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1. Introduction

Consider the large and sparse saddle-point problemAx = b of form:

Ax =

(
A B
−BT 0

) (
u
v

)
=

(
f
g

)
, (1.1)

where A ∈ Rn×n is nonsymmetric positive definite, in other words, its symmetric part H = 1
2 (A + AT )

is positive definite, B ∈ Rn×m (n � m) is a full column rank matrix, f ∈ Rn and g ∈ Rm are given
vectors, and BT denotes the transpose of B. Under these assumptions, the nonsingularity ofA assures
that the existence and uniqueness of the saddle problem (1.1). When the matrices A and B are large
and sparse, this class of linear system of the form (1.1) arises in many problems of scientific computing
and engineering applications, including computational fluid dynamics, optimization, constrained least
squares problems, generalized least squares problems, incompressible flow problems, mixed finite
element approximation of elliptic PDEs and so forth. See [1] and references therein for more examples
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and additional information. In addition, we also refer to [2] for periodic Sylvester matrix equations
and generalized coupled Sylvester matrix equations.

In general, the coefficient matrix A of (1.1) is usually large, sparse and extremely ill-conditioned,
it is a common belief that iteration methods become more attractive than direct methods in terms of
storage requirements and computing time. As is well known, a clustered spectrum of preconditioned
matrix often results in rapid convergence for Krylov subspace methods. Therefore, in light of the
special structure of the saddle point problem (1.1), for the sake of achieving rapid convergence rate
and improving computational efficiency, a lot of effective and practical preconditioning techniques
have been investigated in the literatures, such as preconditioned Krylov subspace methods [3], SOR-
type methods [4,5], Uzawa-type methods [6,7], HSS-type methods and its accelerated variants [8–10],
and shift-splitting (denoted by SS) and generalized shift-splitting (denoted by GSS) iteration methods
[11–13], and so forth.

In the past few years, many (GSS-)SS-type iteration methods have been proposed to greatly improve
convergence rate by choosing the appropriate iteration parameters. Based on the theory of the shifting
and clustered spectrum of the coefficient matrix, Bai and Zhang [12] presented a regularized conjugate
gradient method for symmetric positive definite system. In [13], Bai et al. investigated a kind of
shift-splitting iteration method for solving large and sparse non-Hermitian positive definite system. A
modification of the SS preconditioner (i.e., the GSS preconditioner) has been established in [14, 15]
with a symmetric positive definite (1,1)-block sub-matrix A for the positive iteration parameters α and
β. Here, the GSS iteration method is defined as

1
2

(
αIn + A B
−BT βIm

)
xk+1 =

1
2

(
αIn − A −B

BT βIm

)
xk +

(
f
g

)
, (1.2)

where the related GSS preconditioner is given by

PGS S =
1
2

(
αIn + A B
−BT βIm

)
, (1.3)

with Iq denoting the identity matrix of size q. Particularly, as α = β, the GSS iteration method (1.2)
reduces to the SS iteration method [16], where the SS preconditioner is given by the following form

PS S =
1
2

(
αIn + A B
−BT αIm

)
. (1.4)

For solving the saddle problem (1.1), Cao et al. [17] applied the GSS iteration method (1.2) to
solve the saddle point system (1.1) and proposed a deteriorated shift-splitting (DSS) preconditioner by
removing the shift parameter α in the (1, 1)-block of the GSS preconditioner. Based on the symmetric
and skew-symmetric splitting A = H + S with S = 1

2 (A− AT ) of the (1, 1)-block sub-matrix A, Zhou et
al. [18] proposed a modified shift-splitting (denoted by MSS) preconditioner of form

PMS S =
1
2

(
αIn + 2H B
−BT αIm

)
, (1.5)

and proposed a sufficient condition on the iteration parameter α for the convergence of the MSS
iteration method. In [19], Huang et al. proposed a generalized modified shift-splitting iteration
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method (denoted by GMSS) by introducing two iteration parameters α and β instead of one parameter
α, which further improve the convergence rate of the MSS iteration method, where the corresponding
GMSS preconditioner is given by

PGMS S =
1
2

(
αIn + 2H B
−BT βIm

)
. (1.6)

The aim of this paper is to propose an improvement for the (GSS-)SS-type iteration methods and
investigate the SFHSS preconditioner for Krylov subspace methods, such as GMRES iteration
method [20], which significantly accelerate the convergence speed of the related iterative method.
According to theoretical analysis, when the iteration parameters α and β satisfy certain conditions, we
prove that the SFHSS iteration method converges to the unique solution of the saddle point
system (1.1). The rest of this paper is organized as follows. In Section 2, we review the SFHSS
iteration method and its implementations. In Section 3, we analysis the convergent property of the
SFHSS iteration method for nonsingular saddle point problems with nonsymmetric positive definite
(1,1)-block. In Section 4, we discuss the algebraic properties of the resulted SFHSS preconditioned
matrix. Finally, numerical experiments arise from finite element discretization of the Oseen problem
are presented in Section 5 to show the correctness of the theoretical analysis and the feasibility of the
SFHSS iteration method.

2. The SFHSS iteration method and its implementations

The main purpose of this section is to introduce the new GSS-type iteration method (i.e., the
SFHSS iteration method) for the nonsingular saddle-point problems (1.1). Based on the local
Hermitian and skew-Hermitian splitting scheme of the non-Hermitian positive definite (1,1)-block
sub-matrix, Yang and Wu [6] presented the Uzawa-HSS iteration method. Let A = H + S be the
symmetric and skew-symmetric splitting of the (1,1)-block of the coefficient matrix A defined as
in (1.1) with S = 1

2 (A − AT ). Following the idea of the Uzawa-HSS iteration method, we make the
following matrix splitting for the coefficient matrixA of the linear system (1.1):

A = PS FHS S − NS FHS S ,

where the shift-HSS preconditioner PS FHS S is given by

PS FHS S =
1
4

 1
α

(αIn + 2H)(αIn + 2S ) 2B

−2BT βBT B

 (2.1)

and the matrix NS FHS S is defined as

NS FHS S =
1
4

 1
α

(αIn − 2H)(αIn − 2S ) −2B

2BT βBT B

 .
On the basis of the above splitting, we derive the following SFHSS iteration method

PS FHS S xk+1 = NS FHS S xk + b, (2.2)

AIMS Mathematics Volume 7, Issue 7, 13508–13536.



13511

and the generalized shift-HSS iteration matrix τ(α, β) can be constructed as follows

τ(α, β) = P−1
S FHS SNS FHS S . (2.3)

Denoted by

Θ1 =
1
α

(αIn + 2H)(αIn + 2S ), Θ2 =
1
α

(αIn − 2H)(αIn − 2S ),

Φ1 = βBT B + 4BT Θ−1
1 B, Φ2 = Θ1 + 4B(βBT B)−1BT .

More precisely, multiply both sides of (2.2) from the left by the matrices(
In −2B(βBT B)−1

0 Im

)
and

(
In 0

2BT Θ−1
1 Im

)
,

respectively, then we can easily obtain the explicit formulations of u(k+1) and v(k+1), respectively.
Therefore, the iteration scheme (2.2) naturally leads to the following algorithmic description of the
SFHSS iteration method:
Method 2.1. (The SFHSS method) Given an initial guess x0 = [u(0)T

, v(0)T ]T , for k = 0, 1, 2, · · · , until
the iteration sequence [u(k)∗, v(k)∗]∗ converges,

(i) Compute u(k) from

u(k+1) = u(k) − 4Φ−1
2 [A + 2B(βBT B)−1BT ]u(k) − 4Φ−1

2 Bv(k) + 4Φ−1
2 [ f − 2B(βBT B)−1g],

(ii) Compute v(k) from

v(k+1) = v(k) + 2Φ−1
1 BT (In + Θ−1

1 Θ2)u(k) − 8Φ−1
1 BT Θ−1

1 Bv(k) + 4Φ−1
1 (g + 2BT Θ−1

1 f ).

Following the iteration scheme (2.2) again, it is not difficult to know that the SFHSS iteration
method can be written as the following fixed point form

xk+1 = τ(α, β)xk + 4P−1
S FHS S b. (2.4)

It is easy to see that at each step of the SFHSS iteration method (2.4) or the preconditioned Krylov
subspace method, such as GMRES iteration method, we need to solve a linear system PS FHS S z = r,
i.e.,

1
4

 1
α

(αIn + 2H)(αIn + 2S ) 2B

−2BT βBT B

 ( z1

z2

)
=

(
r1

r2

)
, (2.5)

where z1, r1 ∈ R
n and z2, r2 ∈ R

m. A brisk calculation confirms that

PS FHS S =
1
4

(
In 2B(βBT B)−1

0 Im

)
×

(
Φ2 0
0 βBT B

) (
In 0

−2(βBT B)−1BT Im

)
.

(2.6)
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From the decomposition of PS FHS S in (4), it is obvious that(
z1

z2

)
= 4

(
In 0

2(βBT B)−1BT Im

) (
Φ−1

2 0
0 (βBT B)−1

)
×

(
In −2B(βBT B)−1

0 Im

) (
r1

r2

)
.

(2.7)

Then we have the following algorithmic implementation of the SFHSS iteration method.
Algorithm 2.1. For a given vector (rT

1 , r
T
2 )T , the vector (zT

1 , z
T
2 )T can be derived from (2.7) by the

following steps:

(1) solve BT Bt =
1
β

r2.

(2) solve Φ2z1 = 4(r1 − 2Bt);

(3) solve BT Bp =
2
β

BT z1.

(4) compute z2 = p + 4t.
Since BT B is symmetric positive definite and (αIn +2H)(αIn +2S )+4B(βBT B)−1BT is nonsymmetric

positive definite, then in practical implementations, the sub-linear systems BT Bz = r can be solved by
the Cholesky factorization and [ 1

α
(αIn + 2H)(αIn + 2S ) + 4B(βBT B)−1BT ]z = r contained in the SFHSS

iteration method can be solved inexactly by the sparse ILU factorization or gmres iteration method.

3. Convergence analysis of the SFHSS method

Consider the solution of a linear system of form Ax = b. To a matrix A ∈ R(n+m)×(n+m), if M is
nonsingular, then the representation A = M − N is called as a splitting. Assume that the iteration
matrix T =M−1N and c =M−1b, then the stationary iteration scheme of the linear systemAx = b is
defined as

xk+1 = T xk + c. (3.1)

As is well known, if the spectral radius ρ(T ) of the iteration matrix T is less than one, then the
stationary iteration scheme (3.1) converges to the unique solution of Ax = b, for any choice of the
initial vector x0.

Let λ be an eigenvalue of the iteration matrix τ(α, β) in (2.3) and xT = (u∗, v∗)∗ be the corresponding
eigenvector. To study the convergence property of the generalized shift-HSS iteration method (2.4),
we need to consider the following generalized eigenvalue problem: 1

α
(αIn − 2H)(αIn − 2S ) −2B

2BT βBT B

 ( u
v

)

= λ

 1
α

(αIn + 2H)(αIn + 2S ) 2B

−2BT βBT B

 ( u
v

)
,

(3.2)
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By straightforward computation, the generalized eigenvalue problem (3.2) is equivalent to the
following form

1
α

(αIn − 2H)(αIn − 2S )u − 2Bv =
1
α
λ(αIn + 2H)(αIn + 2S )u + 2λBv,

2BT u + βBT Bv = −2λBT u + βλBT Bv.
(3.3)

For convenience, we denote

u∗Au
u∗u

= a + bi,
u∗HS u

u∗u
= c + di and

u∗B(BT B)−1BT u
u∗u

= e, (3.4)

where a > 0, e ≥ 0,

c =
1
2

u∗(HS − S H)u
u∗u

and d =
1
2i

u∗(HS + S H)u
u∗u

.

In what follows, we give the following lemmas to verify the convergence of the SFHSS iteration
method (2.4).
Lemma 3.1. ( [21]). If S is a skew-Hermitian matrix, then iS is a Hermitian matrix and u∗S u is a
purely imaginary number or zero for all u ∈ Cn.
Lemma 3.2. ( [22]). Both roots of the complex quadratic equation λ2 −Φλ+ Ψ = 0 have modulus less
than one if and only if |Φ − ΦΨ| + |Ψ|2 < 1, where Φ denotes the conjugate complex of Φ.
Lemma 3.3. Let A be nonsymmetric positive definite and B have full column rank. Assume λ is an
eigenvalue of the iteration matrix τ(α, β) defined as in (2.3) with β > 0, if α > 0, then λ , 1, and if
α2 > 4|c|max with |c|max denoting the maximum of c, then λ , −1.

Proof. Following the spirit of the proof of [17]. If λ = 1, then it is straightforward to show that the
Eq (3.2) yield the following result (

A B
−BT 0

) (
u
v

)
=

(
0
0

)
.

Since A is nonsymmetric positive definite and B has full column rank, then we can easily know that
u = 0 and v = 0. This is a contradiction as (u∗, v∗)∗ is an eigenvector.
If λ = −1, then the Eq (3.2) reduce to the following forms (α2In + 4HS )u = 0,

βBT Bv = 0.

If α2 > 4|c|max, we can easily know that α2In + 4HS is nonsingular. Therefore, it is easy to see that
u = 0 and v = 0. The result seems to contradict with (u∗, v∗)∗ being an eigenvector.
Thus, we complete the proof. �
Lemma 3.4. Let the conditions of Lemma 3.3 be satisfied. Assume that λ is an eigenvalue of the
iteration matrix τ(α, β) defined as in (2.3) and (u∗, v∗)∗ is the corresponding eigenvector with u ∈ Cn

and v ∈ Cm, if 0 , u ∈ ℵ(BT ), then |λ| < 1.
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Proof. We demonstrate the verification of u , 0. Unless, if u = 0, then it follows from the second of the
Eq (3.2) that α(λ − 1)BT Bv = 0. According to Lemma 3.3, since λ , 1, then BT Bv = 0. As B has full
column rank, then BT B is nonsingular. Therefore, we further conclude v = 0. This is a contradiction
since (u∗, v∗)∗ is an eigenvector, so u , 0.
We now turn to verify |λ| < 1. Assume u ∈ ℵ(BT ) with ‖ u ‖2= 1, from the second of the Eq (3.2), we
get v = 0. Following [8, Theorem 2.2] and multiplying the first of the Eq (3.2) from the left-hand side
by u∗ , it is obvious that

|λ| = |u∗(αIn + 2S )−1(αIn + 2H)−1(αIn − 2H)(αIn − 2S )u|
≤‖ (αIn + 2S )−1(αIn + 2H)−1(αIn − 2H)(αIn − 2S ) ‖2
≤‖ (αIn − 2H)(αIn + 2H)−1 ‖2

= max
i

∣∣∣∣∣α − 2λi(H)
α + 2λi(H)

∣∣∣∣∣
< 1,

where λi(H) denotes the ith eigenvalue of the symmetric positive definite matrix H.
Therefore, the proof is completed. �
Theorem 3.1. Let the conditions of Lemma 3.3 be satisfied. Assume that λ is an eigenvalue of the
iteration matrix τ(α, β) defined as in (2.3), if the positive iteration parameters α and β satisfy the
following conditions

If ac + bd ≥ 0, then

α2 > 4|c|max and β >
16d2e
α3a2 ,

and if ac + bd < 0, then

α2 > max
{

4|ac + bd|max

a
, 4|c|max

}
and β >

16d2e
αa[α2a − |4ac + 4bd|]

.

then the iteration method (2.4) converges to the unique solution of the nonsymmetric saddle point
problem (1.1), i.e.,

|λ| < 1.

Proof. Combine Lemmas 3.3 and 3.4, in order to complete the proof, we need only to verify the case
BT u , 0. Suppose u < ℵ(BT ), then the second of the Eq (3.2) yields the following result

v =
2(λ + 1)
β(λ − 1)

(BT B)−1BT u. (3.5)

By substituting the relationship (3.5) into the first of the Eq (3.2), we have

(αIn − 2H)(αIn − 2S )u = λ(αIn + 2H)(αIn + 2S )u +
4α(λ + 1)2

β(λ − 1)
B(BT B)−1BT u. (3.6)

Multiplying the Eq (3.6) from the left-hand side by u∗, after straightforward calculations, then the
Eq (3.6) yields the following form

α2β(λ − 1)2 +2αβ(λ2 − 1)
u∗Au
u∗u

+ 4β(λ − 1)2 u∗HS u
u∗u

+4α(λ + 1)2 u∗B(BT B)−1BT u
u∗u

= 0.
(3.7)
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Following (3.4), a quadratic equation of λ is derived from the Eq (3.7). After some algebra, it is
straightforward to show that

[(α2 + 2αa + 4c)β + 4αe + 2(αb + 2d)βi]λ2 + 2(4αe − α2β − 4βc − 4βdi)λ
+α2β − 2αβa + 4βc + 4αe + 2β(2d − αb)i = 0.

(3.8)

If (α2 + 2αa + 4c)β + 4αe + 2(αb + 2d)βi = 0, then it is easy to see that (α2 + 2αa + 4c)β + 4αe = 0
and αb + 2d = 0. Therefore, the Eq (3.8) yields

λ = −
α2β − 2αβa + 4βc + 4αe + 2β(2d − αb)i

2(4αe − α2β − 4βc − 4βdi)

=
βa + βbi

4e + βa + βbi
.

By Lemma 3.3, we get λ , ±1 as α2 > 4|c|max. Note that a > 0 and e ≥ 0, we have

|λ| =

√
(βa)2 + (βb)2

(4e + βa)2 + (βb)2 < 1.

In what follows, we consider the case (α2 + 2αa + 4c)β+ 4αe + 2(αb + 2d)βi , 0. From lemma 3.2,
we know that |λ| < 1 if and only if |Φ − ΦΨ| + |Ψ|2 < 1. For convenience, we denote Φ and Ψ by

Φ =
2(4αe − α2β − 4βc − 4βdi)

(α2 + 2αa + 4c)β + 4αe + 2(αb + 2d)βi

and

Ψ =
α2β − 2αβa + 4βc + 4αe + 2β(2d − αb)i
(α2 + 2αa + 4c)β + 4αe + 2(αb + 2d)βi

.

After straightforward computation, we have

|Φ − ΦΨ| + |Ψ|2 =
8αβ

√
Γ + (16de)2 + Υ + 4β2(2d − αb)2

(α2β + 2αβa + 4βc + 4αe)2 + 4β2(2d + αb)2 ,

where Γ = (4αae − α2βa − 4βac − 4βbd)2 and Υ = (α2β − 2αβa + 4βc + 4αe)2.
The following inequality

|Φ − ΦΨ| + |Ψ|2

<
8αβ

√
Γ + 16αae(α2βa + 4βac + 4βbd) + Υ + 4β2(2d − αb)2

(α2β + 2αβa + 4βc + 4αe)2 + 4β2(2d + αb)2

=
8αβ(4αae + α2βa + 4βac + 4βbd) + Υ + 4β2(2d − αb)2

(α2β + 2αβa + 4βc + 4αe)2 + 4β2(2d + αb)2

= 1
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holds true for this case

16αae(α2βa + 4βac + 4βbd) > (16de)2. (3.9)

This implies

α2a + 4ac + 4bd > 0. (3.10)

Following the inequalities (3.9) and (3.10), if ac + bd ≥ 0, we have

α2 > 0 > −
4(ac + bd)

a
,

and

β >
16d2e
α3a2 ≥

16d2e
αa[α2a + (4ac + 4bd)]

.

If ac + bd < 0, then we get

α2 >
4|ac + bd|max

a
≥ −

4(ac + bd)
a

> 0,

and

β >
16d2e

αa[α2a − |4ac + 4bd|]
≥

16d2e
αa[α2a + (4ac + 4bd)]

.

By making use of α2 > 4|c|max, we complete the proof. �
For the sake of convenience, we denote the maxima of |bd|, |d| and e by |bd|max, |d|max and emax,

respectively, and denote the minimums of a, b, c and d by amin, bmin, cmin, and dmin, respectively.
According to Theorem 3.1, we give the following sufficient conditions for the convergence of the
SFHSS iteration method (2.4).
Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. If the positive iteration parameters α
and β satisfy:

If ac + bd ≥ 0, then

α > 2
√
|c|max, and β >

16|d|2maxemax

α3a2
min

.

If ac + bd < 0, then

α2 > 2

√
|c|max +

|bd|max

amin
,

and

β >
16d2e

αamin[α2amin − 4|ac + bd|max]
.

Then the generalized shift-HSS iteration method (2.4) converges to the unique solution of the
nonsymmetric saddle point problem (1.1).
Proof. According to Theorem 3.1, if ac + bd ≥ 0, then

α2 > 4|c|max, β >
16|d|2maxemax

α3a2
min

≥
16d2e
α3a2 ,

AIMS Mathematics Volume 7, Issue 7, 13508–13536.



13517

and if ac + bd < 0, then

α2 > 4|c|max +
|bd|max

a
≥ max

{
4|ac + bd|max

a
, 4|c|max

}
,

and

β >
16d2e

αamin[α2amin − |4ac + 4bd|max]
≥

16d2e
αa[α2a − (4ac + 4bd)]

.

Therefore, we complete the proof. �

4. The spectral properties of the preconditioned matrix

The main objective of this section is to introduce some elegant inclusion regions for the spectrum
of P−1

S FHS SA for the saddle point problem (1.1).
In the following, to derive some related bounds of the eigenvalues of the preconditioned saddle

point matrix P−1
S FHS SA, we study the eigenvalue problem P−1

S FHS SAx = ηx, that is to say

Ax = ηPS FHS S x, (4.1)

where η denotes an any eigenvalue of the preconditioned matrix P−1
S FHS SA with the corresponding

eigenvector x = (u∗, v∗)∗.
For simplicity, we denote v∗BT Bv by σ2 and the null space of BT by ℵ(BT ), at the same time, the

matrix RS FHS S is defined by

RS FHS S =
1
4

 αIn +
4
α

HS 0

0 βBT B

 ,
then it is easy to see that

PS FHS S = RS FHS S +
1
2
A. (4.2)

After some algebra, we can rewrite the generalized eigenvalue problem (4.1) as

(1 −
η

2
)Ax = ηRS FHS S x. (4.3)

Following Lemma 3.3, since the eigenvalue λ = 1 − η of τ(α, β) satisfies λ , −1 with α2 > 4|c|max,
then η = 1 − λ , 2. So, 1 − 1

2η , 0, we set

θ =
2η

2 − η
, for which η =

2θ
θ + 2

= 2 −
4

θ + 2
.

For convenience, we use <(θ) and =(θ) to denote the real part and image part of the eigenvalue θ,
respectively.

We can explicitly write the equivalent eigenproblemAx = θRS FHS S x as(
A B
−BT 0

) (
u
v

)
=
θ

4

 αIn +
4
α

HS 0

0 βBT B

 ( u
v

)
. (4.4)
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The equivalent results to Eq (4.4) are given by
Au + Bv = θ(

α

4
In +

1
α

HS )u,

−BT u =
1
4
βθBT Bv.

(4.5)

It is obvious that u , 0, otherwise the second equation of (4.5) would implies θ = 0 or v = 0. However,
from Lemma 3.3, neither of them can be satisfied. So, u , 0. If v = 0 and α2 > 4|c|max, then
Theorem 4.1. Let the conditions of Lemma 3.3 be satisfied. Assume (η, x) is an eigenpair of (4.1) with

x = (u∗, v∗)∗ and ‖ u ‖2= 1. Then for ∀α, β > 0, the eigenvalue η can be written as η =
2θ
θ + 2

, where θ
satisfies the following:

(i) If v = 0, then u ∈ ℵ(BT ) and

4α|λ(A)|min√
α2 + 8αcmax + 16ρ2(HS )

≤ |θ| ≤
4αρ(A)√

α2 + 8αcmin + 16|λ(HS )|2min

, (4.6)

with

<(θ) =
4α(α2a + 4ac + 4bd)

(α2 + 4c)2 + 16d2 and =(θ) =
4α(α2b + 4bc − 4ad)

(α2 + 4c)2 + 16d2 . (4.7)

(ii) If v , 0, then u < ℵ(BT ) and

4α(α2 + 4cmin)|λ(A)|min

Θ(α, β)
< |θ| ≤

4αρ(A)Π(α, β)
Υ(α, β)

. (4.8)

with

<(θ) =
4α(α2a + 4ac + 4bd − αβaσ2)
(α2 + 4c)2 − (αβσ2)2 + 16d2 , =(θ) =

4α(α2b + 4bc + αβbσ2 − 4ad)
(α2 + 4c)2 − (αβσ2)2 + 16d2 , (4.9)

and

Π(α, β) = α2(α2 + 8cmax) + 16ρ2(HS ) + 2(α2 + 4cmax)αβσ2
max + (αβσ2

max)
2,

ω1(α, β) = α2(α2 + 8cmin) + 16|λ(HS )|2min − (αβσ2
max)

2,

ω2(α, β) = (αβσ2
min)2 − α2(α2 + 8cmax) − 16ρ2(HS ),

Υ(α, β) = min{ω1(α, β), ω2(α, β)},
Θ(α, β) = α2(α2 + 8cmin) + 16ρ2(HS ) + (αβσ2

max)
2.

Proof. In order to obtain the inequalities (4.6) and (4.8), we need to consider two cases: (i) v = 0, (ii)
v , 0.

We now turn to verify (i). If v = 0, from (4.5), it is easy to see that

Au = θ(
α

4
In +

1
α

HS )u. (4.10)
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Multiplying u∗ to the two sides of (4.10) from left, it then from (3.4) that

θ =
4α(a + bi)

(α2 + 4c) + 4di

=
4α(α2a + 4ac + 4bd) + 4α(α2b + 4bc − 4ad)i

(α2 + 4c)2 + 16d2 .
(4.11)

Consequently, we obtain (4.7). After some algebra, it is straightforward to show that

|θ| =
√
<2(θ) + =2(θ) =

4α
√

a2 + b2√
(α2 + 4c)2 + 16d2

. (4.12)

By straightforward calculation, we can get the inequality (4.6).
We demonstrate the validity of (ii). If v , 0, multiplying by u∗ from left, then the first of the Eq (4.5)

yields

u∗Au + u∗Bv = θu∗(
α

4
In +

1
α

HS )u. (4.13)

Multiplying the transposed conjugate of the second of Eq (4.5) by v∗, we get

u∗Bv = −
1
4
βθv∗BT Bv. (4.14)

Substituting (4.14) into (4.13), we obtain

4αu∗Au = α2θ + 4θu∗HS u + αβθv∗BT Bv. (4.15)

Following the above notes, it will be shown that

4α(a + bi) = α2θ + 4θ(c + di) + αβθσ2. (4.16)

It is obvious to obtain that

(α2 + 4c + αβσ2)<(θ) − 4d=(θ) = 4αa,

and

(α2 + 4c − αβσ2)=(θ) + 4d<(θ) = 4αb.

Through direct calculations, we get (4.9) and

|θ| =
√
<2(θ) + =2(θ) =

4α
√
ϕ(α, β) + ψ(α, β)

(α2 + 4c)2 − (αβσ2)2 + (4d)2 ,
(4.17)

where
ϕ(α, β) = (a2 + b2)[(α2 + 4c)2 + (4d)2 + (αβσ2)2],
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and
ψ(α, β) = 2[(b2 − a2)(α2 + 4c) − 8abd]αβσ2.

Since α2a + 4ac + 4bd > 0, then we have

ϕ(α, β) + ψ(α, β)
< ϕ(α, β) + 2(b2 − a2)(α2 + 4c)αβσ2 + 4αβσ2a2(α2 + 4c)
= ϕ(α, β) + 2(b2 + a2)(α2 + 4c)αβσ2

= (a2 + b2)[(α2 + 4c + αβσ2)2 + (4d)2].

(4.18)

Consider
(α2 + 4c)2 + (4d)2 > (αβσ2)2,

or
(α2 + 4c)2 + (4d)2 < (αβσ2)2.

By straightforward computation, we can find that

|θ| <

√
(a2 + b2)[(α2 + 4c + αβσ2)2 + (4d)2]
|(α2 + 4c)2 − (αβσ2)2 + 16d2|

<
4α

√
(a2 + b2)Π(α, β)

Υ(α, β)
.

(4.19)

Additionally, as a ≥ b, use α2a + 4ac + 4bd > 0 again, we have

ϕ(α, β) + ψ(α, β)

> ϕ(α, β) + 2
[
(b2 − a2)

(
−

4bd
a

)
− 8abd

]
αβσ2

= (a2 + b2)
[
(α2 + 4c)2 + (4d)2 + (αβσ2)2 − 8

(
b
a

)
dαβσ2

]
≥ (a2 + b2)

[
(α2 + 4c)2 + (4d)2 + (αβσ2)2 − 8dαβσ2

]
≥ (a2 + b2)(α2 + 4c)2.

(4.20)

As a < b, then we obtain

ϕ(α, β) + ψ(α, β)

> ϕ(α, β) − 16a2dαβσ2

> (a2 + b2)(α2 + 4c)2 + 2a2[(4d)2 + (αβσ2)2 − 8dαβσ2]

> (a2 + b2)(α2 + 4c)2.

(4.21)

Hence, combine (4.20) and (4.21), we have

|θ| >

√
(a2 + b2)(α2 + 4c)

(α2 + 4c)2 + (αβσ2)2 + (4d)2

≥
4α|λ(A)|min(α2 + 4cmin)

Θ(α, β)
.

(4.22)
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Hence, we complete the proof. 2

Remark 4.1. Following Theorem 4.1, the eigenvalue θ satisfies two cases:
(i) If v = 0 and α2b + 4bc = 4ad, then u ∈ ℵ(BT ) and the real eigenvalue

θ =
a

α2 + 4c
> 0

is bounded by

amin

α2 + 4cmax
< θ <

amax

α2 + 4cmin
.

(ii) If v , 0 and α2b + 4bc + αβbσ2 = 4ad, then u < ℵ(BT ) and the real eigenvalue

θ =
a

α2 + 4c + αβσ2 > 0

is bounded as
amin

α2 + 4cmax + αβσ2
max

< θ <
amax

α2 + 4cmin + αβσ2
min

. 2

Theorem 4.2. Let the conditions of Theorem 4.1 be satisfied. For any iteration parameters α, β > 0,
then the eigenvalue η of the SFHSS preconditioned matrix P−1

S FHS SA satisfies

2|θ|min

|θ|min + 2
≤ |η| <

2|θ|max√
|θ|2max + 4

. (4.23)

Proof. For any iteration parameters α, β > 0, since |θ| =
√
<2(θ) + =2(θ), then we get 0 < <(θ) ≤ |θ|.

From η =
2θ
θ + 2

, it is easy to see that

|η| =
2|θ|√

|θ|2 + 4<(θ) + 4
.

Hence, we have

2|θ|
|θ| + 2

≤ |η| <
2|θ|√
|θ|2 + 4

.

Together the monotone properties of
2|θ|
|θ| + 2

and
2|θ|√
|θ|2 + 4

with respect to |θ|, we complete the proof

of Theorem 4.2. 2

Combine Theorems 4.1 and 4.2, we can find the following result.
Remark 4.2. Combine Theorems 4.1 and 4.2, for ∀α, β > 0, some refined bounds for the eigenvalue η
of the SFHSS preconditioned matrix P−1

S FHS SA are given by
(i) If v = 0, then u ∈ ℵ(BT ) and

4α|λ(A)|min

2α|λ(A)|min +
√
α2 + 8αcmax + 16ρ2(HS )

≤ |η| ≤
4αρ(A)
F (α)

,
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where

F (α) =

√
4α2ρ2(A) + α2 + 8αcmin + 16|λ(HS )|2min.

(ii) If v , 0, then

4α|λ(A)|min(α2 + 4cmin)
2α|λ(A)|min(α2 + 4cmin) + Θ(α, β)

< |θ| ≤
4αρ(A)Π(α, β)√

4[αρ(A)Π(α, β)]2 + Υ2(α, β)
. 2

Remark 4.3. Since η =
2θ
θ + 2

, by simple algebra, it is easy to see that η is real if and only if =(θ) = 0.
Following Remark 4.1, the real eigenvalue η satisfies two cases of forms:

(i) If v = 0 and α2b + 4bc = 4ad, then u ∈ ℵ(BT ) and the real eigenvalue

η =
2a

a + 2α2 + 8c
> 0

meets the following inequality

2amin

amin + 2α2 + 8cmax
< η <

2amax

amax + 2α2 + 8cmin
.

(ii) If v , 0 and α2b + 4bc + αβbσ2 = 4ad, then u < ℵ(BT ) and the real eigenvalue

η =
2a

a + 2α2 + 8c + 2αβσ2 > 0

is bounded by

2amin

amin + 2α2 + 8cmax + 2αβσ2
max

< η <
2amax

amax + 2α2 + 8cmin + 2αβσ2
min

. 2

In the following, based on the above descriptions, I will further discuss the algebraic properties of
the preconditioned matrix P−1

S FHS SA, where the preconditioner Pα,0 is a reduced form of (2.1) with
β = 0. For simplicity of description, we denote PS FHS S and NS FHS S with α2 > 4|c|max and β = 0
by Pα,0 and Nα,0, respectively. For more details on the the algebraic properties of the preconditioned
matrix, we refer to [23–25].
Theorem 4.3. Let A be nonsymmetric positive definite and B have full column rank. Then the
preconditioned saddle point matrix P−1

α,0A has an eigenvalue η = 2 with algebraic multiplicity at least

m and the remaining eigenvalues are η j =
4α[λ j(H) + λ j(S )]

[α + 2λ j(H)][α + 2λ j(S )]
( j = 1, 2, . . . , n), where λ j(H) and

λ j(S ) denote the jth eigenvalue of H and S , respectively.
Proof. If β = 0, according to the second of the Eq (3.2), we can obtain

(λ + 1)BT u = 0,

then we further get either λ + 1 = 0 or BT u = 0. If λ = −1, i.e. η = 1 − λ = 2, by the first of the
Eq (3.2), we have

(α2In + 4HS )u = 0.
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Since α2In + 4HS is nonsingular with α2 > 4|c|max, then it is easy to obtain the related eigenvectors

have the form of
[

0
vT

l

]
(l = 1, 2, . . . ,m). If BT u = 0, use the first of the Eq (3.2) again, we obtain

λ =
u ∗ (αIn − 2H)(αIn − 2S )u
u ∗ (αIn + 2H)(αIn + 2S )u

=
[α − 2λ(H)][α − 2λ(S )]

[α + 2λ(H)][αIn + 2λ(S )]
,

therefore, we further get

η = 1 − λ =
4α[λ(H) + λ(S )]

[α + 2λ(H)][α + 2λ(S )]
.

Hence, we complete the proof of Theorem 4.3. 2

Remark 4.4. Following Theorem 4.3, it is easy to know that the preconditioned matrix P−1
α,0A has

m + j(1 ≤ j ≤ n) linearly independent eigenvectors, where

(i) m linearly independent eigenvectors related to the eigenvalue 2 have the form of
[

0
vT

l

]
(l =

1, 2, . . . ,m).
(ii) j( j = 1, 2, . . . , n) linearly independent eigenvectors associated with eigenvalues unequal to 2

have the form
[

uT
s

vT
s

]
(s = 1, 2, . . . , j) with BT u = 0. �

In what follows, we devote to study the properties of the minimal polynomial for the preconditioned
matrix P−1

α,0A. which are beneficial to the Krylov subspace acceleration. To derive an expression for
the corresponding characteristic polynomial of P−1

α,0A, we decompose once again the preconditioner
Pα,0 as

Pα,0 =
1
4

(
In 0

−2BTF −1 Im

) (
F 0
0 4BTF −1B

) (
In 2F −1B
0 Im

)
,

where
F =

1
α

(αIn + 2H)(αIn + 2S ).

It is obvious that

P−1
α,0 = 4

(
In −2F −1B
0 Im

) (
F −1 0

0 (4BTF −1B)−1

) (
In 0

2BTF −1 Im

)
.

A simple computation reveals that

P−1
α,0A = In+m − P

−1
α,0Nα,0

= In+m −

(
In −2F −1B
0 Im

) (
F −1 0

0 (4BTF −1B)−1

)
×

(
In 0

2BTF −1 Im

) (
G −2B

2BT 0

)
= In+m −

(
F −1G − 2F −1BD 0

D −Im

)
=

(
In − F

−1G + F −1BD 0
−D 2Im

)
,
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where
G =

1
α

(αIn − 2H)(αIn − 2S ),

and
D = (BTF −1B)−1(BTF −1G + BT ).

Since BT u = 0, then for j = 1, 2, . . . , n, we can get

η j(In − F
−1G + 2F −1BD) = η j(In − F

−1G) =
4α[λ j(H) + λ j(S )]

[α + 2λ j(H)][α + 2λ j(S )]
.

Then the characteristic polynomial of P−1
α,0A is described as follows

ΦP−1
α,0A

= det(ηIn+m − P
−1
α,0A) = (η − 2)m

n∏
j=1

(η − η j).

Denote by

Ψ(η) = (η − 2)m
n∏

j=1

(η − η j).

It is straightforward to show that Ψ(η) is a polynomial related to η of degree n + 1. Then a simple
computation reveals that

Ψ(P−1
α,0A) = (P−1

α,0A− 2In+m)m
n∏

j=1

(P−1
α,0A− η jIn+m)

=


(Θ − In)

n∏
j=1

(Θ − η jIn) 0

−D
n∏

j=1
(Θ − η jIn) 0

 ,
where Θ = In − F

−1G + F −1BD.
Since η j( j = 1, 2, . . . , n) are the eigenvalues of the matrix Θ, following the spirit of the Hamilton-

Cayley theorem, it is easy to see that
n∏

j=1
(Θ − η jIn), this leads to Ψ(P−1

α,0A) = 0.

The following conclusion is direct consequence of the above statements and therefore its proof is
omitted.
Theorem 4.4. Under the assumptions of Theorem 4.3, if P−1

α,0A has k(1 ≤ k ≤ n) distinct eigenvalues

η j(1 ≤ j ≤ k) related to algebraic multiplicity γ j with
k∑

j=1
= n, respectively, then the degree of the

minimal polynomial of the preconditioned matrix P−1
α,0A is at most k + 1(1 ≤ k ≤ n). Thus, the

dimension of the Krylov subspace K(P−1
α,0A, b) is at most k + 1(1 ≤ k ≤ n). �

Next, we restrict our attentions to the determination of the optimal parameters problem. It is easy
to see that the performance of the PS FHS S preconditioner largely depends on the choices of parameters
α and β. However, in our experience this is a difficult task to select the optimal parameters, therefore,
we usually need to investigate the estimation method in practical implementations.
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By taking similar steps to those taken in [26], we are ready to consider the choice of the parameters
α and β in the SFHSS iteration methods. In order to obtain the fast convergence rate of the SFHSS
iteration method (2.2) and clustered eigenvalue distribution of the SFHSS-preconditioned matrix, we
usually think it is very important to choice a suitable preconditioner 2PS FHS S in (4.2) to approximate
infinitely A, hence, we may expect RS FHS S ≈ 0 defined as in (4.2) to compute the quasi-optimal
iteration parameters αexp and βexp.

We begin our analysis by minimizing the following Frobenius norm of RS FHS S

Θ(α, β) , ‖4RS FHS S ‖F

=

∥∥∥∥∥∥∥∥
 αIn +

4
α

HS 0

0 βBT B


∥∥∥∥∥∥∥∥

F

= nα2 + 4tr(HS − S H) −
16
α2 tr(HS 2H) + β2tr(BT B)2.

where tr(E) denotes the trace of the matrix E.
By taking partial derivative for Θ(α, β), we can obtain

∂Θ(α, β)
∂α

= 2nα +
32
α3 tr(HS 2H) and

∂Θ(α, β)
∂β

= 2βtr(BT B)2.

It is obvious that Θ(α, β) has a minimum if

αexp = 2
4

√
−

tr(HS 2H)
n

.

The proof of tr(HS 2H) < 0 refer to [26, Lemma 1]. In addition, in practical implementations, it
seems a good idea to try some values as close to 0 as possible for the iteration parameter βexp.

5. Numerical examples

In this section, we present some numerical experiments to test the feasibility and robustness of the
generalized shift-HSS iteration method for solving the saddle point problem (1.1) arising from Oseen
models of incompressible flow. In order to evaluate the performance of the proposed generalized
shift-HSS preconditioner over some existing matrix splitting preconditioners, we compare the
numerical results of the generalized shift-HSS preconditioner PS FHS S (2.1) with the GSS
preconditioner PGS S (1.3), the SS preconditioner PS S (1.4), the MSS preconditioner PMS S (1.5), the
GMSS preconditioner PMS S (1.5), the DPSS preconditioner PDPSS presented in [27, 28] and the
preconditioner PIDPSS established by [29], where the preconditioner PDPSS is defined by

PDPSS =
1

2α

(
αIn + A

αIm

) (
αIn B
−BT αIm

)
. (5.1)

Here, the optimal iteration parameter is given by αexp =
||A||F + 2||B||F

2(n + m)
( [30]). In addition, the

preconditioner PIDPSS is given by

PIDPSS =
1

2α

(
αIn + A

2αIm

) (
αIn B
−BT

)
, (5.2)
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the optimal iteration parameter is given by αexp =
||A||F + ||B||F

2
√

n
( [24]).

We use the above preconditioners to accelerate GMRES iteration method and compare these
different preconditioned GMRES iteration methods in terms of both the number of iteration steps
(denoted by IT) and elapsed CPU times in seconds (denoted by CPU). In our implementations, we
choose the zero vector x(0) = 0 as the initial guess, take the right-hand-side vector b so that the exact
solutions u and v are the unity vectors with all entries equal to one, and set the stopping criterion to be
the residual norm

RES =
‖b − Ax(k)‖2

‖b − Ax(0)‖2
< 10−6

or the prescribed iteration number kmax = n, where x(k) is the solution at the kth iteration. In actual
applications, the iteration parameters α and β for the preconditioner PS FHS S are chosen to be the
experimentally found optimal value, which leads to the least numbers of iterations of the
preconditioned GMRES method for each choice of the spatial mesh-sizes [18].

Example 5.1. [31]. Consider the Oseen equation of form

{
−ν 4 u + (v · ∇)u + ∇p = f ,

5 · u = 0,
in Ω. (5.3)

where Ω is a bounded domain with suitable boundary conditions, the parameter ν > 0 denotes the
viscosity, u represents the vector field and stands for the velocity, v is the approximation of u from the
previous Picard iteration, and p denotes the pressure. The test problem is the classical two-dimensional
leaky-lid driven cavity problem. Here, we usually employ the “IFISS” software package proposed
in [32] to discretize the Oseen problem (5.3) with the Q2−Q1 mixed finite element method on uniform
grid. The generated saddle point system of type (1.1) has nonsymmetric positive definite sub-matrix B
which corresponds to a discretization of the convection diffusion operator L[u] := −ν 4 u + (v · ∇)u. In
actual implementation, four values of the viscosity parameters are used, such as ν = 1, 0.1, 0.01, 0.001,
and four increasing grids are selected, i.e., 16 × 16, 32 × 32, 64 × 64 and 128 × 128 grids.

In Tables 1–7, we use GMRES iteration method in conjunction with the corresponding
preconditioners and present IT and CPU with respect to different sizes of the discretization grids for
different values of α, β and ν. As these tables show, we can easily know that the generalized shift-HSS
method behaves much better than the MSS, GSS, SS, DPSS and IDPSS iteration methods, especially
when problem size increases, the convergence rate of GMRES iteration method with the generalized
shift-HSS preconditioner are much faster than that of GMRES iteration method with the GMSS, MSS,
GSS, SS, DPSS and IDPSS preconditioners. Therefore, the generalized shift-HSS preconditioner is
more efficient and stable to accelerate the convergence rate of the GMRES iteration method.
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Table 1. IT and CPU with ν = 1, α = 0.01 and β = 0.005.

Grid 64 × 64 128 × 128 256 × 256 512 × 512

PS FHS S

CPU 2.2468 19.5751 159.8347 978.9446
IT 4 4 4 4

PS S

CPU 7.4697 127.3370 1.6111e+03 2.0024e+04
IT 47 169 487 998

PGS S

CPU 6.1840 88.7871 1.2920e+03 8.1583e+04
IT 36 116 392 4550

PMS S

CPU 6.2798 78.7841 660.9457 1.4831e+04
IT 37 104 200 817

PGMS S

CPU 7.0076 86.0697 807.2316 1.1505e+04
IT 42 113 244 631

PDPS S

CPU 81.6477 993.7621 7.5473e+03 1.0011e+05
IT 260 573 627 1121

PIDPS S

CPU 50.0780 369.2814 2.9020e+03 1.8826e+04
IT 164 216 243 200

Table 2. IT and CPU with ν = 0.1, α = 0.01 and β = 0.005.

Grid 16 × 16 32 × 32 64 × 64 128 × 128

PS FHS S

CPU 0.0560 0.3080 2.4352 20.0278
IT 3 3 4 4

PS S

CPU 0.0755 0.6873 7.9002 128.0045
IT 11 20 47 169

PGS S

CPU 0.0590 0.4890 6.1251 89.8709
IT 7 15 36 116

PMS S

CPU 0.0807 0.6550 6.6287 80.3747
IT 13 17 37 104

PGMS S

CPU 0.0841 0.8567 7.4521 86.2577
IT 14 24 42 113

PDPS S

CPU 0.9915 8.5094 83.2322 998.5375
IT 87 180 255 573

PIDPS S

CPU 0.8671 8.6078 51.8677 373.8926
IT 77 140 164 216
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Table 3. IT and CPU with ν = 0.01, α = 0.01 and β = 0.005.

Grid 16 × 16 32 × 32 64 × 64 128 × 128

PS FHS S

CPU 0.0690 0.3106 2.5461 19.4539
IT 3 3 4 4

PS S

CPU 0.1031 0.7981 7.7896 130.0777
IT 11 21 47 169

PGS S

CPU 0.0499 0.5213 5.9485 90.4792
IT 8 15 36 116

PMS S

CPU 0.0950 0.5529 5.9219 83.7678
IT 13 17 37 104

PGMS S

CPU 0.0903 0.7730 6.6637 89.1844
IT 14 24 42 113

PDPS S

CPU 1.0676 9.0995 79.1151 1.0232e+03
IT 87 150 260 573

PIDPS S

CPU 0.9469 8.0854 49.9778 372.0878
IT 77 140 164 216

Table 4. IT and CPU with ν = 1, α = αexp and β = 0.05.

Grid 16 × 16 32 × 32 64 × 64 128 × 128

PS FHS S

CPU 0.1059 0.4267 2.5201 20.0278
IT 4 4 4 4

PDPS S

CPU 0.6867 11.1614 52.6255 913.3530
IT 52 152 163 515

PIDPS S

CPU 0.2370 1.1227 4.5158 21.7143
IT 18 15 13 13
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Table 5. IT and CPU with ν = 0.001, α = 0.01 and β = 0.005.

Grid 16 × 16 32 × 32 64 × 64 128 × 128

PS FHS S

CPU 0.0794 0.3281 2.4645 19.4732
IT 3 3 4 4

PS S

CPU 0.0876 0.7553 7.6986 128.4442
IT 11 21 47 169

PGS S

CPU 0.0620 0.5892 6.1956 89.6522
IT 8 15 36 116

PMS S

CPU 0.0923 0.5876 5.9810 79.4758
IT 15 17 37 104

PGMS S

CPU 0.0989 0.8472 7.0856 87.2737
IT 14 24 42 113

PDPS S

CPU 1.0748 9.1363 81.7333 1.0026e+03
IT 87 150 260 573

PIDPS S

CPU 0.9799 8.5531 51.4426 367.3563
IT 77 140 164 216

Table 6. IT and CPU with ν = 0.1, α = αexp and β = 0.05.

Grid 16 × 16 32 × 32 64 × 64 128 × 128

PS FHS S

CPU 0.0975 0.4061 2.4989 19.6638
IT 4 4 4 4

PDPS S

CPU 0.6554 10.7887 52.3130 940.0833
IT 52 152 163 510

PIDPS S

CPU 0.2531 1.1453 4.1881 22.5455
IT 18 15 13 13

Table 7. IT and CPU with ν = 0.01, α = αexp and β = 0.001.

Grid 16 × 16 32 × 32 64 × 64 128 × 128

PS FHS S

CPU 0.0595 0.2582 1.5179 12.3510
IT 2 2 2 4

PDPS S

CPU 0.6741 11.4814 53.4351 939.0087
IT 52 152 163 525

PIDPS S

CPU 0.2454 1.1735 4.6387 22.7694
IT 18 15 13 13

From Figures 1–4, we give the convergence history of the corresponding iteration methods to
compare effects of the corresponding preconditioners with respect to the iteration parameters α and β.
It is easily seen that the generalized shift-HSS iteration method has more smooth convergence curves
than the GMSS, MSS, GSS and SS iteration methods.
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Figure 1. Convergence curves of GMRES iteration methods.
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Figure 2. Convergence curves of GMRES iteration methods.
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Figure 3. Convergence curves of GMRES iteration methods.
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Figure 4. Convergence curves of GMRES iteration methods.
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Example 5.2. [33, 34]. Consider the two-dimensional convection-diffusion equation

−∇2u + q 5 u = f (x, y) in Ω = [0, 1] × [0, 1], (5.4)

with Dirichlet boundary condition and the constant coefficient q. Similar to the three-dimensional case
proposed in [35], the five-point centered finite difference discretization is used for the above equation,
the nonsymmetric saddle point system (1.1) can be easily obtained, where

A =

(
Il ⊗ Tr + Tr ⊗ Il 0

0 Il ⊗ Tr + Tr ⊗ Il

)
∈ R2l2×2l2 ,

B =

(
Il ⊗ F
F ⊗ Il

)
∈ R2l2×l2 ,

and

Tr =
1
h2 tridiag(−1 − r, 2,−1 + r) ∈ Rl×l, F =

1
h

tridiag(−1, 1, 0) ∈ Rl×l.

Here, h = 1
l+1 represents an equidistant step-size in each coordinate direction, ⊗ denotes the

Kronecker product and r = qh/2 indicates the mesh Reynolds number.
In Tables 8–11, from two aspects of IT and CPU, we use SFHSS, DPSS and IDPSS

preconditioners to accelerate GMRES iteration method associated with different sizes of the
discretization grids for different values of q with αexp and β = 0.00001. As these tables show, we can
easily know that the SFHSS method outperforms the DPSS and IDPSS methods, especially when
problem size increases, the convergence rate of GMRES iteration method with the generalized
shift-HSS preconditioner are much faster than that of GMRES iteration method with the DPSS and
IDPSS preconditioners. Therefore, the generalized SFHSS preconditioner is more efficient and stable.

Table 8. IT and CPU with q = 0.01, α = αexp and β = 0.00001.

l 16 32 64 128

PS FHS S

CPU 0.0430 0.1943 1.1330 6.9972
IT 3 4 4 5

PDPS S

CPU 0.5416 6.8962 142.8853 743.6954
IT 68 127 650 680

PIDPS S

CPU 0.0949 0.4838 2.1202 10.0982
IT 10 10 9 8

Table 9. IT and CPU with q = 0.1, α = αexp and β = 0.00001.

l 16 32 64 128

PS FHS S

CPU 0.0405 0.1926 1.1506 6.8099
IT 4 4 4 5

PDPS S

CPU 0.5003 5.7164 62.4237 807.8969
IT 66 152 341 670

PIDPS S

CPU 0.0804 0.3724 1.8443 8.7051
IT 10 10 9 8
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Table 10. IT and CPU with q = 1, α = αexp and β = 0.00001.

l 16 32 64 128

PS FHS S

CPU 0.0405 0.2352 1.3521 7.8656
IT 4 4 4 5

PDPS S

CPU 0.7747 12.3715 151.9526 988.8506
IT 86 258 694 840

PIDPS S

CPU 0.0899 0.5204 2.2006 9.8894
IT 10 10 9 8

Table 11. IT and CPU with q = 10, α = αexp and β = 0.00001.

l 16 32 64 128

PS FHS S

CPU 0.0650 0.2451 1.3483 7.9823
IT 4 4 4 5

PDPS S

CPU 0.6067 11.2988 165.5783 2.1922e+03
IT 74 273 761 1844

PIDPS S

CPU 0.0964 0.4138 2.1823 17.0936
IT 12 10 9 8

6. Conclusions

The novelty of this present paper is the construction and analysis of the generalized shift-HSS
iteration method for nonsingular saddle point systems with nonsymmetric positive definite
(1,1)-block. We investigate the convergence property of the SFHSS iteration method and further
illustrate the robustness and efficiency of the generalized shift-HSS preconditioner by a numerical
example. Future work should focus on developing the modified forms of the GSS iteration method
and generalized shift GSOR-like method for complex symmetric linear system, and study the effects
of iteration parameters on eigenvalue-clustering of the corresponding preconditioned matrices.
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