frac{3^{3}}{3^{l}}+91 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(3^{3}+\frac{3^{3}}{3^{l}}+4^{3}\right) \cdot 3^{s-4}=\left(\frac{3^{3}}{3^{l}}+91\right) \cdot 3^{s-4} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

Subcase 3.2. $d(y)=3 l+1, l \geq 1$
If $d(x)=4$, then $n_{2}=3(s-l-1)$. By the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3}{3^{l}}+13 \leq 4^{2}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(4+\frac{3}{3^{l}}+3^{2}\right) \cdot 3^{s-2}=\left(\frac{3}{3^{l}}+13\right) \cdot 3^{s-2} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

If $d(x)=5$, then $n_{2}=3(s-l-2)+2$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{l}}+91 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 1$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T)=\left(3^{3}+\frac{4^{2}}{3^{l}}+4^{3}\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+91\right) \cdot 3^{s-4} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

Subcase 3.3. $d(y)=3 l+2, l \geq 0$
If $d(x)=4$, then $n_{2}=3(s-l-2)+2$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{+2}}+13 \leq 4^{2}$ for any $l \geq 0$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T)=\left(4+\frac{4^{2}}{3^{l+2}}+3^{2}\right) \cdot 3^{s-2}=\left(\frac{4^{2}}{3^{l+2}}+13\right) \cdot 3^{s-2} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)
$$

If $d(x)=5$, then $n_{2}=3(s-l-2)+1$. By the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{12}{3^{l}}+91 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 0$, by (3.2), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T)=\left(3^{3}+\frac{12}{3^{l}}+4^{3}\right) \cdot 3^{s-4}=\left(\frac{12}{3^{l}}+91\right) \cdot 3^{s-4} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

Claim 3. $t(T) \leq t\left(F_{n}\right)$ if one of the following conditions holds:
(1) $n \geq 6, n \equiv 0$ or $1(\bmod 3), d(x)=3$;
(2) $n \geq 8, n \equiv 2(\bmod 3), d(x)=3, d(y) \geq 3$, where $y \in N(x)$.

Proof. The meanings of notations here are same as those adopted in Claims 1 and 2. By (3.2), we have

$$
\begin{equation*}
t(T)=t\left(F_{1}\right)+t\left(F_{2}\right)+2 t\left(F_{3}\right) . \tag{3.3}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for each $i \in\{1,2,3\}$. We consider three cases in terms of the modularity of $n(\bmod 3)$.

Case 1. $n=3 s, s \geq 2$.
$n_{1}=3(s-1), n_{3}=3(s-2)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-1}$ and $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-4}$.
Subcase 1.1. $d(y)=3 l, l \geq 1$
Since $n_{2}=3(s-l-1)$, by the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3^{3}}{3^{l}}+59 \leq 3^{4}$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(3^{3}+\frac{3^{3}}{3^{l}}+2 \cdot 4^{2}\right) \cdot 3^{s-4}=\left(\frac{3^{3}}{3^{l}}+59\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

Subcase 1.2. $d(y)=3 l+1, l \geq 1$

Since $n_{2}=3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{l}}+59 \leq 3^{4}$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(3^{3}+\frac{4^{2}}{3^{l}}+2 \cdot 4^{2}\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+59\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

Subcase 1.3. $d(y)=3 l+2, l \geq 0$
Since $n_{2}=3(s-l-2)+1$, by the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{12}{3^{l}}+59 \leq 3^{4}$ for any $l \geq 0$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T) \leq\left(3^{3}+\frac{12}{3^{l}}+2 \cdot 4^{2}\right) \cdot 3^{s-4}=\left(\frac{12}{3^{l}}+59\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

Case 2. $n=3 s+1, s \geq 2$
By the definition of $n_{i}, n_{1}=3(s-1)+1, n_{3}=3(s-1)$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-2}$ and $t\left(F_{3}\right) \leq 3^{s-1}$.
Subcase 2.1. $d(y)=3 l, l \geq 1$
Since $n_{2}=3(s-l-1)+1$, by the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-2}$. Moreover, since $\frac{4}{3^{l}}+10 \leq 4 \cdot 3$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4+\frac{4}{3^{l}}+2 \cdot 3\right) \cdot 3^{s-2}=\left(\frac{4}{3^{l}}+10\right) \cdot 3^{s-2} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Subcase 2.2. $d(y)=3 l+1, l \geq 1$
Since $n_{2}=3(s-l-1)$, by the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3}{3^{l}}+10 \leq 4 \cdot 3$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4+\frac{3}{3^{l}}+2 \cdot 3\right) \cdot 3^{s-2}=\left(\frac{3}{3^{l}}+10\right) \cdot 3^{s-2} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Subcase 2.3. $d(y)=3 l+2, l \geq 0$
Since $n_{2}=3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{l}}+90 \leq 4 \cdot 3^{3}$ for any $l \geq 0$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T) \leq\left(4 \cdot 3^{2}+\frac{4^{2}}{3^{l}}+2 \cdot 3^{3}\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+90\right) \cdot 3^{s-4} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Case 3. $n=3 s+2, s \geq 2$
By the definition of $n_{i}, n_{1}=3(s-1)+2, n_{3}=3(s-1)+1$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4^{2} \cdot 3^{s-3}$ and $t\left(F_{3}\right) \leq 4 \cdot 3^{s-2}$.
Subcase 3.1. $d(y)=3 l, l \geq 1$
Since $n_{2}=3(s-l-1)+2$, by the induction hypothesis, $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-3}$. Moreover, since $\frac{4^{2}}{3^{l}}+40 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4^{2}+\frac{4^{2}}{3^{l}}+8 \cdot 3\right) \cdot 3^{s-3}=\left(\frac{4^{2}}{3^{l}}+40\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)
$$

Subcase 3.2. $d(y)=3 l+1, l \geq 1$
Since $n_{2}=3(s-l-1)+1$, by the induction hypothesis, $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-2}$. Moreover, since $\frac{12}{3^{l}}+40 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4^{2}+\frac{12}{3^{l}}+8 \cdot 3\right) \cdot 3^{s-3}=\left(\frac{12}{3^{l}}+40\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

Subcase 3.3. $d(y)=3 l+2, l \geq 1$
Since $n_{2}=3(s-l-1)$, by the induction hypothesis, $t\left(F_{2}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3^{2}}{3^{l}}+40 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.3), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4^{2}+\frac{3^{2}}{3^{l}}+8 \cdot 3\right) \cdot 3^{s-3}=\left(\frac{3^{2}}{3^{l}}+40\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

In view of Claim 3, we consider the case that $d(y)=2$ and $n=3 s+2$ where $s \geq 2$.
Claim 4. Assume that $d(y)=2$ for the remaining neighbor y of x and $d(z) \geq 1$ for the neighbor of y other than x, as shown in Figure 3. If $T-z$ has an isolated vertex or an isolated edge, then $t(T) \leq t\left(F_{n}\right)$.

Figure 3. T.

Proof. Let T_{x} and T_{y} be two components of $T-x y$ containing x and y respectively.
Case 1. $T-z$ has exactly an isolated vertex.
By Lemma 2.4, we distinguish two subcases in terms of $d(z) \geq 3$.
Subcse 1.1. $d(z)=3$
Observe that for an M2-CIS S^{\prime} of T_{y}, either $y \notin S^{\prime}$ or $y \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(y) \leq 1$. Let us define $\tilde{t}_{y}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(y)=0\right\}\right|, \tilde{t}_{y}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(y)=1\right\}\right|, \tilde{t}_{\bar{y}}=\left|\left\{S^{\prime}: y \notin S^{\prime}\right\}\right|$. Thus, $t\left(T_{y}\right)=\tilde{t}_{y}^{0}+\tilde{t}_{y}^{1}+\tilde{t}_{\bar{y}}$.

Observe that for an M2-CIS S of T, either $y \notin S$ or $y \in S$ with $d_{T[S]]}(y) \leq 1$. Let
$t_{y}^{0}=\left|\left\{S: d_{T[S]}(y)=0\right\}\right|=\tilde{t}_{y}^{0}$,
$t_{y}^{1}=\left|\left\{S: d_{T[S]}(y)=1\right\}\right|$
$=\left|\left\{S: d_{T[S]}(y)=1,\{x, y\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(y)=1,\{y, z\} \subseteq S\right\}\right|$
$=\tilde{t}_{y}^{0}+\tilde{t}_{y}^{1}$.
$t_{\bar{y}}=|\{S: y \notin S\}|=|\{S: y \notin S, x \in S\}|+|\{S: y \notin S, x \notin S\}|$
$\leq\left(\tilde{t}_{y}^{0}+2 \tilde{t}_{y}^{1}+2 \tilde{t}_{\bar{y}}\right)+\tilde{t}_{\bar{y}}=\tilde{t}_{y}^{0}+2 \tilde{t}_{y}^{1}+3 \tilde{\tilde{y}}_{\bar{y}}$.
Clearly, $t(T)=t_{y}^{0}+t_{y}^{1}+t_{\bar{y}} \leq 3 \tilde{f}_{y}^{0}+3 \tilde{t}_{y}^{1}+3 \tilde{t}_{\bar{y}}$. Since $t\left(T_{y}\right)=\tilde{t}_{y}^{0}+\tilde{t}_{y}^{1}+\tilde{\tilde{y}}_{\bar{y}}, t(T) \leq 3 t\left(T_{y}\right)=t\left(T_{x}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-3}\right)$. Hence, $t(T) \leq t\left(T_{x}\right) \cdot t\left(F_{n-3}\right) \leq t\left(F_{n}\right)$.
Subcase 1.2. $d(z) \geq 4$
Let $T-y z=T_{y} \cup T_{z}$ where $z \in T_{z}$. Observe that for an M2-CIS S^{\prime} of T_{z}, either $z \notin S^{\prime}$ or $z \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(z)=1$. Let us define $t_{\bar{z}}=\left|\left\{S^{\prime}: z \notin S^{\prime}\right\}\right|$ and $t_{z}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(z)=1\right\}\right|$. Thus, $t\left(T_{z}\right)=t_{\bar{z}}+t_{z}^{1}$.

The meanings of notations here are same as those adopted in Subcase 1.1. Note that $t_{y}^{0}+t_{y}^{1} \leq t_{z}^{1}+2 t_{\bar{z}}$ and $t_{\bar{y}}=2 t\left(T_{z}\right)+t_{z}^{1}$. Thus, $t(T) \leq 2 t\left(T_{z}\right)+2\left(t_{z}^{1}+t_{\bar{z}}\right)$. Since $t\left(T_{z}\right)=t_{\bar{z}}+t_{z}^{1}, t(T) \leq 4 t\left(T_{z}\right)=t\left(T_{y}\right) \cdot t\left(T_{z}\right)$. By the induction hypothesis, $t\left(T_{z}\right) \leq t\left(F_{n-4}\right)$. Hence, $t(T) \leq t\left(T_{y}\right) \cdot t\left(F_{n-4}\right) \leq t\left(F_{n}\right)$.

Case 2. $T-z$ has two isolated vertices.
The meanings of notations here are same as those adopted in Subcases 1.1 and 1.2. Note that $t\left(T_{z}\right)=t_{z}^{1}+t_{\bar{z}}, t_{y}^{0}=t_{\bar{z}}, t_{y}^{1} \leq t_{\bar{z}}+t_{z}^{1}, t_{\bar{y}}=2 t\left(T_{z}\right)+t_{z}^{1}$. Thus, $t(T) \leq 2 t\left(T_{z}\right)+2\left(t_{z}^{1}+t_{\bar{z}}\right)=4 t\left(T_{z}\right)=t\left(T_{y}\right) \cdot t\left(T_{z}\right)$. By the induction hypothesis, $t\left(T_{z}\right) \leq t\left(F_{n-4}\right)$. Hence, $t(T) \leq t\left(T_{y}\right) \cdot t\left(F_{n-4}\right) \leq t\left(F_{n}\right)$.
Case 3. $T-z$ has an isolated edge.
Note that $t_{z}^{1}+t_{\bar{z}} \leq t\left(T_{z}\right)$. By a similar argument as in the proof of Case 2, we show that $t(T) \leq$ $t\left(F_{n}\right)$.

In view of Claim 4, we consider the case that $d(z)=2$.
Claim 5. Assume that there exists a path $P:=x y z w$ in T with $d(x)=3, d(y)=d(z)=2$, as shown in Figure 4. We have $t(T) \leq t\left(F_{n}\right)$ if one of the following conditions holds:
(1) $T-w$ has an isolated vertex or an isolated edge;
(2) $T-w$ has no isolated vertex or isolated edge, where $d(w) \neq 2$.

Figure 4. T.
Proof. Let $N(w)=\left\{w_{1}, \ldots, w_{d(w)-1}, z\right\}$. We consider two cases in the following.
Case 1. $T-w$ has an isolated vertex or an isolated edge.
Subcase 1.1. $T-w$ has an isolated vertex.
Let $T-y z=T_{y} \cup T_{z}$ where $z \in T_{z}$. Observe that for an M2-CIS S^{\prime} of T_{z}, either $z \notin S^{\prime}$ or $z \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(z) \leq 1$. Let us define $\tilde{t}_{z}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(z)=0\right\}\right|, \tilde{t}_{\bar{z}}=\left|\left\{S^{\prime}: z \notin S^{\prime}\right\}\right|, \tilde{t}_{z}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(z)=1\right\}\right|$. Thus, $t\left(T_{z}\right)=\tilde{f}_{z}^{0}+\tilde{t}_{z}^{1}+\tilde{t}_{\bar{z}}$.

Observe that for an M2-CIS S of T, either $z \notin S$ or $z \in S$ with $d_{T[S]}(z) \leq 1$. Let
$t_{z}^{0}=\left|\left\{S: d_{T[S]}(z)=0\right\}\right|=2 \tilde{t}_{z}^{0}$,
$t_{z}^{1}=\left|\left\{S: d_{T[S]}(z)=1\right\}\right|$
$=\left|\left\{S: d_{T[S]}(z)=1,\{y, z\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(z)=1,\{z, w\} \subseteq S\right\}\right|$
$=\tilde{t}_{z}^{0}+3 \tilde{z}_{z}^{1}$,
$t_{\bar{z}}=|\{S: z \notin S\}|$
$=\left|\left\{S: z \notin S, y \in S, d_{T[S]}(y)=0\right\}\right|+\left|\left\{S: z \notin S, y \in S, d_{T[S]}(y)=1\right\}\right|$
$+|\{S: z \notin S, y \notin S\}|$
$=\tilde{t}_{\bar{z}}+\left(\left|\left\{S: z \notin S, y \in S, d_{T[S]}(y)=1, w \notin S\right\}\right|\right.$
$\left.+\left|\left\{S: z \notin S, y \in S, d_{T[S]}(y)=1, w \in S\right\}\right|\right)+2 \tilde{\tau}_{\bar{z}}$
$\leq 3 \tilde{t}_{\bar{z}}+\left(\tilde{t}_{z}^{0}+\tilde{t}_{\bar{z}}\right)=\tilde{t}_{z}^{0}+4 \tilde{t}_{\bar{z}}$.
Obviously, $t(T)=t_{z}^{0}+t_{z}^{1}+t_{\bar{z}} \leq 4 \tilde{t}_{z}^{0}+3 \tilde{t}_{z}^{1}+4 \tilde{t}_{\bar{z}}$. Since $t\left(T_{z}\right)=\tilde{t}_{z}^{0}+\tilde{t}_{z}^{1}+\tilde{t}_{\bar{z}}, t(T) \leq 4 t\left(T_{z}\right)=t\left(T_{y}\right) \cdot t\left(T_{z}\right)$. By the induction hypothesis, $t\left(T_{z}\right) \leq t\left(F_{n-4}\right)$. Hence, $t(T) \leq t\left(T_{y}\right) \cdot t\left(F_{n-4}\right) \leq t\left(F_{n}\right)$.

Subcase 1.2. $T-w$ has an isolated edge.
By Lemma 2.4, $d(w) \geq 3$. Let $T-z w=T_{z} \cup T_{w}$ where $w \in T_{w}$ and $T_{z}^{\prime}=K_{1,4}$ where $V\left(T_{z}^{\prime}\right)=V\left(T_{z}\right)$. Then $t\left(T_{z}^{\prime}\right)=5$. Observe that for an M2-CIS S^{\prime} of T_{w}, either $w \notin S^{\prime}$ or $w \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(w) \leq 1$. Let us define $t_{w}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(w)=0\right\}\right|, t_{\bar{w}}=\left|\left\{S^{\prime}: w \notin S^{\prime}\right\}\right|, t_{w}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(w)=1\right\}\right|$. Thus, $t\left(T_{w}\right)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}}$.

The meanings of notations here are same as those adopted in Subcase 1.1. Note that $t_{z}^{0}=2 t_{\bar{w}}$, $t_{z}^{1} \leq 2 t_{w}^{0}+t_{w}^{1}+2 t_{\bar{w}}$ and $t_{\bar{z}}=t\left(T_{w}\right)+t_{w}^{0}+3 t_{w}^{1}$.

We obtain that $t(T)=t_{z}^{0}+t_{z}^{1}+t_{\bar{z}} \leq t\left(T_{w}\right)+3 t_{w}^{0}+4 t_{w}^{1}+4 t_{\bar{w}}$. Since $t\left(T_{w}\right)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}}, t(T) \leq 5 t\left(T_{w}\right)=$ $t\left(T_{z}^{\prime}\right) \cdot t\left(T_{w}\right)$. By the induction hypothesis, $t\left(T_{w}\right) \leq t\left(F_{n-5}\right)$. Hence, $t(T) \leq t\left(T_{z}^{\prime}\right) \cdot t\left(F_{n-5}\right) \leq t\left(F_{n}\right)$.
Case 2. $T-w$ has no isolated vertex or isolated edge, where $d(w) \neq 2$.
The meanings of notations here are same as those adopted in Subcase 1.1. Let $F_{1}=T-(N[x] \cup\{z\})$, $F_{2}=T-N[x]-V(P), F_{3}=T-N[x]-V(P)-N(w)$ and $F_{4}=T-N[x]-V(P)-N(w)-N\left(w_{i}\right)$. Combining these observations with the definition of F_{i}, we get that $t_{z}^{0}=2 t\left(F_{2}\right), t_{z}^{1}=t\left(F_{2}\right)+3 t\left(F_{3}\right)$, $t_{\bar{z}}=t\left(F_{1}\right)+t\left(F_{3}\right)+3(d(w)-1) \cdot t\left(F_{4}\right)$. Since $t(T)=t_{z}^{0}+t_{z}^{1}+t_{\bar{z}}$, we have

$$
\begin{equation*}
t(T)=t\left(F_{1}\right)+3 t\left(F_{2}\right)+4 t\left(F_{3}\right)+3(d(w)-1) \cdot t\left(F_{4}\right) . \tag{3.4}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for each $i \in\{1,2,3,4\}$. Then $n_{1}=3(s-1), n_{2}=3(s-2)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-1}$ and $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-4}$. We consider three cases in terms of the modularity of $d(w)(\bmod 3)$.
Subcase 2.1. $d(w)=3 l, l \geq 1$
Since $n_{3}=3(s-l-1), n_{4} \leq 3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{3}\right) \leq 3^{s-l-1}$ and $t\left(F_{4}\right) \leq 4^{2} \cdot 3^{s l-4}$. Moreover, since $\frac{48 l+20}{3^{l}}+25 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.4), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & \leq\left(3^{2}+4^{2}+\frac{4 \cdot 3^{2}}{3^{l}}+\frac{4^{2}(3 l-1)}{3^{l}}\right) \cdot 3^{s-3} \\
& =\left(\frac{488+20}{3^{l}}+25\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
\end{aligned}
$$

Subcase 2.2. $d(w)=3 l+1, l \geq 1$
Since $n_{3}=3(s-l-2)+2, n_{4} \leq 3(s-l-2)+1$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-l-4}$ and $t\left(F_{4}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{108 l+64}{3^{l}}+75 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 1$, by (3.4), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & \leq\left(3^{3}+4^{2} \cdot 3+\frac{4^{3}}{3^{l}}+\frac{41 \cdot 3^{3}}{3^{l}}\right) \cdot 3^{s-4} \\
& =\left(\frac{108++64}{3^{l}}+75\right) \cdot 3^{s-4} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
\end{aligned}
$$

Subcase 2.3. $d(w)=3 l+2, l \geq 1$
Since $n_{3}=3(s-l-2)+1, n_{4} \leq 3(s-l-2)$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4 \cdot 3^{s-l-3}$ and $t\left(F_{4}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{27 l+25}{3^{l}}+25 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.4), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & \leq\left(3^{2}+4^{2}+\frac{4^{2}}{3^{l}}+\frac{3^{2}(3 l+1)}{3^{l}}\right) \cdot 3^{s-3} \\
& =\left(\frac{27 l+25}{3^{l}}+25\right) \cdot 3^{s-3^{l}} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
\end{aligned}
$$

In view of Claim 5, we proceed to consider the case that $d(w)=2$.

Claim 6. Assume that there exists a path $P:=x y z w u$ in T with $d(x)=3, d(y)=d(z)=d(w)=2$, as shown in Figure 5. We have $t(T) \leq t\left(F_{n}\right)$ if one of the following conditions holds:
(1) $T-u$ has an isolated vertex or an isolated edge;
(2) $T-u$ has no isolated vertex or isolated edge, where $d(u) \neq 2$.

Figure 5. T.

Proof. Let $T-w u=T_{w} \cup T_{u}$ where $u \in T_{u}$ and $N(u)=\left\{u_{1}, \ldots, u_{d(u)-1}, w\right\}$.
Case 1. $T-u$ has an isolated vertex or an isolated edge.
Subcase 1.1. $T-u$ has an isolated vertex.
By Lemma 2.4, $d(u) \geq 3$. Let $T_{w}^{\prime}=2 P_{3}$ where $V\left(T_{w}^{\prime}\right)=V\left(T_{w}\right)$. Then $t\left(T_{w}^{\prime}\right)=9$. Observe that for an M2-CIS S^{\prime} of T_{u}, either $u \notin S^{\prime}$ or $u \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(u)=1$. Let us define $t_{u}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(u)=1\right\}\right|$, $t_{\bar{u}}=\left|\left\{S^{\prime}: u \notin S^{\prime}\right\}\right|$. Thus, $t\left(T_{u}\right)=t_{u}^{1}+t_{\bar{u}}$.

Observe that for an M2-CIS S of T, either $w \notin S$ or $w \in S$ with $d_{T[S]}(w) \leq 1$. Let

```
\(t_{w}^{0}=\left|\left\{S: d_{T[S]}(w)=0\right\}\right| \leq 4 t_{\bar{u}}\),
\(t_{w}^{1}=\left|\left\{S: d_{T[S]}(w)=1\right\}\right|\)
        \(=\left|\left\{S: d_{T[S]}(w)=1,\{w, u\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(w)=1,\{w, z\} \subseteq S\right\}\right|\)
        \(\leq 4 t_{u}^{1}+\left(t_{u}^{1}+4 t_{\bar{u}}\right)=5 t_{u}^{1}+4 t_{\bar{u}}\).
    \(t_{\bar{w}}=|\{S: w \notin S\}|\)
        \(=\left|\left\{S: w \notin S, z \in S, d_{T[S]}(z)=0\right\}\right|+\left|\left\{S: w \notin S, z \in S, d_{T[S]}(z)=1\right\}\right|\)
            \(+|\{S: w \notin S, z \notin S\}|\)
        \(=2 t_{u}^{1}+t\left(T_{u}\right)+t_{u}^{1}=3 t_{u}^{1}+t\left(T_{u}\right)\).
```

Clearly, $t(T)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}} \leq t\left(T_{u}\right)+8\left(t_{u}^{1}+t_{\bar{u}}\right)$. Since $t\left(T_{u}\right)=t_{u}^{1}+t_{\bar{u}}, t(T) \leq 9 t\left(T_{u}\right)=t\left(T_{w}^{\prime}\right) \cdot t\left(T_{u}\right)$. By the induction hypothesis, $t\left(T_{u}\right) \leq t\left(F_{n-6}\right)$. Hence, $t(T) \leq t\left(T_{w}^{\prime}\right) \cdot t\left(F_{n-6}\right) \leq t\left(F_{n}\right)$.

Subcase 1.2. $T-u$ has an isolated edge.
The meanings of notations here are same as those adopted in Subcase 1.1, with exception that adding the definition of t_{u}^{0}. More precisely, let $t_{u}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(u)=0\right\}\right|$. Then $t\left(T_{u}\right)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}$.

Note that $t_{w}^{0}=2 t_{\bar{u}}, t_{w}^{1} \leq 4 t_{u}^{1}+3 t_{\bar{u}}$ and $t_{\bar{w}} \leq 2 t_{u}^{0}+3 t_{u}^{1}+t\left(T_{u}\right)$. Thus, $t(T)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}} \leq$ $t\left(T_{u}\right)+2 t_{u}^{0}+7 t_{u}^{1}+5 t_{\bar{u}}$. Moreover, $t\left(T_{u}\right)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}, t(T) \leq 8 t\left(T_{u}\right)<9 t\left(T_{u}\right)=t\left(T_{w}^{\prime}\right) \cdot t\left(T_{u}\right)$. By the induction hypothesis, $t\left(T_{u}\right) \leq t\left(F_{n-6}\right)$. Hence, $t(T) \leq t\left(T_{w}^{\prime}\right) \cdot t\left(F_{n-6}\right) \leq t\left(F_{n}\right)$.
Case 2. $T-u$ has no isolated vertex or isolated edge, where $d(u) \neq 2$.
The meanings of notations here are same as those adopted in Subcase 1.1. Let $F_{1}=T-N(x)-V(P)$, $F_{2}=T-N(x)-(V(P) \backslash\{u\}), F_{3}=T-N(x)-V(P)-N(u)$ and $F_{4}=T-N(x)-V(P)-N(u)-N\left(u_{i}\right)$. Combining these observations with the definition of F_{i}, we get that $t_{w}^{0}=2 t\left(F_{1}\right), t_{w}^{1}=3 t\left(F_{1}\right)+4 t\left(F_{3}\right)$, $t_{\bar{w}}=t\left(F_{2}\right)+2 t\left(F_{3}\right)+3(d(u)-1) \cdot t\left(F_{4}\right)$. Since $t(T)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}}$, we have

$$
\begin{equation*}
t(T)=5 t\left(F_{1}\right)+t\left(F_{2}\right)+6 t\left(F_{3}\right)+3(d(u)-1) \cdot t\left(F_{4}\right) . \tag{3.5}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for $i \in\{1,2,3,4\}$. Then $n_{1}=3(s-2)+1$ and $n_{2}=3(s-2)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-3}$ and $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-4}$. Now we consider three subcases in terms of $d(u)(\bmod 3)$.

Subcase 2.1. $d(u)=3 l, l \geq 1$
By the definition of $n_{i}, n_{3}=3(s-l-2)+2$ and $n_{4} \leq 3(s-l-2)+1$. By the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-l-4}$ and $t\left(F_{4}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{108 l+60}{3^{l}}+76 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 1$, by (3.5), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & =\left(5 \cdot 4 \cdot 3+4^{2}+\frac{6 \cdot 4^{2}}{3^{l}}+\frac{4 \cdot 3^{2} \cdot(3 l-1)}{3^{l}}\right) \cdot 3^{s-4} \\
& =\left(\frac{108 l+60}{3^{l}}+76\right) \cdot 3^{s-4} \\
& \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)
\end{aligned}
$$

Subcase 2.2. $d(u)=3 l+1, l \geq 1$
By the definition of $n_{i}, n_{3}=3(s-l-2)+1$ and $n_{4}=3(s-l-2)$. By the induction hypothesis, $t\left(F_{3}\right) \leq 4 \cdot 3^{s-l-3}$ and $t\left(F_{4}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{81 l+72}{3^{l}}+76 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 1$, by (3.5), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & =\left(5 \cdot 4 \cdot 3+4^{2}+\frac{6 \cdot 12}{3^{l}}+\frac{3^{4} l}{3^{l}}\right) \cdot 3^{s-4} \\
& =\left(\frac{81 l+72}{3^{l}}+76\right) \cdot 3^{s-4} \\
& \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)
\end{aligned}
$$

Subcase 2.3. $d(u)=3 l+2, l \geq 1$
By the definition of $n_{i}, n_{3}=3(s-l-2)$ and $n_{4}=3(s-l-3)+2$. By the induction hypothesis, $t\left(F_{3}\right) \leq 3^{s-l-2}$ and $t\left(F_{4}\right) \leq 4^{2} \cdot 3^{s-l-5}$. Moreover, since $\frac{48 l+70}{3^{l}}+76 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 1$, by (3.5), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & =\left(5 \cdot 4 \cdot 3+4^{2}+\frac{6 \cdot 3^{2}}{3^{l}}+\frac{4^{2}(3 l+1)}{3^{l}}\right) \cdot 3^{s-4} \\
& \leq\left(\frac{48 l+70}{3^{l}}+76\right) \cdot 3^{s-4} \\
& \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)
\end{aligned}
$$

In view of Claim 6, we proceed to consider the case that $d(u)=2$.
Claim 7. Assume that there exists a path $P:=x y z w u q$ in T with $d(x)=3, d(y)=d(z)=d(w)=d(u)=$ 2, as shown in Figure 6. We have $t(T) \leq t\left(F_{n}\right)$.

Figure 6. T.

Proof. Let $T-u q=T_{u} \cup T_{q}$ where $q \in T_{q}$ and $N(q)=\left\{q_{1}, \ldots, q_{d(q)-1}, u\right\}$.

Case 1. $T-q$ has an isolated vertex.
By Lemma 2.4, $d(q) \geq 3$. Let $T_{u}^{\prime}=P_{3} \cup K_{1,3}$ where $V\left(T_{u}^{\prime}\right)=V\left(T_{u}\right)$. Then $t\left(T_{u}^{\prime}\right)=12$. Observe that for an M2-CIS S^{\prime} of T_{q}, either $q \notin S^{\prime}$ or $q \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(q)=1$. Let us define $t_{q}^{1}=\mid\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(q)=\right.$ $1\}\left|, t_{\bar{q}}=\left|\left\{S^{\prime}: q \notin S^{\prime}\right\}\right|\right.$. Thus, $t\left(T_{q}\right)=t_{q}^{1}+t_{\bar{q}}$.

Observe that for an M2-CIS S of T, either $u \notin S$ or $u \in S$ with $d_{T[S]}(u) \leq 1$. Let

$$
\begin{aligned}
t_{u}^{0}= & \left|\left\{S: d_{T[S]}(u)=0\right\}\right| \\
= & \left|\left\{S: d_{T[S]}(u)=0, z \in S, d_{T[S]}(z)=1\right\}\right|+\mid\left\{S: d_{T[S]}(u)=0, z \in S,\right. \\
& \left.d_{T[S]}(z)=0\right\} \mid \\
\leq & 2 t_{\bar{q}}+\left(t_{q}^{1}+t_{\bar{q}}\right)=t_{q}^{1}+3 t_{\bar{q}} . \\
t_{u}^{1}= & \left|\left\{S: d_{T[S]}(u)=1\right\}\right| \\
= & \left|\left\{S: d_{T[S]}(u)=1,\{u, q\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(u)=1,\{w, u\} \subseteq S\right\}\right| \\
\leq & 4 t_{q}^{1}+\left(6 t_{\bar{q}}+t_{q}^{1}\right)=5 t_{q}^{1}+6 t_{\bar{q}}, \\
t_{\bar{u}}= & |\{S: u \notin S\}| \\
= & \left|\left\{S: u \notin S, w \in S, d_{T[S]}(w)=0\right\}\right|+\left|\left\{S: u \notin S, w \in S, d_{T[S]}(w)=1\right\}\right| \\
& +|\{S: u \notin S, w \notin S\}| \\
= & 2 t_{q}^{1}+3 t\left(T_{q}\right)+t_{q}^{1}=3 t_{q}^{1}+3 t\left(T_{q}\right) .
\end{aligned}
$$

Clearly, $t(T)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}} \leq 3 t\left(T_{q}\right)+9\left(t_{q}^{1}+t_{\bar{q}}\right)$. Since $t\left(T_{q}\right)=t_{q}^{1}+t_{\bar{q}}, t(T) \leq 12 t\left(T_{q}\right)=t\left(T_{u}^{\prime}\right) \cdot t\left(T_{q}\right)$.
By the induction hypothesis, $t\left(T_{q}\right) \leq t\left(F_{n-7}\right)$. Hence, $t(T) \leq t\left(T_{u}^{\prime}\right) \cdot t\left(F_{n-7}\right) \leq t\left(F_{n}\right)$.
Case 2. $T-q$ has no isolated vertex.
The meanings of notations here are same as those adopted in Case 1. Let $F_{1}=T-N(x)-V(P)-N(q)$, $F_{2}=T-N(x)-V(P)-N(q)-N\left(q_{i}\right), F_{3}=T-N(x)-V(P)$ and $F_{4}=T-N(x)-(V(P) \backslash\{q\})$. Combining these observations with the definition of F_{i}, we get that $t_{u}^{0}=3 t\left(F_{3}\right), t_{u}^{1}=4 t\left(F_{1}\right)+4 t\left(F_{3}\right)$, $t_{\bar{u}}=2 t\left(F_{1}\right)+3(d(q)-1) \cdot t\left(F_{2}\right)+3 t\left(F_{4}\right)$. Since $t(T)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}$, we have

$$
\begin{equation*}
t(T)=6 t\left(F_{1}\right)+3(d(q)-1) \cdot t\left(F_{2}\right)+7 t\left(F_{3}\right)+3 t\left(F_{4}\right) \tag{3.6}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for $i \in\{1,2,3,4\}$. Then $n_{3}=3(s-2)$ and $n_{4}=3(s-2)+1$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-2}$ and $t\left(F_{4}\right) \leq 4 \cdot 3^{s-3}$. We consider three subcases in terms of $d(q)(\bmod 3)$.
Subcase 2.1. $d(q)=3 l, l \geq 1$
By the definition of $n_{i}, n_{1}=3(s-l-2)+1$ and $n_{2} \leq 3(s-l-2)$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-l-3}$ and $t\left(F_{2}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{9 l+5}{3^{l}}+11 \leq 4^{2}$ for any $l \geq 1$, by (3.6), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & \leq\left(\frac{8}{3 l}+\frac{3(3 l-1)}{3^{l}}+11\right) \cdot 3^{s-2} \leq\left(\frac{9 l+5}{3^{l}}+11\right) \cdot 3^{s-2} \\
& \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
\end{aligned}
$$

Subcase 2.2. $d(q)=3 l+1, l \geq 1$
By the definition of $n_{i}, n_{1}=3(s-l-2)$ and $n_{2} \leq 3(s-l-3)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-l-2}$ and $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-5}$. Moreover, since $\frac{16 l+18}{3^{l}}+33 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.6), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
\begin{aligned}
t(T) & \leq\left(\frac{18}{3^{l}}+\frac{4^{2} l}{3^{l}}+33\right) \cdot 3^{s-3} \leq\left(\frac{16 l+18}{3^{l}}+33\right) \cdot 3^{s-3} \\
& \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
\end{aligned}
$$

Subcase 2.3. $d(q)=3 l+2, l \geq 0$
By the definition of $n_{i}, n_{1}=3(s-l-3)+2$ and $n_{2} \leq 3(s-l-3)+1$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4^{2} \cdot 3^{s-l-5}$ and $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-4}$. Moreover, since $\frac{36 l+44}{3^{l}}+99 \leq 4^{2} \cdot 3^{2}$ for any $l \geq 0$, by (3.6), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
\begin{aligned}
t(T) & \leq\left(\frac{2 \cdot 42^{2}}{3^{l}}+\frac{12(3 l+1)}{3^{l}}+99\right) \cdot 3^{s-4} \leq\left(\frac{36 l+44}{3^{l}}+99\right) \cdot 3^{s-4} \\
& \leq 4^{2^{l}} \cdot 3^{s-2}=t\left(F_{n}\right) .
\end{aligned}
$$

By Lemma 2.2, we consider the case that there exists a vertex with one neighbor being leaf.
Claim 8. Assume that there exists a path $P:=x y z$ in T with $d(x)=1, d(y)=2$, as shown in Figure 7. We have $t(T) \leq t\left(F_{n}\right)$ if one of the following conditions holds:
(1) $T-z$ has an isolated vertex or an isolated edge other than the component $x y$;
(2) $T-z$ has no isolated vertex or isolated edge, where $d(z) \geq 3$.

Figure 7. T.

Proof. Let $T-y z=T_{y} \cup T_{z}$ where $z \in T_{z}$ and $N(z)=\left\{z_{1}, \ldots, z_{d(z)-1}, y\right\}$.
Case 1. $T-z$ has an isolated vertex.
Let $T_{y}^{\prime}=P_{3}$ where $V\left(T_{y}^{\prime}\right)=\left\{x, y, z_{1}\right\}$. Then $t\left(T_{y}^{\prime}\right)=3$.
Subcase 1.1. $T-z$ has exactly an isolated vertex, say z_{1}.
Observe that for an M2-CIS S^{\prime} of $T_{z}-z_{1}$, either $z \notin S^{\prime}$ or $z \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(z) \leq 1$. Let us define $t_{z}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(z)=0\right\}\right|, t_{\bar{z}}=\left|\left\{S^{\prime}: z \notin S^{\prime}\right\}\right|, t_{z}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(z)=1\right\}\right|$. Thus, $t\left(T_{z}-z_{1}\right)=t_{z}^{0}+t_{z}^{1}+t_{\bar{z}}$.

Observe that for an M2-CIS S of T, either $y \notin S$ or $y \in S$ with $d_{T[S]}(y)=1$. Let
$t_{\bar{y}}=|\{S: y \notin S\}| \leq t\left(T_{z}-z_{1}\right)+t_{z}^{1}$,
$t_{y}^{1}=\left|\left\{S: d_{T[S]}(y)=1\right\}\right|$
$=\left|\left\{S: d_{T[S]}(y)=1,\{x, y\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(y)=1,\{y, z\} \subseteq S\right\}\right|$
$\leq t\left(T_{z}-z_{1}\right)+t_{z}^{0}+t_{\bar{z}}$,
Clearly, $t(T)=t_{\bar{y}}+t_{y}^{1} \leq 2 t\left(T_{z}-z_{1}\right)+t_{z}^{0}+t_{z}^{1}+t_{\bar{z}}$. Since $t\left(T_{z}-z_{1}\right)=t_{z}^{0}+t_{z}^{1}+t_{\bar{z}}, t(T) \leq 3 t\left(T_{z}-z_{1}\right)=$ $t\left(T_{y}^{\prime}\right) \cdot t\left(T_{z}-z_{1}\right)$. By the induction hypothesis, $t\left(T_{z}-z_{1}\right) \leq t\left(F_{n-3}\right)$. Hence, $t(T) \leq t\left(T_{y}^{\prime}\right) \cdot t\left(F_{n-3}\right) \leq t\left(F_{n}\right)$.
Subcase 1.2. $T-z$ has two isolated vertices.
Observe that for an M2-CIS S^{\prime} of $T_{z}-z_{1}$, either $z \notin S^{\prime}$ or $z \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(z)=1$. Let $t_{\bar{z}}=\mid\left\{S^{\prime}\right.$: $\left.z \notin S^{\prime}\right\}\left|, t_{z}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(z)=1\right\}\right|\right.$. Then $t\left(T_{z}-z_{1}\right)=t_{\bar{z}}+t_{z}^{1}$.

The meanings of notations here are same as those adopted in Subcase 1.1. Note that $t_{\bar{y}} \leq 2 t_{z}^{1}$ and $t_{y}^{1} \leq 2 t_{\bar{z}}+t\left(T_{z}-z_{1}\right)$. We have $t(T)=t_{\bar{y}}+t_{y}^{1} \leq t\left(T_{z}-z_{1}\right)+2\left(t_{\bar{z}}+t_{z}^{1}\right)$. Moreover, $t\left(T_{z}-z_{1}\right)=t_{\bar{z}}+t_{z}^{1}$, $t(T) \leq 3 t\left(T_{z}-z_{1}\right)=t\left(T_{y}^{\prime}\right) \cdot t\left(T_{z}-z_{1}\right)$. By the induction hypothesis, $t\left(T_{z}-z_{1}\right) \leq t\left(F_{n-3}\right)$. Hence, $t(T) \leq t\left(T_{y}^{\prime}\right) \cdot t\left(F_{n-3}\right) \leq t\left(F_{n}\right)$.

Case 2. $T-z$ has an isolated edge, say $z_{1} z_{1}^{1}$.
Let $T_{y}^{\prime}=K_{1,3}$ where $V\left(T_{y}^{\prime}\right)=\left\{x, y, z_{1}, z_{1}^{1}\right\}$. Then $t\left(T_{y}^{\prime}\right)=4$. The meanings of nations here are same as those adopted in Subcase 1.1. It is sufficient to note that $t_{z}^{0}+t_{z}^{1} \leq t\left(T_{z}-z_{1} z_{1}^{1}\right), t_{\bar{y}} \leq t\left(T_{z}-z_{1} z_{1}^{1}\right)+t_{z}^{0}+t_{z}^{1}$ and $t_{y}^{1} \leq 2 t\left(T_{z}-z_{1} z_{1}^{1}\right)$. Thus, $t(T)=t_{\bar{y}}+t_{y}^{1} \leq 4 t\left(T_{z}-z_{1} z_{1}^{1}\right)=t\left(T_{y}^{\prime}\right) \cdot t\left(T_{z}-z_{1} z_{1}^{1}\right)$. By the induction hypothesis, $t\left(T_{z}-z_{1} z_{1}^{1}\right) \leq t\left(F_{n-4}\right)$. Hence, $t(T) \leq t\left(T_{y}^{\prime}\right) \cdot t\left(F_{n-4}\right) \leq t\left(F_{n}\right)$.

In view of Claim 8, we consider the case that $d(z)=2$.
Claim 9. Assume that there exists a path $P:=x y z w$ in T with $d(x)=1, d(y)=d(z)=2$, as shown in Figure 8 . We have $t(T) \leq t\left(F_{n}\right)$ if one of the following conditions holds:
(1) $n \geq 6, n \equiv 0$ or $1(\bmod 3)$;
(2) $n \geq 8, n \equiv 2(\bmod 3), d(w) \geq 3$.

Figure 8. T.
Proof. Let $F_{1}=T-N[y], F_{2}=T-V(P)$, and $F_{3}=T-V(P)-N(w)$. Observe that for an M2-CIS S of T, either $z \notin S$ or $z \in S$ with $d_{T[S]}(z) \leq 1$. Let us define

$$
\begin{aligned}
t_{\bar{\imath}} & =|\{S: z \notin S\}|=t\left(F_{1}\right), t_{z}^{0}=\left|\left\{S: d_{T[S]}(z)=0\right\}\right|=t\left(F_{2}\right), \\
t_{z}^{1} & =\left|\left\{S: d_{T[S]}(z)=1\right\}\right| \\
& =\left|\left\{S: d_{T[S]}(z)=1,\{y, z\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(z)=1,\{z, w\} \subseteq S\right\}\right| \\
& =t\left(F_{2}\right)+t\left(F_{3}\right) .
\end{aligned}
$$

Since $t(T)=t_{\bar{z}}+t_{z}^{0}+t_{z}^{1}$, we have

$$
\begin{equation*}
t(T)=t\left(F_{1}\right)+2 t\left(F_{2}\right)+t\left(F_{3}\right) \tag{3.7}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for each $i \in\{1,2,3\}$. We consider three cases in terms of the modularity of $n(\bmod 3)$.
Case 1. $n=3 s, s \geq 2$.
By the definition of $n_{i}, n_{1}=3(s-1), n_{2}=3(s-2)+2$. By the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-1}$ and $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-4}$. We distinguish three subcases according to $d(w)(\bmod 3)$.
Subcase 1.1. $d(w)=3 l, l \geq 1$,
Since $n_{3}=3(s-l-1)$, by the induction hypothesis, $t\left(F_{3}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3^{3}}{3^{l}}+59 \leq 3^{4}$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(3^{3}+2 \cdot 4^{2}+\frac{3^{3}}{3^{l}}\right) \cdot 3^{s-4}=\left(\frac{3^{3}}{3^{l}}+59\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

Subcase 1.2. $d(w)=3 l+1, l \geq 1$
Since $n_{3}=3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{l}}+59 \leq 3^{4}$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(3^{3}+2 \cdot 4^{2}+\frac{4^{2}}{3^{l}}\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+59\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

Subcase 1.3. $d(w)=3 l+2, l \geq 0$
Since $n_{3}=3(s-l-2)+1$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{12}{3^{l}}+59 \leq 3^{4}$ for any $l \geq 0$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T) \leq\left(3^{3}+2 \cdot 4^{2}+\frac{12}{3^{l}}\right) \cdot 3^{s-4}=\left(\frac{12}{3^{l}}+59\right) \cdot 3^{s-4} \leq 3^{s}=t\left(F_{n}\right) .
$$

Case 2. $n=3 s+1, s \geq 2$
By the definition of $n_{i}, n_{1}=3(s-1)+1, n_{2}=3(s-1)$, by the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-2}$ and $t\left(F_{2}\right) \leq 3^{s-1}$.

Subcase 2.1. $d(w)=3 l, l \geq 1$
Since $n_{3}=3(s-l-1)+1$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4 \cdot 3^{s-l-2}$. Moreover, since $\frac{4}{3^{l}}+10 \leq 4 \cdot 3$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4+2 \cdot 3+\frac{4}{3^{l}}\right) \cdot 3^{s-2}=\left(\frac{4}{3^{l}}+10\right) \cdot 3^{s-2} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Subcase 2.2. $d(w)=3 l+1, l \geq 1$
Since $n_{3}=3(s-l-1)$, by the induction hypothesis, $t\left(F_{3}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3}{3^{l}}+10 \leq 4 \cdot 3$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4+2 \cdot 3+\frac{3}{3^{l}}\right) \cdot 3^{s-2}=\left(\frac{3}{3^{l}}+10\right) \cdot 3^{s-2} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Subcase 2.3. $d(w)=3 l+2, l \geq 0$
Since $n_{3}=3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{4^{2}}{3^{l}}+90 \leq 4 \cdot 3^{3}$ for any $l \geq 0$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 0$,

$$
t(T) \leq\left(4 \cdot 3^{2}+2 \cdot 3^{3}+\frac{4^{2}}{3^{l}}\right) \cdot 3^{s-4}=\left(\frac{4^{2}}{3^{l}}+90\right) \cdot 3^{s-4} \leq 4 \cdot 3^{s-1}=t\left(F_{n}\right) .
$$

Case 3. $n=3 s+2, s \geq 2$
By the definition of $n_{i}, n_{1}=3(s-1)+2, n_{2}=3(s-1)+1$. By the induction hypothesis, we have $t\left(F_{1}\right) \leq 4^{2} \cdot 3^{s-3}$ and $t\left(F_{2}\right) \leq 4 \cdot 3^{s-2}$.
Subcase 3.1. $d(w)=3 l, l \geq 1$
Since $n_{3}=3(s-l-1)+2$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-l-3}$. Moreover, since $\frac{4^{2}}{3^{l}}+40 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4^{2}+8 \cdot 3+\frac{4^{2}}{3^{l}}\right) \cdot 3^{s-3}=\left(\frac{4^{2}}{3^{l}}+40\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

Subcase 3.2. $d(w)=3 l+1, l \geq 1$
Since $n_{3}=3(s-l-1)+1$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4 \cdot 3^{s-l-2}$. Moreover, since $\frac{12}{3^{l}}+40 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4^{2}+8 \cdot 3+\frac{12}{3^{l}}\right) \cdot 3^{s-3}=\left(\frac{12}{3^{l}}+40\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)
$$

Subcase 3.3. $d(w)=3 l+2, l \geq 1$
Since $n_{3}=3(s-l-1)$, by the induction hypothesis, $t\left(F_{3}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{3^{2}}{3^{l}}+40 \leq 4^{2} \cdot 3$ for any $l \geq 1$, by (3.7), it follows that for any $s \geq 2$ and $l \geq 1$,

$$
t(T) \leq\left(4^{2}+8 \cdot 3+\frac{3^{2}}{3^{l}}\right) \cdot 3^{s-3}=\left(\frac{3^{2}}{3^{l}}+40\right) \cdot 3^{s-3} \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right) .
$$

In view of Claim 9, we proceed to consider the case that $d(w)=2$ and $n=3 s+2$ where $s \geq 2$.
Claim 10. Assume that there exists a path $P:=x y z w u$ in T with $d(x)=1, d(y)=d(z)=d(w)=2$, as shown in Figure 9. We have $t(T) \leq t\left(F_{n}\right)$ if one of the following conditions holds:
(1) $T-u$ has an isolated vertex or an isolated edge;
(2) $T-u$ has no isolated vertex or isolated edge, where $d(u) \geq 4$.

Figure 9. T.
Proof. Let $N(u)=\left\{u_{1}, \ldots, u_{d(u)-1}, w\right\}$.
Case 1. $T-u$ has an isolated vertex or an isolated edge.
Subcase 1.1. $T-u$ has an isolated vertex.
Let $T-z w=T_{z} \cup T_{w}$ where $w \in T_{w}$. Observe that for an M2-CIS S^{\prime} of T_{w}, either $w \notin S^{\prime}$ or $w \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(w) \leq 1$. Let us define $\tilde{f}_{w}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(w)=0\right\}\right|, \tilde{t}_{w}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(w)=1\right\}\right|$, $\tilde{t}_{\bar{w}}=\left|\left\{S^{\prime}: w \notin S^{\prime}\right\}\right|$. Then $t\left(T_{w}\right)=\tilde{t}_{w}^{0}+\tilde{t}_{w}^{1}+\tilde{t}_{\bar{w}}$.

Observe that for an M2-CIS S of T, either $w \notin S$ or $w \in S$ with $d_{T[S]}(w) \leq 1$. Let

$$
\begin{aligned}
t_{w}^{0} & =\left|\left\{S: d_{T[S]}(w)=0\right\}\right|=\tilde{t}_{w}^{0}, \\
t_{w}^{1} & =\left|\left\{S: d_{T[S]}(w)=1\right\}\right| \\
& =\left|\left\{S: d_{T[S]}(w)=1,\{z, w\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(w)=1,\{w, u\} \subseteq S\right\}\right| \\
& =\tilde{t}_{w}^{0}+\tilde{t}_{w}^{1} \\
t_{\bar{w}} & =|\{S: w \notin S\}| \\
& =\left|\left\{S: w \notin S, u \in S, d_{T[S]}(u)=1\right\}\right|+|\{S: w \notin S, u \notin S\}| \\
& \leq 3 \tilde{t}_{\bar{w}}+\tilde{t}_{w}^{0} .
\end{aligned}
$$

It is easy to see that $t(T)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}} \leq 3 \tilde{t}_{w}^{0}+\tilde{t}_{w}^{1}+3 \tilde{t}_{\bar{w}}$. Since $t\left(T_{w}\right)=\tilde{t}_{w}^{0}+\tilde{t}_{w}^{1}+\tilde{t}_{\bar{w}}, t(T) \leq 3 t\left(T_{w}\right)=$ $t\left(T_{z}\right) \cdot t\left(T_{w}\right)$. By the induction hypothesis, $t\left(T_{w}\right) \leq t\left(F_{n-3}\right)$. Hence, $t(T) \leq t\left(T_{z}\right) \cdot t\left(F_{n-3}\right) \leq t\left(F_{n}\right)$.
Subcase 1.2. $T-u$ has an isolated edge.
Let $T-w u=T_{w} \cup T_{u}$ where $u \in T_{u}$ and $T_{w}^{\prime}=K_{1,3}$ where $V\left(T_{w}^{\prime}\right)=V\left(T_{w}\right)$. Then $t\left(T_{w}^{\prime}\right)=4$. Observe that for an M2-CIS S^{\prime} of T_{u}, either $u \notin S^{\prime}$ or $u \in S^{\prime} d_{T\left[S^{\prime}\right]}(u) \leq 1$. Let us define $t_{u}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(u)=0\right\}\right|$, $t_{\bar{u}}=\left|\left\{S^{\prime}: u \notin S^{\prime}\right\}\right|, t_{u}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(u)=1\right\}\right|$. Then $t\left(T_{u}\right)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}$.

The meanings of notations here are same as those adopted in Subcase 1.1. Note that $t_{w}^{0}=t_{\bar{u}}$, $t_{w}^{1} \leq t_{u}^{1}+t_{\bar{u}}$ and $t_{\bar{w}}=t\left(T_{u}\right)+t_{u}^{0}+2 t_{u}^{1}$.

Thus, $t(T)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}} \leq t\left(T_{u}\right)+t_{u}^{0}+3 t_{u}^{1}+2 t_{\bar{u}}$. Moreover, $t\left(T_{u}\right)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}, t(T) \leq 4 t\left(T_{u}\right)=t\left(T_{w}^{\prime}\right) \cdot t\left(T_{u}\right)$. By the induction hypothesis, $t\left(T_{u}\right) \leq t\left(F_{n-4}\right)$. Hence, $t(T) \leq t\left(T_{w}^{\prime}\right) \cdot t\left(F_{n-4}\right) \leq t\left(F_{n}\right)$.
Case 2. $T-u$ has no isolated vertex or isolated edge, where $d(u) \geq 4$.
The meanings of notations here are same as those adopted in Subcase 1.1. Let $F_{1}=T-(V(P) \backslash\{u\})$, $F_{2}=T-V(P), F_{3}=T-V(P)-N(u)$ and $F_{4}=T-V(P)-N(u)-N\left(u_{i}\right)$. Combining these observations with the definition of F_{i}, we get that $t_{w}^{0}=t\left(F_{2}\right), t_{w}^{1}=t\left(F_{2}\right)+t\left(F_{3}\right)$ and $t_{\bar{w}}=t\left(F_{1}\right)+t\left(F_{3}\right)+2(d(u)-1) \cdot t\left(F_{4}\right)$. Since $t(T)=t_{w}^{0}+t_{w}^{1}+t_{\bar{w}}$, we have

$$
\begin{equation*}
t(T)=t\left(F_{1}\right)+2 t\left(F_{2}\right)+2 t\left(F_{3}\right)+2(d(u)-1) \cdot t\left(F_{4}\right) . \tag{3.8}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for each $i \in\{1,2,3,4\}$. Then $n_{1}=3(s-1)+1, n_{2}=3(s-1)$. By the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-2}$ and $t\left(F_{2}\right) \leq 3^{s-1}$. We want to prove that $t(T) \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)$ for any $s \geq 2$. By (3.8), we complete the proof by showing that for any $s \geq 2$,

$$
\begin{equation*}
t\left(F_{3}\right)+(d(u)-1) \cdot t\left(F_{4}\right) \leq 3^{s-1} \tag{3.9}
\end{equation*}
$$

Subcase 2.1. $d(u)=3 l, l \geq 2$
Since $n_{3}=3(s-l-1)+1, n_{4} \leq 3(s-l-1)$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4 \cdot 3^{s-l-2}$ and $t\left(F_{4}\right) \leq 3^{s-l-1}$. Moreover, since $\frac{9 l+1}{3^{l}} \leq 3$ for any $l \geq 2$, it follows that for any $s \geq 2$ and $l \geq 2$,

$$
4 \cdot 3^{s-l-2}+(3 l-1) \cdot 3^{s-l-1}=\frac{9 l+1}{3^{l}} \cdot 3^{s-2} \leq 3^{s-1} .
$$

i.e., (3.9) holds.

Subcase 2.2. $d(u)=3 l+1, l \geq 0$
Since $n_{3}=3(s-l-1), n_{4} \leq 3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{3}\right) \leq 3^{s-l-1}$ and $t\left(F_{4}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{16 l+9}{3^{l}} \leq 3^{2}$ for any $l \geq 0$, it follows that for any $s \geq 2$ and $l \geq 0$,

$$
3^{s-l-1}+4^{2} l \cdot 3^{s-l-3}=\frac{16 l+9}{3^{l}} \cdot 3^{s-3} \leq 3^{s-1}
$$

i.e., (3.9) holds.

Subcase 2.3. $d(u)=3 l+2, l \geq 1$
Since $n_{3}=3(s-l-2)+2, n_{4} \leq 3(s-l-2)+1$, by the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-l-4}$ and $t\left(F_{4}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{36 l+28}{3^{l}} \leq 3^{3}$ for any $l \geq 1$, it follows that for any $s \geq 2$ and $l \geq 1$,

$$
4^{2} \cdot 3^{s-l-4}+4(3 l+1) \cdot 3^{s-l-3}=\frac{36 l+28}{3^{l}} \cdot 3^{s-4} \leq 3^{s-1}
$$

i.e., (3.9) holds.

In view of Claim 10, we proceed to consider the case that $d(u)=2$ and $d(u)=3$ respectively.
Claim 11. Assume that there exists a path $P:=x y z w u q$ in T with $d(x)=1, d(y)=d(z)=d(w)=$ $d(u)=2$, as shown in Figure 10. We have $t(T) \leq t(F)$.

Figure 10. T.

Proof. Let $N(q)=\left\{q_{1}, \ldots, q_{d(q)-1}, u\right\}$ and $T-w u=T_{w} \cup T_{u}$ where $u \in T_{u}$.
Case 1. $T-q$ has an isolated vertex.
Let $T_{w}^{\prime}=K_{1,3}$ where $V\left(T_{w}^{\prime}\right)=V\left(T_{w}\right)$. Then $t\left(T_{w}^{\prime}\right)=4$. Observe that for an M2-CIS S^{\prime} of T_{u}, either $u \notin S^{\prime}$ or $u \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(u) \leq 1$. Let us define $\tilde{t}_{u}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(u)=0\right\}\right|, \tilde{t}_{\bar{u}}=\left|\left\{S^{\prime}: u \notin S^{\prime}\right\}\right|$, $\tilde{t}_{u}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(u)=1\right\}\right|$. Thus, $t\left(T_{u}\right)=\tilde{t}_{u}^{0}+\tilde{t}_{u}^{1}+\tilde{t}_{\bar{u}}$.

Observe that for an M2-CIS S of T, either $u \notin S$ or $u \in S$ with $d_{T[S]}(u) \leq 1$. Let
$t_{u}^{0}=\left|\left\{S: d_{T[S]}(u)=0\right\}\right|=2 \tilde{t}_{u}^{0}$,
$t_{u}^{1}=\left|\left\{S: d_{T[S]}(u)=1\right\}\right|$
$=\left|\left\{S: d_{T[S]}(u)=1,\{w, u\} \subseteq S\right\}\right|+\left|\left\{S: d_{T[S]}(u)=1,\{u, q\} \subseteq S\right\}\right|$
$=\tilde{t}_{u}^{0}+3 \tilde{f}_{u}^{1}$.
$t_{\bar{u}}=|\{S: u \notin S\}|$
$=|\{S: u \notin S, w \notin S\}|+\left|\left\{S: u \notin S, w \in S, d_{T[S]}(w)=1\right\}\right|+\mid\{S: u \notin S$,
$\left.w \in S, d_{T[S]}(w)=0\right\} \mid$
$=\tilde{t}_{\bar{u}}+\left(\tilde{t}_{u}^{0}+\tilde{t}_{\bar{u}}\right)+\tilde{t}_{\bar{u}}=\tilde{t}_{u}^{0}+3 \tilde{\tilde{u}}_{\bar{u}}$.
Then $t(T)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}=4 \tilde{t}_{u}^{0}+3 \tilde{t}_{u}^{1}+3 \tilde{t}_{\bar{u}}$. Moreover, $t\left(T_{u}\right)=\tilde{t}_{u}^{0}+\tilde{t}_{u}^{1}+\tilde{t}_{\bar{u}}, t(T) \leq 4 t\left(T_{u}\right)=t\left(T_{w}^{\prime}\right) \cdot t\left(T_{u}\right)$. By the induction hypothesis, $t\left(T_{u}\right) \leq t\left(F_{n-4}\right)$. Hence, $t(T) \leq t\left(T_{w}^{\prime}\right) \cdot t\left(T_{u}\right) \leq t\left(F_{n-4}\right)$.
Case 2. $T-q$ has no isolated vertex.
The meanings of notations here are same as those adopted in Case 1. Let $F_{1}=T-V(P)-N(q), F_{2}=$ $T-V(P)-N(q)-N\left(q_{i}\right), F_{3}=T-V(P)$ and $F_{4}=T-(V(P) \backslash\{q\})$. Combining these observations with the definition of F_{i}, we get that $t_{u}^{0}=2 t\left(F_{3}\right), t_{u}^{1}=3 t\left(F_{1}\right)+t\left(F_{3}\right)$ and $t_{\bar{u}}=t\left(F_{1}\right)+2(d(q)-1) \cdot t\left(F_{2}\right)+t\left(F_{4}\right)$. Since $t(T)=t_{u}^{0}+t_{u}^{1}+t_{\bar{u}}$, we have

$$
\begin{equation*}
t(T)=4 t\left(F_{1}\right)+2(d(u)-1) \cdot t\left(F_{2}\right)+3 t\left(F_{3}\right)+t\left(F_{4}\right) . \tag{3.10}
\end{equation*}
$$

Let n_{i} be the order of F_{i} for $i \in\{1,2,3,4\}$. Then $n_{3}=3(s-2)+2, n_{4}=3(s-1)$. By the induction hypothesis, $t\left(F_{3}\right) \leq 4^{2} \cdot 3^{s-4}$ and $t\left(F_{4}\right) \leq 3^{s-1}$. We want to prove that $t(T) \leq 4^{2} \cdot 3^{s-2}=t\left(F_{n}\right)$ for any $s \geq 2$. By (3.10), we complete the proof by showing that for any $s \geq 2$,

$$
\begin{equation*}
4 t\left(F_{1}\right)+2(d(q)-1) \cdot t\left(F_{2}\right) \leq 23 \cdot 3^{s-3} . \tag{3.11}
\end{equation*}
$$

Subcase 2.1. $d(q)=3 l, l \geq 1$
$n_{1}=3(s-l-1), n_{2} \leq 3(s-l-2)+2$, by the induction hypothesis, $t\left(F_{1}\right) \leq 3^{s-l-1}$ and $t\left(F_{2}\right) \leq 4^{2} \cdot 3^{s-l-4}$. Moreover, since $\frac{96 l+76}{3^{l}} \leq 23 \cdot 3$ for any $l \geq 1$, it follows that for any $s \geq 2$ and $l \geq 1$,

$$
4 \cdot 3^{s-l-1}+2 \cdot 4^{2}(3 l-1) \cdot 3^{s-l-4}=\frac{96 l+76}{3^{l}} \cdot 3^{s-4} \leq 23 \cdot 3^{s-3} .
$$

i.e., (3.11) holds.

Subcase 2.2. $d(q)=3 l+1, l \geq 0$
$n_{1}=3(s-l-2)+2, n_{2} \leq 3(s-l-2)+1$, by the induction hypothesis, $t\left(F_{1}\right) \leq 4^{2} \cdot 3^{s-l-4}$ and $t\left(F_{2}\right) \leq 4 \cdot 3^{s-l-3}$. Moreover, since $\frac{72 l+64}{3^{l}} \leq 23 \cdot 3$ for any $l \geq 0$, it follows that for any $s \geq 2$ and $l \geq 0$,

$$
4^{3} \cdot 3^{s-l-4}+8 l \cdot 3^{s-l-2}=\frac{72 l+64}{3^{l}} \cdot 3^{s-4} \leq 23 \cdot 3^{s-3}
$$

i.e., (3.11) holds.

Subcase 2.3. $d(q)=3 l+2, l \geq 0$
$n_{1}=3(s-l-2)+1, n_{2} \leq 3(s-l-2)$, by the induction hypothesis, $t\left(F_{1}\right) \leq 4 \cdot 3^{s-l-3}$ and $t\left(F_{2}\right) \leq 3^{s-l-2}$. Moreover, since $\frac{18 l+22}{3^{l}} \leq 23$ for any $l \geq 0$, it follows that for any $s \geq 2$ and $l \geq 0$,

$$
4^{2} \cdot 3^{s-l-3}+2(3 l+1) \cdot 3^{s-l-2}=\frac{18 l+22}{3^{l}} \cdot 3^{s-3} \leq 23 \cdot 3^{s-3}
$$

i.e., (3.11) holds.

Claim 12. Assume that there exists a vertex x with $d(x) \geq 3$ such all components of $T-x$ are isomorphic to $K_{1,3}$, but one, denoted by T_{y} where y is the neighbor of x lying in T_{y}, is not isomorphic to $K_{1,3}$, as shown in Figure 11. We have $t(T) \leq t\left(F_{n}\right)$.

Figure 11. T.
Proof. For an integer $a \geq 2$, assume that $N(x)=\left\{x_{1}, \ldots, x_{a}, y\right\}$. Let $T-x y=T_{x} \cup T_{y}$ where $y \in T_{y}$. Then $\left|V\left(T_{x}\right)\right|=4 a+1$.

Case 1. $T-y$ has no isolated vertex.
Observe that for an M2-CIS S^{\prime} of T_{y}, either $y \notin S^{\prime}$ or $y \in S^{\prime}$ with $d_{T\left[S^{\prime}\right]}(y) \leq 1$. Let us define $t_{y}^{0}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(y)=0\right\}\right|, t_{\bar{y}}=\left|\left\{S^{\prime}: y \notin S^{\prime}\right\}\right|, t_{y}^{1}=\left|\left\{S^{\prime}: d_{T\left[S^{\prime}\right]}(y)=1\right\}\right|$. Thus, $t\left(T_{y}\right)=t_{y}^{0}+t_{y}^{1}+t_{\bar{y}}$.

Observe that for an M2-CIS S of T, either $x \notin S$ or $x \in S$ with $d_{T[S]}(x) \leq 1$. Let
$t_{x}^{0}=\left|\left\{S: d_{T[S]}(x)=0\right\}\right| \leq 2^{a} \cdot\left(t_{y}^{1}+t_{\bar{y}}\right)$,
$t_{x}^{1}=\left|\left\{S: d_{T[S]}(x)=1\right\}\right|$
$=\left|\left\{S: d_{T[S]}(x)=1, y \in S\right\}\right|+\left|\left\{S: d_{T[S]}(x)=1, y \notin S\right\}\right|$
$\leq 3^{a} \cdot\left(t_{y}^{0}+t_{\bar{y}}\right)+a \cdot 3^{a-1} \cdot t\left(T_{y}\right)$,
$t_{\overline{x y}}=\mid\left\{S: x \notin S, d_{T[S]}\left(x_{i}\right)=1\right.$ or $\left.d_{T[S]}\left(x_{i}\right)=d_{T[S]}\left(x_{j}\right)=0, i, j \in\{1, \ldots, a\}\right\} \mid$
$=\left(4^{a}-2^{a}-a \cdot 2^{a-1}\right) \cdot t\left(T_{y}\right)$,
$t_{\overline{x y}}^{1}=\mid\left\{S: x \notin S, d_{T[S]}(y)=1, d_{T[S]}\left(x_{i}\right) \neq 1\right.$, ヨ exactly one $x_{i}, d_{T[S]}\left(x_{i}\right)=$
0 or $\left.x_{i} \notin S, i \in\{1, \ldots, a\}\right\} \mid$
$=\left(2^{a}+a \cdot 2^{a-1}\right) \cdot t_{y}^{1}$,
$t_{\bar{x} y}^{0}=\left|\left\{S: x \notin S, d_{T[S]}(y)=0, d_{T[S]}\left(x_{i}\right) \neq 1, x_{i} \notin S, i \in\{1, \ldots, a\}\right\}\right|$
$=a \cdot 2^{a-1} \cdot t_{y}^{0}$,
$t_{\bar{x}}=|\{S: x \notin S\}|=t_{\bar{x} y}+t_{\bar{x} y}^{1}+t_{\bar{x} y}^{0}$
$=\left(4^{a}-2^{a}-a \cdot 2^{a-1}\right) \cdot t\left(T_{y}\right)+\left(2^{a}+a \cdot 2^{a-1}\right) \cdot t_{y}^{1}+a \cdot 2^{a-1} \cdot t_{y}^{0}$.
Since $t\left(T_{y}\right)=t_{y}^{0}+t_{y}^{1}+t_{\bar{y}},\left(2^{a+1}+a \cdot 2^{a-1}\right) \cdot t_{y}^{1}+\left(3^{a}+a \cdot 2^{a-1}\right) \cdot t_{y}^{0}+\left(3^{a}+2^{a}\right) \cdot t_{\bar{y}} \leq\left(3^{a}+a \cdot 2^{a-1}\right) \cdot t\left(T_{y}\right)$. Moreover, $t(T)=t_{x}^{0}+t_{x}^{1}+t_{\bar{x}}$. We get that

$$
t(T) \leq\left[4^{a}+(a+3) 3^{a-1}-2^{a}\right] \cdot t\left(T_{y}\right) .
$$

Let $V\left(T_{x}^{\prime}\right)=V\left(T_{x}\right)$. Then $t\left(T_{x}^{\prime} \cup T_{y}\right)=t\left(T_{x}^{\prime}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-(4 a+1)}\right)$. We want to prove $t(T) \leq t\left(T_{x}^{\prime}\right) \cdot t\left(F_{n-(4 a+1)}\right) \leq t\left(F_{n}\right)$ for any $a \geq 2$. Therefore, we need to show that for any $a \geq 2$,

$$
\begin{equation*}
4^{a}+(a+3) \cdot 3^{a-1}-2^{a} \leq t\left(T_{x}^{\prime}\right) \tag{3.12}
\end{equation*}
$$

We distinguish into three cases based on the modularity of $a(\bmod 3)$.
Subcase 1.1. $a=3 s, s \geq 1$
Let $T_{x}^{\prime}=(4 s-1) P_{3} \cup K_{1,3}$ where $\left|V\left(T_{x}^{\prime}\right)\right|=12 s+1$. Then $t\left(T_{x}^{\prime}\right)=4 \cdot 3^{4 s-1}$. Since $4^{3 s} \leq 3^{4 s}$ and $(s+1) 3^{3 s} \leq 3^{4 s-1}$ for any $s \geq 2$, by (3.12), it follows that for any $s \geq 2$,

$$
4^{3 s}+(s+1) 3^{3 s}-2^{3 s} \leq 3^{4 s}+3^{4 s-1}=4 \cdot 3^{4 s-1}=t\left(T_{x}^{\prime}\right)
$$

If $s=1$, then $a=3$. Note that $t_{x}^{0} \leq 8\left(t_{y}^{1}+t_{\bar{y}}\right), t_{x}^{1} \leq 23 t_{y}^{0}+25 t_{\bar{y}}+29 t\left(T_{y}\right)$ and $t_{\bar{x}}=44 t\left(T_{y}\right)+20 t_{y}^{1}+12 t_{y}^{0}$. Meanwhile, $t\left(T_{y}\right)=t_{y}^{0}+t_{y}^{1}+t_{\bar{y}}, t(T) \leq 108 t\left(T_{y}\right)=t\left(T_{x}^{\prime}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq$ $t\left(F_{n-(4 a+1)}\right)$. Hence, $t(T) \leq t\left(T_{x}^{\prime}\right) \cdot t\left(F_{n-(4 a+1)}\right) \leq t\left(F_{n}\right)$.

Subcase 1.2. $a=3 s+1, s \geq 1$
Let $T_{x}^{\prime}=(4 s-1) P_{3} \cup 2 K_{1,3}$ where $\left|V\left(T_{x}^{\prime}\right)\right|=3(4 s+1)+2$. Then $t\left(T_{x}^{\prime}\right)=4^{2} \cdot 3^{4 s-1}$. Since $4^{3 s+1} \leq 4 \cdot 3^{4 s}$ and $(3 s+4) 3^{3 s} \leq 4 \cdot 3^{4 s-1}$ for any $s \geq 2$, by (3.12), it follows that for any $s \geq 2$,

$$
4^{3 s+1}+(3 s+4) 3^{3 s}-2^{3 s+1} \leq 4 \cdot 3^{4 s}+4 \cdot 3^{4 s-1}=4^{2} \cdot 3^{4 s-1}=t\left(T_{x}^{\prime}\right) .
$$

The result is true for $s=1$.
Subcase 1.3. $a=3 s+2, s \geq 0$
Let $T_{x}^{\prime}=(4 s+3) P_{3}$ where $\left|V\left(T_{x}^{\prime}\right)\right|=3(4 s+3)$. Then $t\left(T_{x}^{\prime}\right)=3^{4 s+3}$. Since $4^{3 s+2} \leq 4^{2} \cdot 3^{4 s}$ and $(3 s+5) \cdot 3^{3 s+1} \leq 11 \cdot 3^{4 s}$ for any $s \geq 1$, by (3.12), it follows that for any $s \geq 1$,

$$
4^{3 s+2}+(3 s+5) \cdot 3^{3 s+1}-2^{3 s+2} \leq 4^{2} \cdot 3^{4 s}+11 \cdot 3^{4 s}=3^{4 s+3}=t\left(T_{x}^{\prime}\right)
$$

The result is true for $s=0$.
Case 2. $T-y$ has an isolated vertex.
By Lemma 2.4, $d(y) \geq 3$. The meanings of notations here are same as those adopted in Case 1 . Thus $t\left(T_{y}\right)=t_{y}^{1}+t_{\bar{y}}, t_{x}^{0} \leq 2^{a+1} \cdot t_{\bar{y}}, t_{x}^{1} \leq a \cdot 3^{a-1} \cdot t\left(T_{y}\right), t_{\bar{x}} \leq\left(4^{a}-2^{a}-a \cdot 2^{a-1}\right) \cdot t\left(T_{y}\right)+\left(2^{a}+a \cdot 2^{a-1}\right) \cdot t_{y}^{1}$.

Furthmore, $2^{a+1} \cdot t_{\bar{y}}+\left(2^{a}+a \cdot 2^{a-1}\right) \cdot t_{y}^{1} \leq\left(3^{a}+a \cdot 2^{a-1}\right) \cdot t\left(T_{y}\right), t(T) \leq\left[4^{a}+(a+3) 3^{a-1}-2^{a}\right] \cdot t\left(T_{y}\right)$. By a similar argument as in the proof of Case 1 , we show that $t(T) \leq t\left(F_{n}\right)$.

In view of Claim 11, it remains to consider the case that $d(u)=3$.
Claim 13. Assume that there exists a path $P:=x y z w u$ in T with $d(x)=1, d(y)=d(z)=d(w)=$ $2, d(u)=3$. If $T-u$ has no isolated vertex or isolated edge, then $t(T) \leq t\left(F_{n}\right)$.

Proof. By Claims 1-12, it is not difficult to observe that there exists a vertex x such that $T-x$ has two components, one is isomorphic to P_{4}, the other one is isomorphic to P_{4} or $K_{1,3}$, as shown in Figure 12. The meanings of notations adopted here are same in Case 1 of Claim 12. Let $T-x y=T_{x} \cup T_{y}$ where $y \in T_{y}$ and $T_{x}^{\prime}=3 P_{3}$ where $V\left(T_{x}^{\prime}\right)=V\left(T_{x}\right)$. Then $t\left(T_{x}^{\prime}\right)=3^{3}$.

Figure 12. $T-x$ has two components, one is isomorphic to P_{4}, the other one is isomorphic to P_{4} or $K_{1,3}$.

Case 1. $T-x$ has two components which are isomorphic to P_{4}.
Subcase 1.1. $T-y$ has no isolated vertex.
Note that $t_{x}^{0} \leq 4\left(t_{y}^{0}+t_{\bar{y}}\right), t_{x}^{1} \leq 6 t\left(T_{y}\right)+9\left(t_{y}^{0}+t_{y}^{1}\right), t_{\bar{x}} \leq 6 t\left(T_{y}\right)+3 t_{y}^{1}+2 t_{y}^{0}$. Meanwhile, $t(T)=t_{x}^{0}+t_{x}^{1}+t_{\bar{x}}$. This implies that $t(T) \leq 12 t\left(T_{y}\right)+15 t_{y}^{0}+12 t_{y}^{1}+4 t_{\bar{y}}$. Since $t\left(T_{y}\right)=t_{y}^{0}+t_{y}^{1}+t_{\bar{y}}, t(T) \leq 3^{3} t\left(T_{y}\right)=t\left(T_{x}^{\prime}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-9}\right)$. Hence, $t(T) \leq t\left(T_{x}^{\prime}\right) \cdot t\left(F_{n-9}\right) \leq t\left(F_{n}\right)$.

Subcase 1.2. $T-y$ has an isolated vertex.
By Lemma $2.4, d(y) \geq 3$. Note that $t_{x}^{0} \leq 4 t\left(T_{y}\right), t_{x}^{1} \leq 9 t_{y}^{1}+6 t_{\bar{y}}$ and $t_{\bar{x}} \leq 6 t\left(T_{y}\right)+3 t_{y}^{1}$. Since $t(T)=$ $t_{x}^{0}+t_{x}^{1}+t_{\bar{x}}, t(T) \leq 10 t\left(T_{y}\right)+12 t_{y}^{1}+6 t_{\bar{y}}$. Moreover, $t\left(T_{y}\right)=t_{y}^{1}+t_{\bar{y}}, t(T) \leq 22 t\left(T_{y}\right) \leq 3^{3} t\left(T_{y}\right)=t\left(T_{x}^{\prime}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-9}\right)$. Hence, $t(T) \leq t\left(T_{x}^{\prime}\right) \cdot t\left(F_{n-9}\right) \leq t\left(F_{n}\right)$.
Case 2. $T-x$ has two components which are isomorphic to P_{4} and $K_{1,3}$, respectively.
Subcase 2.1. $T-y$ has no isolated vertex.
Note that $t_{x}^{1} \leq 6 t\left(T_{y}\right)+9\left(t_{y}^{0}+t_{\bar{y}}\right), t_{x}^{0} \leq 4\left(t_{y}^{1}+t_{\bar{y}}\right), t_{\bar{x}} \leq 7 t\left(T_{y}\right)+5 t_{y}^{1}+3 t_{y}^{0}$. Since $t(T)=t_{x}^{0}+t_{x}^{1}+t_{\bar{x}}$, $t(T) \leq 13 t\left(T_{y}\right)+12 t_{y}^{0}+9 t_{y}^{1}+13 t_{\bar{y}}$. Moreover, $t\left(T_{y}\right)=t_{y}^{0}+t_{y}^{1}+t_{\bar{y}}$ and $t(T) \leq 26 t\left(T_{y}\right) \leq 3^{3} t\left(T_{y}\right)=t\left(T_{x}^{\prime}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-9}\right)$. Hence, $t(T) \leq t\left(T_{x}^{\prime}\right) \cdot t\left(F_{n-9}\right) \leq t\left(F_{n}\right)$.
Subcase 2.2. $T-y$ has an isolated vertex.
By Lemma 2.4, $d(y) \geq 3$. Note that $t_{x}^{1} \leq 9\left(t_{y}^{1}+t_{\bar{y}}\right), t_{x}^{0} \leq 4 t\left(T_{y}\right)$ and $t_{\bar{x}} \leq 7 t\left(T_{y}\right)+5 t_{y}^{1}$. Since $t(T)=t_{x}^{0}+t_{x}^{1}+t_{\bar{x}}, t(T) \leq 11 t\left(T_{y}\right)+14 t_{y}^{1}+9 t_{\bar{y}}$. Moreover, $t\left(T_{y}\right)=t_{y}^{1}+t_{\bar{y}}$ and $t(T) \leq 25 t\left(T_{y}\right) \leq 3^{3} t\left(T_{y}\right)=$ $t\left(T_{x}^{\prime}\right) \cdot t\left(T_{y}\right)$. By the induction hypothesis, $t\left(T_{y}\right) \leq t\left(F_{n-9}\right)$. Hence, $t(T) \leq t\left(T_{x}^{\prime}\right) \cdot t\left(F_{n-9}\right) \leq t\left(F_{n}\right)$.

From the above discussion, we proceed to consider the following.
Claim 14. Assume there exists a path $P:=x y z$ in T with $d(x)=1$ or $d(x)=3$ such that two neighbors of x distinct from y being leaves, $d(y)=2$ and $d(z) \geq 3$. If $T-z$ has no isolated vertex or isolated edge, then $t(T) \leq t\left(F_{n}\right)$.

Proof. By Claims $1-11$ and 13 , it remains to consider the case that there exists a vertex w such that $T-w$ has at least two components which are isomorphic to $K_{1,3}$. By Lemma 2.4 and Claim 12, we have $t(T) \leq t\left(F_{n}\right)$.

This completes the proof of theorem.

4. Conclusions

In this paper, we determine the maximum number of maximal 2-component independent sets of a forest of order n. It is an interesting problem to determine the maximum number of maximal 2component independent sets of graphs of order n over some other families, such as trees, bipartite graphs, triangle-free graphs, all connected graphs.

Acknowledgment

The work was supported by the national natural science foundation of China (No. 12061073) and XJEDU2019I001.

Conflict of interest

The authors declare no conflict of interests.

References

1. V. E. Alekseev, R. Boliac, D. V. Korobitsyn, V. V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comput. Sci., 389 (2007), 219-236. https://doi.org/10.1016/j.tcs.2007.09.013
2. R. Boliac, K. Cameron, V. V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin., 72 (2004), 241-253.
3. S. Cheng, B. Wu, On the k-component independence number of a tree, Discrete Dyn. Nat. Soc., 2021, 5540604.
4. M. Hujter, Z. Tuza, The number of maximal independent sets in triangle-free graphs, SIAM J. Discrete Math., 6 (1993), 284-288. https://doi.org/10.1137/0406022
5. M. J. Jou, G. J. Chang, Maximal independent sets in graphs with at most one cycle, Discrete Appl. Math., 79 (1997), 67-73. https://doi.org/10.1016/S0166-218X(97)00033-4
6. K. M. Koh, C. Y. Goh, F. M. Dong, The maximum number of maximal independent sets in unicyclic connected graphs, Discrete Math., 308 (2008), 3761-3769. doilinkhttps://doi.org/10.1016/j.disc.2007.07.079
7. Y. Orlovich, A. Dolguib, G. Finkec, V. Gordond, F. Wernere, The complexity of dissociation set problems in graphs, Discrete Appl. Math., 159 (2011) 1352-1366. https://doi.org/10.1016/j.dam.2011.04.023
8. C. H. Papadimitriou, M. Yannakakis, The complexity of restricted spanning tree problems, J. Assoc. Comput. Mach., 29 (1982), 285-309. https://doi.org/10.1145/322307.322309
9. B. E. Sagan, A note on independent sets in trees, SIAM J. Discrete Math., 1 (1988), 105-108. https://doi.org/10.1137/0401012
10. B. E. Sagan, V. R. Vatter, Maximal and maximum independent sets in graphs with at most r cycles, J. Graph Theory, 53 (2006), 283-314. https://doi.org/10.1002/jgt. 20186
11. J. Tu, Z. Zhang, Y. Shi, The maximum number of maximum dissociation sets in trees, J. Graph Theory, 96 (2021), 472-489. https://doi.org/10.1002/jgt. 22627
12. H. S. Wilf, The number of maximal independent sets in a tree, SIAM J. Alg. Discrete Methods, 7 (1986), 125-130. https://doi.org/10.1137/0607015
13. I. Wloch, Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Math., 308 (2008), 4768-4772. https://doi.org/10.1016/j.disc.2007.08.087
14. M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput., 10 (1981), 310327. https://doi.org/10.1137/0210022
15. J. Zito, The structure and maximum number of maximum independent sets in trees, J. Graph Theory, 15 (1991), 207-221. https://doi.org/10.1002/jgt. 3190150208
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
