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local discernibility matrix, a necessary and sufficient condition for sub-base local consistent sets
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1. Introduction

Rough set theory, proposed by Pawlak [1], provides an approach to uncertainty management. In [2],
the theoretical relationships connecting rough set theory and belief function theory were investigated,
and their applications in knowledge representation and machine learning were researched. Covering
rough sets [3], generalizations of the classical rough sets, have been proved to be suitable for discussing
covering information systems. As a significant problem, the reduct problem has captured considerable
attention of numerous scholars. Many methods were provided to find reducts of covering rough sets
[4–8]. In addition, the invariant of separation in covering approximation spaces was concerned in [9].

Topology is a useful tool for investigating rough set theory and its applications. The inter-
dependencies of topology and rough set theory were emphasized in [10]. The object of general
topology is to study topological properties, namely, invariants of homeomorphism [11]. In the light of
the properties of the topological rough membership function, sub-base reducts in a family of sub-bases
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were defined in [12]. To further research sub-base reducts in a family of sub-bases from the point of
view of general topology, the concept of a minimal family of sub-bases was presented in [13]. By
showing the relationship between reducts in covering information systems and minimal families of
sub-bases, [13] provided an approach to deriving a minimal family of sub-bases. Moreover, minimal
bases and minimal sub-bases were considered in [14, 15].

It is not hard to see that the above-cited works are focused on sub-base reducts on a given universal
set. But some elements in the given universal set may be not important for specific problems. Motivated
by that, this paper intents to discuss sub-base local reducts in a family of sub-bases, which has not been
considered in the existing references. The main contributions are twofold. (i) The properties of sub-
base local reducts in a family of sub-bases are investigated. (ii) The approach to finding sub-base local
reducts in a family of sub-bases is provided, along with an algorithm for achieving it.

The remainder of this paper is organized as follows. Section 2 gives some basic information about
sub-base local reducts. Section 3 illustrates how to obtain sub-base local reducts according to Boolean
matrices. Section 4 has some concluding remarks.

2. Sub-base local reduct

Suppose Si is a sub-base for finite topological space (X, τi) for i = 1, 2, · · · , n, ∆ =

{S1,S2, · · · ,Sn}, and S∆ =
∧n

i=1 Si = {
⋂n

i=1 S i|S i ∈ Si, i = 1, 2 · · · , n}. Then S∆ is a sub-base
for a topology τ∆ of finite set X. Suppose P is a family of subsets of X. A minimal set containing x
with respect to P is denoted by NP(x) =

⋂
{U |x ∈ U ∈P}.

Under the premise of keeping topology unchanged, the sub-base reduct of a family of sub-bases is
defined according to the unique open neighborhood in [12, 13]. However, one may concern sub-base
reducts related to several open sets. Hence, the concept of the sub-base local reduct is provided.

Definition 2.1. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n and ∆ =

{S1,S2, . . . ,Sn}. Suppose F = {F|F ∈ S∆}. ∆1 ⊂ ∆ is called a sub-base local consistent set with
respect to F of ∆ if F ⊂ S∆. If ∆ is a sub-base local consistent set with respect to F of ∆, and for
any proper subset ∆2 of ∆1, F ⊂ S∆, then ∆1 is called a sub-base local reduct with respect to F of ∆.

Remark 2.1. Compared with the local reduct discussed in rough set theory, the sub-base local reduct
in a family of sub-bases also focuses on a subset A of the given universal set X. Thus, the sub-base local
reduct in a family of sub-bases is consistent with the local reduct discussed in rough set theory. When
discussing the sub-base local reduct in a family of sub-bases, subset A is obtained via the union of
those concerned open sets. But considering the local reduct in rough set theory, subset A is determined
according to elements that are indispensable for certain decision classes.

The sub-base local discernibility matrix is defined in the following.

Definition 2.2. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n and ∆ =

{S1,S2, . . . ,Sn}. Suppose F = {F|F ∈ S∆}. The sub-base local discernibility matrix with respect to
F of ∆ is denoted byDF (∆) = {D(x, y)|x, y ∈ X}, where

(1) if there exists F ∈ F such that x ∈ F, but y < F, thenD(x, y) = {S ∈ ∆|y < NS (x)}.
(2) Otherwise,D(x, y) = ∅.

Using the sub-base local discernibility matrix, a result of the sub-base local consistent set is
presented.
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Theorem 2.1. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n, and ∆ =

{S1,S , . . . ,Sn}. Suppose S = {F|F ∈ S∆}. ∆1 ⊂ ∆ is a sub-base local consistent set with respect to
F of ∆ if and only if ∆1 ∩D(x, y) , ∅ forD(x, y) , ∅.

Proof. Necessity. Assume there exist two points x, y ∈ X such thatD(x, y) < ∅, but ∆1 ∩ D(x, y) = ∅.
Then S < D(x, y) for each S ∈ ∆1, which means y ∈ NS (x) for each S ∈ ∆1. That is, y ∈ NS∆1

(x).
Since D(x, y) < ∅, for each F ∈ F satisfying x ∈ F, y < F, there exists S ∈ ∆ such that y < NS (x).
Because ∆1 ⊂ ∆ is a sub-base local consistent set with respect to F of ∆, we have F ⊂ S∆1 . Thus,
NS∆1

(x) = (
⋂

x∈A,A∈S∆1 ,A,F
A) ∩ F, which contradicts with y ∈ NS∆1

. Hence, ∆1 ∩ D(x, y) , ∅ for

D(x, y) , ∅.
Sufficiency. Assume ∆1 is not a sub-base local consistent set with respect to F of ∆. Then there

exists F ∈ F such that F < S∆1 . Thus, there exists a point x ∈ X such that NS∆1∪{F}
(x) , NS∆1

(x).
Since NS∆1∪{F}

(x) ⊂ NS∆1
(x), there exists a point y ∈ X such that y ∈ NS∆1

(x), but y < NS∆1∪{F}
(x). That

is, y < NS∆
(x) and y ∈ NS (x) for each S ∈ ∆1, which implies D(x, y) = ∅, but ∆1 ∩ D(x, y) = ∅,

which is a contradiction. Hence, ∆1 is a sub-base local consistent set with respect to F of ∆. �

The definition of the sub-base local core is proposed.

Definition 2.3. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n, and ∆ =

{S2,S2, . . . ,Sn}. Suppose F = {F|F ∈ ∆}. If CF (∆) = ∩{∆1|F ⊂ S∆1}, then CF (∆) is called a
sub-base local core with respect to F of ∆.

Some equivalent conditions about the sub-base local core are provided.

Theorem 2.2. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n, and ∆ =

{S1,S2, . . . ,Sn}, Suppose F = {F|F ∈ S∆}. Then the following conclusions are equivalent.
(1) S ∈ CF (∆).
(2) There exist x, y ∈ X such thatD(x, y) = {S }.
(3) There exists F ∈ F such that F < S∆\{S }.

Proof. (1)⇒(2). Assume |D(x, y)| ≥ 2 for any points x, y ∈ X. Denote ∆′ =
⋂
{D(x, y) \ {S }|x, y ∈ X}.

It is easy to see that ∆′ ∩ D(x, y) , ∅ for D(x, y) , ∅. According to Theorem 2.1, ∆′ is a sub-base
local consistent set with respect to F of ∆. Thus, there exists ∆1 ⊂ ∆′ such that ∆1 is a sub-base local
reduct with respect to F of ∆, which contradicts with S ∈ CF (∆). Hence, there exist x, y ∈ X such
thatD(x, y) = {S }.

(2)⇒(3). Assume F ⊂ S∆\{S }. Then, ∆ \ {S } is a sub-base local consistent set with respect to F
of ∆. Based on Theorem 2.1, (∆ \ {S }) ∩ D(x, y) , ∅ for D(x, y) , ∅, which contradicts with (2).
Hence, there exists F ∈ F such that F < S∆\{S }.

(3)⇒(1). Since there exists F ∈ F such that F < S∆\{S }, one concludes that ∆ \ {S } is not a
sub-base local consistent set with respect to F of ∆. Thus, for any ∆′ ⊂ ∆ \ {S }, ∆′ is not a sub-base
local reduct with respect to F of ∆, which contradicts with (1). Hence, S ∈ CF (∆) is proved. �

3. Sub-base local reducts based on Boolean matrices

To provided a simple method to find a sub-base local reduct of a given ∆, the following definitions
are used to construct a Boolean matrix.
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Definition 3.1. [5] Let X = {x1, x2, . . . , xm} and A ⊂ X. The characteristic function is defined as
f (A) = ( f1, f2, . . . , fm)′ (′ denotes the transpose throughout this paper), where

fi =

{
1, xi ∈ A,
0, xi < A.

Definition 3.2. [13] Let P be a family of subsets of X with X = {x1, x2, . . . , xm} and P = {P1, P2, . . . ,

Pk}. The characteristic matrix of P is defined as MP = ( f (P1), f (P2), . . . , f (Pk)).

Definition 3.3. [4] Let M = (mi j)n×m be a matrix. Define two matrix operators ∼ and ≈ as follows:
(1) ∼ M = (∼ mi j)n×m, where

∼ mi j =

{
1, mi j = 0,
0, mi j , 0.

(2) ≈ M = (≈ mi j)n×m, where

≈ mi j =

{
0, mi j = 0,
1, mi j , 0.

Definition 3.4. [16] Let A = (ai j)n×m and B = (bi j)n×m be two matrices. The Hadamard product of A
and B is defined as A ◦ B = (ai jbi j)n×m.

The sub-base local discernibility Boolean matrix is defined.

Definition 3.5. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n with X =

{x1, x2, . . . , xm}, and ∆ = {S1,S2, . . . ,Sn}. Suppose F = {F|F ∈ S∆}. For any ∆1 ⊂ ∆, define a
sub-base local discernibility Boolean matrix DF (∆1) = (di j)m×m satisfying:

(1) If there exists F ∈ F such that xi ∈ F, x j < F and x j < NS∆1
(xi), then di j = 1.

(2) Otherwise, di j = 0.

From the following theorem, the sub-base local discernibility Boolean matrix is computed.

Theorem 3.1. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n with X =

{x1, x2, . . . , xm}. Suppose F = {F|F ∈ S∆}. Then the following results hold.
(1) DF (S ) =≈ (MS (∼ M′

S ) ◦ (MF (∼ M′
F ))) for each S ∈ ∆.

(2) DF (S∆1) =≈ (
∑

S ∈∆1

DF (S )) for any ∆1 ⊂ ∆.

Proof. Given a matrix M, denote its i-th row by Rowi(M) and its element in the i-th row and j-th
column by Mi j.

(1) Denote S = {S 1, S 2, . . . , S k} and F = {F1, F2, . . . , Fq}. It is easy to find that Rowi(MS (∼
M′

S )) =
∑

1≤ j≤k
(MS )i jRow j(∼ M′

S ). According to Definitions 3.1 and 3.2, (MS )i j = 1 means xi ∈ S j,

and (MS )i j = 0 means xi < S j. Thus, we get Rowi(MS (∼ M′
S )) =

∑
1≤ j≤k

(MS )i jRow j(∼ M′
S ) =∑

xi∈S j

Row j(∼ M′
S ). That is, (MS (∼ M′

S ))il =
∑

xi∈S j

(∼ M′
S )il. Similarly, (MF (∼ M′

F ))il =
∑

xi∈S j

(∼ M′
F )il.

If (DF (S ))il = 1, then there exists Fp ∈ F such that xi ∈ Fp, xl < Fp and xl < NS∆
(xi). Hence,

we obtain (MF )ip = 1 and (∼ M′
F )pl = 1. That is, (MF (∼ M′

F ))il ≥ 1. Since xl < NS∆
(xi), there

exists S j0 ∈ S such that xi ∈ S j0 but xl < S j0 . So we have (MS (∼ M′
S ))il ≥ 1. Therefore, we prove

(≈ (MS (∼ M′
S ) ◦ (MF (∼ M′

F ))))il = 1. Similarly, if (DF (S ))il = 0, then (≈ (MS (∼ M′
S ) ◦ (MF (∼

M′
F ))))il = 0. Consequently, DF (S ) =≈ (MS (∼ M′

S ) ◦ (MF (∼ M′
F ))) for each S ∈ ∆.
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(2) If (DF (S∆1))i j = 1, then there exists F ∈ F such that xi ∈ F, x j < F and x j < NS∆1
(xi).

Thus, there exists S ∈ ∆1 such that x j < NS (xi). From (1), we conclude that (DF (S ))i j = 1, i.e.,
(≈ (

∑
S ∈∆1

DF (S )))i j = 1. If (DF (S∆1))i j = 0, then it is similar to proving (≈ (
∑

S ∈∆1

DF (S )))i j = 0.

Consequently, DF (S∆1) =≈ (
∑

S ∈∆1

DF (S )) for any ∆1 ⊂ ∆. �

Based on the results above, Theorem 3.2 is proved.

Theorem 3.2. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n with X =

{x1, x2, . . . , xm}. Suppose F = {F|F ∈ S∆}. Then the following results hold.
(1) For each ∆1 ⊂ ∆, ∆1 is a sub-base local consistent set with respect to F of S if and only if

DF (∆1) = DF (∆).
(2) For each S ∈ ∆, S ∈ CF (∆) if and only if DF (∆ \ {S }) , DF (∆).

Proof. (1) According to Theorem 2.1, S is a sub-base local core with respect to F if and only if
∆1 ∩ D(xi, j ) , ∅ for D(xi, x j) , ∅. From Definitions 2.2 and 3.5, D(xi, x j) , ∅ is equivalent to
(DF (∆))i j = 1. ∆1 ∩ D(xi, x j) , ∅ is equivalent to x j < NS∆1

(xi), i.e., (DF (∆1))i j = 1. Hence, we
conclude that DF (∆1) = DF (∆).

(2) From Theorem 2.2, S is a sub-base local core with respect to F if and only if there exists
xi, x j ∈ X such thatD(xi, x j) = {S }. It is equivalent to (DF (∆))i j = 1, but (DF (∆\ {S }))i j = 0. Hence,
DF (∆ \ {S }) , DF (∆). �

Moreover, a necessary and sufficient condition for the sub-base local reduct is presented.

Corollary 3.1. Let Si be a sub-base for finite topological space (X, τi) for i = 1, 2, . . . , n with X =

{x1, x2, . . . , xm}. Suppose F = {F|F ∈ S∆}. Then ∆1 ⊂ ∆ is a sub-base local reduct with respect to F
of ∆ if and only if ∆1 is a minimal subfamily of ∆ satisfying DF (∆1) = DF (∆).

On the basis of the analysis above, an algorithm is devised to find sub-base local reducts.

Algorithm 1 Sub-base local reducts based on Boolean matrices
Input: A family ∆ of sub-bases and F = {F|F ∈ S∆}.
Output: A minimal family ∆′ of sub-bases.

1: Let ∆′ = ∅;
2: for each S ∈ ∆ do
3: Compute DF (∆ \ {S }) according to Theorem 3.1;
4: if DF (∆ \ {S }) , DF (∆); then
5: Let ∆′ = ∆′ ∪ {S }.//find all sub-base local cores;
6: end if
7: end for
8: while DF (∆′) , DF (∆) do
9: Let ∆′ = ∆′ ∪ {S0},

10: where S0 satisfies |DF (∆′ ∪ {S0})| = max{|DF (∆′ ∪ {S0})| | S ∈ ∆ \ ∆′}, and | · | is the total
number of 1 in a matrix;

11: end while
12: Return ∆′.
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Remark 3.1. The time complexities of Steps 3-6 and Steps 8-10 are O(
∑

S ∈∆ α
2|S |) and

O(
∑|∆|−1

i=1 α2(|∆| − i)), respectively, where α = |
⋃

F∈F F|. Thus, the time complexity of Algorithm 1
is O(
∑

S ∈∆ α
2|S | +

∑|∆|−1
i=1 α2(|∆| − i)).

4. Conclusions

Sub-base local reducts in a family of sub-bases have been investigated in this paper. Firstly, using
the defined sub-base local discernibility matrix, a necessary and sufficient condition for the sub-base
local consistent set has been provided. Then the sub-base local discernibility matrix has been employed
to study properties of the sub-base local core. Finally, an algorithm has been devised to obtain sub-base
local reducts via the sub-base local discernibility matrix.
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