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Abstract: Rough set theory is a mathematical technique to address the issues of uncertainty and
vagueness in knowledge. An ideal is considered to be a crucial extension of this theory. It is an
efficacious tool to dispose of vagueness and uncertainties by helping us to approximate the rough set in
a more general manner. Minimizing the boundary region is one of the pivotal and substantial themes
for studying the rough sets which consequently aim to maximize the accuracy measure. An ideal is
one of the effective and successful followed methods to achieve this goal perfectly. So, the objective of
this work is to present new methods for rough sets by using ideals. Some important characteristics of
these methods are scrutinized and demonstrated to show that they yield accuracy measures greater and
higher than the former ones in the other approaches. Finally, two medical applications are introduced
to show the significance of utilizing the ideals in the proposed methods.
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1. Introduction

The problems of imprecision, ambiguity and incompleteness of information systems applied for
data analysis has occupied the human mind for a long time. These problems exist in different fields
such as economics, engineering, medical science and the social and environmental sciences. For years,
mathematicians, engineers and scientists, particularly those who focus on artificial intelligence, have
been seeking powerful tools to solve these problems. They suggested many techniques to achieve this
aim such as the rough set theory [29, 30]. It relies mainly on two approximations namely, lower and
upper approximations that are used to study the boundary region and accuracy measure. If the lower
and upper approximations of the set are equal to each other, then it is called a crisp set; otherwise, it
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is known as a rough set. Therefore, the boundary region is defined as the difference between the upper
and lower approximations. This boundary is usually associated with vagueness (i.e., the existence of
objects that cannot be uniquely classified to the set or its complement). Hence, the accuracy of the set
or ambiguity is dependent on whether the boundary region is empty or not respectively. A non-empty
boundary region of a set means that our knowledge about the set is not sufficient to define the set
precisely. So, one of the essential aims of this theory is to reduce the boundary region and increase
the accuracy of the set. The classical rough approximations are based on an equivalence relation
in a finite universe, but this relation is sometimes difficult to be obtained for real-world problems.
Extensions of this theory were therefore studied by many approaches in order to deal with complex
practical problems. One approach substituted the equivalence relations with tolerance or similarity
relations [12, 13, 21, 25, 28, 32–35] or binary relations [3, 4, 8, 23, 31, 39–43].

Neighborhood systems are used to generalize the rough set theory by replacing an equivalence class
with a neighborhood when defining approximations. Several types of neighborhoods were utilized to
define the lower and upper approximations such as right and left neighborhoods [14, 37, 38], minimal
right neighborhoods [2, 5] and minimal left neighborhoods [6]. Meanwhile, Abo-Tabl [1] defined the
approximations by using minimal right neighborhoods, which were determined by reflexive relations
that form the base of topological space. More recently, Dai et al. [11] presented three new types of
approximations based on maximal right neighborhoods that were determined by similarity relations.
The thing that distinguished Dai et al.’s approximations [11] from Abo-Tabl’s approximations [1] was
that the corresponding upper and lower approximations, boundary regions, accuracy measures and
roughness measures for two types of Dai et al.’s approximations [11] had monotonicity. Therefore, Dai
et al.’s approximations [11] were considered as an improvement of Abo-Tabl’s approximations [1].

An ideal is a non-empty collection of sets that is closed under hereditary property and finite
additivity [26, 36]. The interest in the idealized version of many rough set models has grown
drastically in the past 10 years. The advantage and benefit of using an ideal in this theory is that it
reduces the vagueness (uncertainty) of a concept to uncertainty areas at their borders by increasing the
lower approximations and decreasing the upper approximations. Consequently, it minimizes the
boundary region and improves the accuracy measure. So, the use of an ideal is a powerful method to
demystify the concept and define it precisely. Accordingly, the study of this theory with ideals is an
enjoyable topic that has received the attention of many researchers (see [9, 16–19, 22, 24, 27]).
Therefore, ideals have been extensively applied to this theory.

We are aware of the fact that ideals play an important role in the study of rough sets, particularly
for removing the vagueness. So, one of the primary motivations of this work is to introduce new
methods for rough sets by using ideals. Moreover, the present work is focused on expressing the main
concepts of rough sets by using maximal right neighborhoods deduced by binary relations not similarity
relations as in the previous studies [11]. Binary relations extend the application field of rough sets, but
the similarity relations do not always hold in many real-life applications. Therefore, this restriction
prevents the wide application of this set as it is shown at the end of this paper. Consequently, the
present approach is an extension of Dai et al.’s approaches [11]. This paper comprises eight sections
and its sequence is as follows. After the Introduction. Section 2 outlines the necessary concepts
and preliminaries required for the sequel to this work. The purpose of Sections 3–6 is to construct four
methods to approximate the set by using the notion of ideals and maximal right neighborhoods induced
by binary relations. The properties of the current approximations are interjected and analyzed. It is
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proved that the boundary of a subset decreases and the accuracy increases as the ideal increases (see
Theorems 3.1, 4.1, 5.1 and 6.1). Afterwards, it is elucidated that the corresponding upper and lower
approximations, boundary regions, accuracy measures and roughness measures of three types of these
approximations are monotonic (see Theorems 3.2, 4.2 and 6.2). Furthermore, the relationships among
these approximations are interpreted and illustrated. Additionally, Theorems 3.3, 4.4, 5.3 and 6.4
explain that the present methods reduce the boundary region by increasing the lower approximations
and decreasing the upper approximations. These methods reduce them more effectively than Dai et al.’s
methods [11]. They also show that the current accuracy is greater than the previous one in [11]. Hence,
this work is a generalization and an improvement of Dai et al.’s work [11]. It is worthwhile to note that,
with the current approximations if the ideal equals the empty set and the binary relation is a similarity
relation, then these approximations coincide with Dai et al.’s approximations [11]. So, Dai et al.’s
approximations [11] are a special case of the current approximations. In the end, medical applications
are presented to illustrate the importance of using ideals in the present approaches. It plays an intrinsic
and a substantial role in the decision making problems of two real life applications. It is pointed out
that the current techniques allow the medical staff to classify patients successfully in terms of infection
of the new coronavirus COVID-19 (first application) and heart attacks (second application). In the first
application, a similarity relation is used while in the second application a binary relation is applied.
Therefore, Dai et al.’s methods [11] cannot be applied for the second application. This is because
they are based on the similarity relations and this restricts the applications of the rough set theory. It
emphasizes that the present methods open the way for more applications. Eventually, the conclusion
of this paper and remarks for future research work are discussed in Section 8.

2. Preliminaries

Definition 2.1. [20] A non-empty collection I of subsets of a set U is called an ideal on U if it satisfies
the following conditions:

(1) A ∈ I and B ∈ I ⇒ A ∪ B ∈ I,
(2) A ∈ I and B ⊆ A⇒ B ∈ I.

i.e., I is closed under finite unions and subsets.

Definition 2.2. [22] Let I1,I2 be two ideals on a non-empty set U. The smallest collection generated
by I1,I2 is denoted by I1 ∨ I2 and defined as

I1 ∨ I2 = {G ∪ F : G ∈ I1, F ∈ I2}. (2.1)

Proposition 2.1. [22] If I1,I2 are two ideals on a non-empty set U and A, B are two subsets of U,
then the collection I1 ∨ I2 is satisfied by the following conditions:

(1) I1 ∨ I2 , φ,
(2) A ∈ I1 ∨ I2, B ⊆ A⇒ B ∈ I1 ∨ I2,
(3) A, B ∈ I1 ∨ I2 ⇒ A ∪ B ∈ I1 ∨ I2.

It means that the collection I1 ∨ I2 is an ideal on U.

AIMS Mathematics Volume 7, Issue 7, 13104–13138.



13107

Definition 2.3. [29] Let R be an equivalence relation on a universe U and [x]R be the equivalence class
containing x. For any subset A of U, the lower approximation apr(A) and upper approximation apr(A)
are defined by

apr(A) = {x ∈ U : [x]R ⊆ A}. (2.2)
apr(A) = {x ∈ U : [x]R ∩ A , φ}. (2.3)

These approximations satisfy the following properties:

(L1) apr(Ac) = [apr(A)]c, where Ac is the complement of A.

(L2) apr(U) = U.

(L3) apr(φ) = φ.

(L4) apr(A) ⊆ A.

(L5) apr(A ∩ B) = apr(A) ∩ apr(B)

(L6) apr(A ∪ B) ⊇ apr(A) ∪ apr(B)

(L7) A ⊆ B⇒ apr(A) ⊆ apr(B).

(L8) apr(apr(A)) = apr(A).

(L9) apr(A) ⊆ apr(apr(A)).

(U1) apr(Ac) = [apr(A)]c.

(U2) apr(U) = U.

(U3) apr(φ) = φ.

(U4) A ⊆ apr(A).

(U5) apr(A ∪ B) = apr(A) ∪ apr(B).

(U6) apr(A ∩ B) ⊆ apr(A) ∩ apr(B).

(U7) A ⊆ B⇒ apr(A) ⊆ apr(B).

(U8) apr(apr(A)) = apr(A).

(U9) apr(apr(A)) ⊆ apr(A).

Definition 2.4. [11] Let R be an arbitrary binary relation on a non-empty finite set U and x ∈ U, then
< x > R̆ = ∪{pR : x ∈ pR}. < x > R̆ is the union of all right neighborhoods containing x.

Theorem 2.1. [7] Let U be a universal set and R1,R2 be two binary relations on U. If R1 ⊆ R2, then
< x > R̆1 ⊆< x > R̆2,∀x ∈ U.
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Definition 2.5. [11] Let R be a similarity relation on a non-empty set U. For any subset A ⊆ U, the first
kind of lower and upper approximations, boundary regions, accuracy and roughness of A according to
R are respectively defined by

apr
R
(A) = {x ∈ U :< x > R̆ ⊆ A}. (2.4)

aprR(A) = {x ∈ U :< x > R̆ ∩ A , φ}. (2.5)
BoundaryR(A) = aprR(A) − apr

R
(A). (2.6)

AccuracyR(A) = |
apr

R
(A)

aprR(A)
|, aprR(A) , φ. (2.7)

RoughnessR(A) = 1 − AccuracyR(A). (2.8)

Definition 2.6. [11] Let R be a similarity relation on a non-empty set U. For any subset A ⊆ U,
the second kind of lower and upper approximations, boundary regions, accuracy and roughness of A
according to R are respectively defined by

apr
′

R
(A) = ∪{< x > R̆ :< x > R̆ ⊆ A}. (2.9)

apr′R(A) = (apr
′

R
(Ac))c. (2.10)

Boundary
′

R(A) = apr′R(A) − apr
′

R
(A). (2.11)

Accuracy
′

R(A) = |
apr

′

R
(A)

apr′R(A)
|, apr′R(A) , φ. (2.12)

Roughness
′

R(A) = 1 − Accuracy
′

R(A). (2.13)

Definition 2.7. [11] Let R be a similarity relation on a non-empty set U. For any subset A ⊆ U, the third
kind of upper and lower approximations, boundary regions, accuracy and roughness of A according to
R are respectively defined by

apr′′R(A) = ∪{< x > R̆ :< x > R̆ ∩ A , φ}. (2.14)
apr

′′

R
(A) = (apr′′R(Ac))c. (2.15)

Boundary
′′

R(A) = apr′′R(A) − apr
′′

R
(A). (2.16)

Accuracy
′′

R(A) = |
apr

′′

R
(A)

apr′′R(A)
|, apr′′R(A) , φ. (2.17)

Roughness
′′

R(A) = 1 − Accuracy
′′

R(A). (2.18)

3. First method to obtain generalized rough sets using ideals

In this section, the first type of generalized rough approximations is presented. The principle
properties of these approximations are studied and compared to the previous ones in [11] and shown
to be more general.
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Definition 3.1. Let R be a binary relation on a non-empty set U and I be an ideal on U. For any subset
A ⊆ U, the first kind of generalized lower and upper approximations, boundary regions, accuracy and
roughness of A using ideal and according to R are respectively defined by

aprI
R
(A) = {x ∈ U :< x > R̆ ∩ Ac ∈ I}. (3.1)

aprIR(A) = {x ∈ U :< x > R̆ ∩ A < I}. (3.2)
BoundaryIR(A) = aprIR(A) − aprI

R
(A). (3.3)

AccuracyIR(A) =
|aprI

R
(A)|

|aprIR(A)
|, aprIR(A) , φ. (3.4)

RoughnessIR(A) = 1 − AccuracyIR(A). (3.5)

Proposition 3.1. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) aprIR(φ) = φ.

(2) A ⊆ B⇒ aprIR(A) ⊆ aprIR(B).

(3) aprIR(A ∩ B) ⊆ aprIR(A) ∩ aprIR(B).

(4) aprIR(A ∪ B) = aprIR(A) ∪ aprIR(B).

(5) aprIR(A) = (aprI
R
(Ac))c.

(6) If A ∈ I, then aprIR(A) = φ.

(7) If I ⊆ J , then aprJR (A) ⊆ aprIR(A).
(8) If I = P(U), then aprIR(A) = φ.

(9) aprI∩JR (A) = aprIR(A) ∪ aprJR (A).

(10) aprI∨JR (A) = aprIR(A) ∩ aprJR (A).

Proof.

(1) aprIR(φ) = {x ∈ U :< x > R̆ ∩ φ < I} = φ.

(2) Let x ∈ aprIR(A). Then, < x > R̆ ∩ A < I. Since A ⊆ B and I is an ideal. It follows that
< x > R̆ ∩ B < I. Therefore, x ∈ aprIR(B). Hence, aprIR(A) ⊆ aprIR(B).

(3) The proof is immediately by (2).

(4) aprIR(A)∪aprIR(B) ⊆ aprIR(A∪B) according to (2). Let x ∈ aprIR(A∪B). Then, < x > R̆∩(A∪B) <
I. It follows that ((< x > R̆ ∩ A) ∪ (< x > R̆ ∩ B)) < I. Therefore, < x > R̆ ∩ A < I or
< x > R̆ ∩ B < I, which gives x ∈ aprIR(A) or x ∈ aprIR(B). Then, x ∈ aprIR(A) ∪ aprIR(B). Thus,
aprIR(A ∪ B) ⊆ aprIR(A) ∪ aprIR(B). Hence, aprIR(A ∪ B) = aprIR(A) ∪ aprIR(B).

(5) (aprI
R
(Ac))c = ({x ∈ U :< x > R̆ ∩ A ∈ I})c = {x ∈ U :< x > R̆ ∩ A < I} = aprIR(A).

(6) The proof is straightforward by Definition 3.1.

(7) Let x ∈ aprJR (A). Then, < x > R̆ ∩ A < J . Since I ⊆ J . So, < x > R̆ ∩ A < I. Therefore,
x ∈ aprIR(A). Hence, aprJR (A) ⊆ aprIR(A).
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(8) The proof is straightforward by Definition 3.1.
(9)

aprI∩JR (A) = {x ∈ U :< x > R̆ ∩ A < I ∩ J}

= {x ∈ U :< x > R̆ ∩ A < I} or {x ∈ U :< x > R̆ ∩ A < J}

= {x ∈ U :< x > R̆ ∩ A < I} ∪ {x ∈ U :< x > R̆ ∩ A < J}

= aprIR(A) ∪ aprJR (A).

(10)

aprI∨JR (A) = {x ∈ U :< x > R̆ ∩ A < I ∨ J}

= {x ∈ U :< x > R̆ ∩ A < I ∪ J}

= {x ∈ U :< x > R̆ ∩ A < I} and {x ∈ U :< x > R̆ ∩ A < J}

= {x ∈ U :< x > R̆ ∩ A < I} ∩ {x ∈ U :< x > R̆ ∩ A < J}

= aprIR(A) ∩ aprJR (A).

Proposition 3.2. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1 ) aprI
R
(U) = U.

(2) A ⊆ B⇒ aprI
R
(A) ⊆ aprI

R
(B).

(3) aprI
R
(A) ∪ aprI

R
(B) ⊆ aprI

R
(A ∪ B).

(4) aprI
R
(A ∩ B) = aprI

R
(A) ∩ aprI

R
(B).

(5) aprI
R
(A) = (aprIR(Ac))c.

(6) If Ac ∈ I, then aprI
R
(A) = U.

(7) If I ⊆ J , then aprI
R
(A) ⊆ aprJ

R
(A).

(8) If I = P(U), then aprI
R
(A) = U.

(9) aprI∩J
R

(A) = aprI
R
(A) ∩ aprJ

R
(A).

Proof.

(1) aprI
R
(U) = {x ∈ U :< x > R̆ ∩ φ ∈ I} = U.

(2) Let x ∈ aprI
R
(A). Then, < x > R̆∩ Ac ∈ I. Since Bc ⊆ Ac and I is an ideal. So, < x > R̆∩ Bc ∈ I.

Therefore, x ∈ aprI
R
(B). Hence, aprI

R
(A) ⊆ aprI

R
(B).

(3) The proof is immediately by (2).

(4) aprI
R
(A) ∩ aprI

R
(B) ⊇ aprI

R
(A ∩ B) according to (2). Let x ∈ aprI

R
(A) ∩ aprI

R
(B). Then, <

x > R̆ ∩ Ac ∈ I and < x > R̆ ∩ Bc ∈ I. It follows that (< x > R̆ ∩ (Ac ∪ Bc)) ∈ I. So,
(< x > R̆ ∩ (A ∩ B)c) ∈ I. Therefore, x ∈ aprI

R
(A ∩ B). Thus, aprI

R
(A) ∩ aprI

R
(B) ⊆ aprI

R
(A ∩ B).

Hence, aprI
R
(A) ∩ aprI

R
(B) = aprI

R
(A ∩ B).
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(5) (aprIR(Ac))c = ({x ∈ U :< x > R̆ ∩ Ac < I})c = {x ∈ U :< x > R̆ ∩ Ac ∈ I} = aprI
R
(A).

(6) The proof is straightforward by Definition 3.1.

(7) Let x ∈ aprI
R
(A). Then, < x > R̆ ∩ Ac ∈ I. Since I ⊆ J . It follows that < x > R̆ ∩ Ac ∈ J .

Therefore, x ∈ aprI
R
(A). Hence, aprI

R
(A) ⊆ aprJ

R
(A).

(8) The proof is straightforward by Definition 3.1.
(9)

aprI∩J
R

(A) = {x ∈ U :< x > R̆ ∩ Ac ∈ I ∩ J}

= {x ∈ U :< x > R̆ ∩ Ac ∈ I} and {x ∈ U :< x > R̆ ∩ Ac ∈ J}

= {x ∈ U :< x > R̆ ∩ Ac ∈ I} ∩ {x ∈ U :< x > R̆ ∩ Ac ∈ J}

= aprI
R
(A) ∩ aprJ

R
(A).

Remark 3.1. The following examples show that

(1) The converse of (2), (6), (7) and (8) in Propositions 3.1 and 3.2 is not necessarily true in general.
(2) The inclusion of (3) in Propositions 3.1 and 3.2 cannot be replaced by an equality relation in

general.

Example 3.1. (i) Let
U = {a, b, c, d},

I = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

and
R = {(a, b), (a, c), (b, c), (b, d), (c, a), (c, d)}

be a binary relation defined on U thus < a > R̆ = {a, d}, < b > R̆ = {b, c}, < c > R̆ = {b, c, d} and
< d > R̆ = {a, c, d}. For (2), take

(a) A = {a} and B = {d}; then, aprIR(A) = φ and aprIR(B) = {a, c, d}. Therefore, aprIR(A) ⊆
aprIR(B), but A * B.

(b) A = {b} and B = {a, c, d}; then, aprI
R
(A) = {b} and aprI

R
(B) = U. Therefore, aprI

R
(A) ⊆

aprI
R
(B), but A * B.

(ii) Let U = {a, b, c, d},J = {φ, {a}},I = {φ, {d}} and R = {(a, a), (b, b), (c, c)} be a binary relation
defined on U; thus, < a > R̆ = {a}, < b > R̆ = {b}, < c > R̆ = {c} and < d > R̆ = φ.

(1) For (6), take
(a) A = {a, d}; then, aprJR (A) = φ. Therefore, aprJR (A) = φ, but A < J .
(b) A = {b, c}; then, aprJ

R
(A) = U. Therefore, aprJ

R
(A) = U, but Ac < J .

(2) For (7), take
(a) A = {a, d}; then, aprIR(A) = {a} and aprJR (A) = φ. Therefore, aprJR (A) ⊆ aprIR(A), but
I * J .

(b) A = {b, c}; then, aprI
R
(A) = {b, c, d} and aprJ

R
(A) = U. Therefore, aprI

R
(A) ⊆ aprJ

R
(A),

but I * J .
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(3) For (8), take
(a) A = {a, d}; then, aprJR (A) = φ, but J , P(U).
(b) A = {b, c}; then, aprJ

R
(A) = U, but J , P(U).

(iii) Let U = {a, b, c, d},I = {φ, {d}} and R = ∆ ∪ {(b, a), (c, a), (d, a)} be a binary relation defined on
U, (where ∆ is the identity relation and equal to {(a, a), (b, b), (c, c), (d, d)}); thus, < a > R̆ = U,
< b > R̆ = {a, b}, < c > R̆ = {a, c} and < d > R̆ = {a, d}. For (3), take

(a) A = {a, d}, B = {b, c} and A∩B = φ; then, aprIR(A) = U, aprIR(B) = {a, b, c} and aprIR(A∩B) =

φ. Therefore, aprIR(A) ∩ aprIR(B) = {a, b, c} , φ = aprIR(A ∩ B).

(b) A = {a, d}, B = {b, c} and A∪ B = U; then, aprI
R
(A) = {d}, aprI

R
(B) = φ and aprIR(A∪ B) = U.

Therefore, aprI
R
(A) ∪ aprI

R
(B) = {d} , U = aprI

R
(A ∪ B).

Remark 3.2. There are some properties that are not held or satisfied for the first type.

(i) Considering Example 3.1 (i), take

(1) A = {a}; then, aprIR(A) = φ. Hence, A * aprIR(A).

(2) A = {b, c, d}; then, aprI
R
(A) = U. Hence, aprI

R
(A) * A.

(3) A = U; then, aprIR(U) = {a, c, d}. Hence, aprIR(U) , U.

(4) A = φ; then, aprI
R
(φ) = {b}. Hence, aprI

R
(φ) , φ.

(ii) Considering Example 3.1 (iii), take

(1) A = {b, c}; then, aprIR(A) = {a, b, c} and aprIR(aprIR(A)) = U. Hence,
aprIR(A) , aprIR(aprIR(A)).

(2) A = {a, d}; then, aprI
R
(A) = {d} and aprI

R
(aprI

R
(A)) = φ. Hence, aprI

R
(A) , aprI

R
(aprI

R
(A)).

(iii)

Example 3.2. Let U = {a, b, c, d},I = {φ, {a}} and R = ∆∪ {(a, b), (b, a), (c, a), (c, b), (d, a), (d, b)}
be a binary relation defined on U thus < a > R̆ =< b > R̆ = U, < c > R̆ = {a, b, c} and
< d > R̆ = {a, b, d}. It is clear that, if

(1) A = {c}; then, aprIR(A) = {a, b, c} and aprI
R
(aprIR(A)) = {c}. Hence,

aprIR(A) * aprI
R
(aprIR(A)).

(2) A = {a, b, d}; then, aprI
R
(A) = {d} and aprIR(aprI

R
(A)) = {a, b, d}. Hence,

aprIR(aprI
R
(A)) * aprI

R
(A).

Theorem 3.1. Let A ⊆ U, I,J be two ideals on U and R be a binary relation on U. If I ⊆ J , then

(1) BoundaryJR (A) ⊆ BoundaryIR(A).

(2) AccuracyIR(A) ≤ AccuracyJR (A).
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Proof.

(1) Let x ∈ BoundaryJR (A). Then, x ∈ aprJR (A) − aprJ
R

(A). So, x ∈ aprJR (A) and x ∈ (aprJ
R

(A))c.

Hence, x ∈ aprIR(A) and x ∈ (aprI
R
(A))c according to (7) of Propositions 3.1 and 3.2. It follows

that x ∈ BoundaryIR(A). Therefore, BoundaryJR (A) ⊆ BoundaryIR(A).

(2) AccuracyIR(A) = |
aprI

R
(A)

aprIR(A)
| ≤ |

aprJ
R

(A)

aprJR (A)
| = AccuracyJR (A).

Remark 3.3. Example 3.1 (ii) shows that the converse of (1) and (2) in Theorem 3.1 is not necessarily
true in general. Take A = {b, c}; then,

(1) BoundaryJR (A) = φ ⊆ φ = BoundaryIR(A), but I * J .

(2) AccuracyIR(A) = 3
2 < 2 = AccuracyJR (A), but I * J .

Theorem 3.2. Let φ , A ⊆ U, I be an ideal on U and R1,R2 be two binary relations on U. If R1 ⊆ R2,
then

(1) aprIR1
(A) ⊆ aprIR2

(A).

(2) aprI
R2

(A) ⊆ aprI
R1

(A).

(3) BoundaryIR1
(A) ⊆ BoundaryIR2

(A).

(4) AccuracyIR2
(A) ≤ AccuracyIR1

(A).

Proof.

(1) Let x ∈ aprIR1
(A). Then, < x > R̆1 ∩ A < I. Since < x > R̆1 ⊆< x > R̆2 (by Theorem 2.1 [7]). It

follows that < x > R̆2 ∩ A < I. Thus, x ∈ aprIR2
(A). Hence, aprIR1

(A) ⊆ aprIR2
(A).

(2) Let x ∈ aprI
R2

(A). Then, < x > R̆2 ∩ Ac ∈ I. Since < x > R̆1 ⊆< x > R̆2 (by Theorem 2.1 [7]). It

follows that < x > R̆1 ∩ Ac ∈ I. Thus, x ∈ aprI
R1

(A). Hence, aprI
R2

(A) ⊆ aprI
R1

(A).

(3) Let x ∈ BoundaryIR1
(A). Then, x ∈ aprIR1

(A) − aprI
R1

(A). So, x ∈ aprIR1
(A) and x ∈ (aprI

R1
(A))c.

Thus, x ∈ aprIR2
(A) and x ∈ (aprI

R2
(A))c according to (1) and (2). Hence, x ∈ BoundaryIR2

(A).

Therefore, BoundaryIR1
(A) ⊆ BoundaryIR2

(A).

(4) AccuracyIR2
(A) = |

aprI
R2

(A)

aprIR2
(A)
| ≤ |

aprI
R1

(A)

aprIR1
(A)
| = AccuracyIR1

(A).

The following example shows that the inclusion and less than relation in Theorem 3.2 cannot be
replaced by an equality relation in general.

Example 3.3. Let
U = {a, b, c, d},

I = {φ, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}}

R1 = ∆ ∪ {(a, b), (b, a)} and R2 = ∆ ∪ {(a, b), (b, a), (c, a), (a, c)}

be two relations defined on U; thus,

< a > R̆1 =< b > R̆1 = {a, b}, < c > R̆1 = {c}, < d > R̆1 = {d},
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< a > R̆2 =< b > R̆2 =< c > R̆2 = {a, b, c} and < d > R̆2 = {d}.

Take

(i) A = {a, d}; then,

(1) aprIR1
(A) = {a, b} , {a, b, c} = aprIR2

(A).

(2) AccuracyIR1
(A) = 2 , 4

3 = AccuracyIR2
(A).

(ii) A = {b, c}; then, aprI
R1

(A) = {c, d} , {d} = aprI
R2

(A).

The following theorem presents the relationships between the current approximations in
Definition 3.1 and the previous ones in Definition 2.5 [11]. It shows that the present method outlined
in Definition 3.1 reduces the boundary region by increasing the lower approximations and decreasing
the upper approximations more effectively than Dai et al.’s method (Definition 2.5) [11]. Additionally,
it shows that the current accuracy provided by Definition 3.1 is greater than the previous ones
provided by Definition 2.5 [11].

Theorem 3.3. Let A ⊆ U, I be an ideal on U and R be a similarity relation on a non-empty set U.
Then,

(1) aprIR(A) ⊆ aprR(A).
(2) apr

R
(A) ⊆ aprI

R
(A).

(3) BoundaryIR(A) ⊆ BoundaryR(A).
(4) AccuracyR(A) ≤ AccuracyIR(A).

Proof.

(1) Let x ∈ aprIR(A). Then, < x > R̆ ∩ A < I. Hence, < x > R̆ ∩ A , φ. Therefore, x ∈ aprR(A). So,
aprIR(A) ⊆ aprR(A).

(2) Let x ∈ apr
R
(A). Then, < x > R̆ ⊆ A. Hence, < x > R̆ ∩ Ac ∈ I. Therefore, x ∈ aprI

R
(A). So,

apr
R
(A) ⊆ aprI

R
(A).

(3) and (4) The proof is immediately by (1) and (2).

Remark 3.4. Example 3.3 shows that the inclusion and less than relation in Theorem 3.3 cannot be
replaced by an equality relation in general. Take A = {a, d}; then,

(1) aprIR1
(A) = {a, b} , {a, b, d} = aprR1

(A).

(2) aprI
R1

(A) = U , {d} = apr
R1

(A).

(3) BoundaryIR1
(A) = φ , {a, b} = BoundaryR1(A).

(4) AccuracyIR1
(A) = 2 , 1

3 = AccuracyR1(A).

4. Second method to obtain generalized rough sets using ideals

The aim of this section is to propose the second type of the extension of rough approximations.
The characteristics of these approximations are suggested. Moreover, some relationships among these
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approximations and the first type of approximations in the previous section are disclosed with the help
of some elucidative examples. Comparisons between these approximations and the ones in [11] are
presented.

Definition 4.1. Let R be a binary relation on a non-empty set U and I be an ideal on U. For any subset
A ⊆ U, the second kind of generalized lower and upper approximations, boundary regions, accuracy
and roughness of A using ideal and according to R are respectively defined by

aprI
R
(A) = {x ∈ A :< x > R̆ ∩ Ac ∈ I}. (4.1)

apr
I

R(A) = A ∪ aprIR(A). (4.2)

BoundaryI
R
(A) = apr

I

R(A) − aprI
R
(A). (4.3)

AccuracyI
R
(A) =

|aprI
R
(A)|

|apr
I

R(A)
|, apr

I

R(A) , φ. (4.4)

RoughnessI
R
(A) = 1 − AccuracyI

R
(A). (4.5)

Proposition 4.1. Let A ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) A ⊆ apr
I

R(A) equality holds if A = φ or U.

(2) A ⊆ B⇒ apr
I

R(A) ⊆ apr
I

R(B).

(3) apr
I

R(A) ⊆ apr
I

R(apr
I

R(A)).

(4) apr
I

R(A ∩ B) ⊆ apr
I

R(A) ∩ apr
I

R(B).

(5) apr
I

R(A ∪ B) = apr
I

R(A) ∪ apr
I

R(B).

(6) apr
I

R(A) = (aprI
R
(Ac))c.

(7) If A ∈ I, then apr
I

R(A) = A.

(8) If I ⊆ J , then apr
J

R (A) ⊆ apr
I

R(A).

(9) If I = P(U), then apr
I

R(A) = A.

(10) apr
I∩J

R (A) = apr
I

R(A) ∪ apr
J

R (A).

(11) apr
I∨J

R (A) = apr
I

R(A) ∩ apr
J

R (A).

Proof. Similar to Proposition 3.1.

Proposition 4.2. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) aprI
R
(A) ⊆ A equality holds if A = φ or U.
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(2) A ⊆ B⇒ aprI
R
(A) ⊆ aprI

R
(B).

(3) aprI
R
(aprI

R
(A)) ⊆ aprI

R
(A).

(4) aprI
R
(A) ∪ aprI

R
(B) ⊆ aprI

R
(A ∪ B).

(5) aprI
R
(A ∩ B) = aprI

R
(A) ∩ aprI

R
(B).

(6) aprI
R
(A) = (aprI

R
(Ac))c.

(7) If Ac ∈ I, then aprI
R
(A) = A.

(8) If I ⊆ J , then aprI
R
(A) ⊆ aprJ

R
(A).

(9) If I = P(U), then aprI
R
(A) = A.

(10) aprI∩J
R

(A) = aprI
R
(A) ∩ aprJ

R
(A).

Proof. Similar to Proposition 3.2.

Remark 4.1. (i) Example 3.1 (i) also shows that the converse of (2), (7) and (9) in Propositions 4.1 and
4.2 is not necessarily true in general.

(a) For (2), take

(1) A = {a} and B = {d}; then, apr
I

R(A) = {a} ⊆ {a, c, d} = apr
I

R(B), but A * B.

(2) A = {a, b, c} and B = {b, c, d}; then, aprI
R
(A) = {b} ⊆ {b, c, d} = aprI

R
(B), but A * B.

(b) For (7), take

(1) A = {a, c, d}; then, apr
I

R(A) = A, but A < I.

(2) A = {b}; then, aprI
R
(A) = A, but Ac < I.

(c) For (9), take

(1) A = {a, c, d}; then, apr
I

R(A) = A, but I , P(U).

(2) A = {b}; then, aprI
R
(A) = A, but I , P(U).

(ii) Example 3.1 (ii) also shows that the converse of (8) in Propositions 4.1 and 4.2 is not necessarily
true in general. Take

(1) A = {a, d}; then, apr
J

R (A) = {a, d} ⊆ {a, d} = apr
I

R(A), but I * J .

(2) A = {b, c}; then, aprI
R
(A) = {b, c} ⊆ {b, c} = aprJ

R
(A), but I * J .

(iii) Example 3.1 (iii) also shows that the inclusion of (3) and (4) in Propositions 4.1 and 4.2 cannot be
replaced by an equality in general.

(a) For (3), take
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(1) A = {b, c}; then, apr
I

R(A) = {a, b, c} and apr
I

R(apr
I

R(A)) = U. Therefore, apr
I

R(A) =

{a, b, c} , U = apr
I

R(apr
I

R(A)).

(2) A = {a, d}; then, aprI
R
(A) = {d} and aprI

R
(aprI

R
(A)) = φ. Therefore, aprI

R
(A) = {d} , φ =

aprI
R
(aprI

R
(A)).

(b) For (4), take

(1) A = {a, d}, B = {b, c} and A ∩ B = φ. Hence, apr
I

R(A) = U and apr
I

R(B) = {a, b, c}.

Therefore, apr
I

R(A) ∩ apr
I

R(B) = {a, b, c} , φ = apr
I

R(A ∩ B).

(2) A = {a, d}, B = {b, c} and A ∪ B = U. Hence, aprI
R
(A) = {d} and aprI

R
(B) = φ. Therefore,

aprI
R
(A) ∪ aprI

R
(B) = {d} , U = aprI

R
(A ∪ B).

Remark 4.2. There are some properties that are not held or satisfied for the second type.

(i) Considering Example 3.1 (i), take

(1) A = {a} ∈ I; then, apr
I

R(A) = A. Hence, if A ∈ I; apr
I

R(A) = φ.

(2) Ac = {a} ∈ I; then, aprI
R
(A) = A. Hence, if Ac ∈ I; aprI

R
(A) = U.

(ii) Considering Example 3.1 (ii), take

(1) J = P(U) and A = {a, d}; then, apr
J

R (A) = A. Hence, if J = P(U) ; apr
J

R (A) = φ.

(2) J = P(U) and A = {b, c}; then, aprJ
R

(A) = A. Hence, if J = P(U) ; aprJ
R

(A) = U.

(iii) Considering Example 3.2, take

(1) A = {c}; then, apr
I

R(A) = {a, b, c} and aprI
R
(apr

I

R(A)) = {c}. Therefore, apr
I

R(A) = {a, b, c} *

{c} = aprI
R
(apr

I

R(A)).

(2) A = {a, b, d}; then, aprI
R
(A) = {d} and apr

I

R(aprI
R
(A)) = {a, b, d}. Therefore, apr

I

R(aprI
R
(A)) =

{a, b, d} * {d} = aprI
R
(A).

Theorem 4.1. Let A ⊆ U, I,J be two ideals on U and R be a binary relation on U. If I ⊆ J , then

(1) BoundaryJ
R

(A) ⊆ BoundaryI
R
(A).

(2) AccuracyI
R
(A) ≤ AccuracyJ

R
(A).

Proof. Similar to the proof of Theorem 3.1.

Remark 4.3. Example 3.1 (ii) shows that the converse of (1) and (2) in Theorem 4.1 is not necessarily
true in general. Take A = {b, c}; then,

(1) BoundaryJ
R

(A) = φ ⊆ {a} = BoundaryI
R
(A), but I * J .

(2) AccuracyJ
R

(A) = 1 ≤ 2
3 = AccuracyI

R
(A), but I * J .
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Theorem 4.2. Let φ , A ⊆ U, I be an ideal on U and R1,R2 be two binary relations on U. If R1 ⊆ R2,
then

(1) apr
I

R1
(A) ⊆ apr

I

R2
(A).

(2) aprI
R2

(A) ⊆ aprI
R1

(A).

(3) BoundaryI
R1

(A) ⊆ BoundaryI
R2

(A).

(4) AccuracyI
R2

(A) ≤ AccuracyI
R1

(A).

(5) RoughnessI
R1

(A) ≤ RoughnessI
R2

(A).

Proof. Similar to Theorem 3.2.

Remark 4.4. Example 3.3 shows that the inclusion and less than relation in Theorem 4.2 cannot be
replaced by an equality relation in general. Take A = {a, d}; then,

(1) apr
I

R1
(A) = {a, b, d} , U = apr

I

R2
(A).

(2) BoundaryI
R1

(A) = {b} , {b, c} = BoundaryI
R2

(A).

(3) AccuracyI
R1

(A) = 2
3 ,

1
2 = AccuracyI

R2
(A).

(4) RoughnessI
R1

(A) = 0.3 , 0.5 = RoughnessI
R2

(A).

The following theorem presents the relationships between the current approximations in
Definitions 3.1 and 4.1.

Theorem 4.3. Let A ⊆ U, I be an ideal on U and R be a binary relation on U. Then,

(1) aprIR(A) ⊆ apr
I

R(A).

(2) aprI
R
(A) ⊆ aprI

R
(A).

(3) BoundaryIR(A) ⊆ BoundaryI
R
(A).

(4) AccuracyI
R
(A) ≤ AccuracyIR(A).

Proof. Immediately by using the Definitions 3.1 and 4.1.

Remark 4.5. Example 3.3 shows that the inclusion and less than relation in Theorem 4.3 cannot be
replaced by an equality relation in general. Take A = {a, c, d}; then,

(1) aprIR1
(A) = {a, b} , U = apr

I

R1
(A).

(2) aprI
R1

(A) = {a, c, d} , U = aprI
R1

(A).

(3) BoundaryIR1
(A) = φ , {b} = BoundaryI

R1
(A).

(4) AccuracyI
R1

(A) = 3
4 � 2 = AccuracyIR1

(A).

Comparisons between the current approximations in Definition 4.1 and the previous ones in
Definition 2.5 [11] are given by the following theorem.
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Theorem 4.4. Let A ⊆ U, I be an ideal on U and R be a similarity relation on a non-empty set U.
Then,

(1) apr
I

R(A) ⊆ aprR(A).

(2) apr
R
(A) ⊆ aprI

R
(A).

(3) BoundaryI
R
(A) ⊆ BoundaryR(A).

(4) AccuracyR(A) ≤ AccuracyI
R
(A).

(5) RoughnessI
R
(A) ≤ RoughnessR(A).

Proof. The proof is similar to that of Theorem 3.3.

Remark 4.6. Example 3.3 shows that the inclusion and less than relation in Theorem 4.4 cannot be

replaced by an equality relation. Take A = {b, c, d}; then, apr
I

R1
(A) = {b, c, d} , U = aprR1

(A).
Moreover, if A = {a, c, d}; then,

(1) apr
R1

(A) = {c, d} , {a, c, d} = aprI
R1

(A).

(2) BoundaryI
R1

(A) = {b} , {a, b} = BoundaryR1(A).

(3) AccuracyR1(A) = 1
2 �

3
4 = AccuracyI

R1
(A).

(4) RoughnessI
R1

(A) = 1
4 �

1
2 = RoughnessR1(A).

5. Third method to obtain generalized rough sets using ideals

This section is mainly concerned with the third type of the generalized rough approximations. The
fundamental characteristics of these approximations are interjected and analyzed. Additionally, an
example is introduced to show that the corresponding lower and upper approximations, boundary
regions, accuracy measures and roughness measures of this type of these approximations are not
monotonic. After this, the comparisons between these approximations and the approximations in
Sections 3 and 4 are introduced. Finally, the relationships between these approximations and the
previous ones in [11] are discussed.

Definition 5.1. Let R be a binary relation on a non-empty set U and I be an ideal on U. For any subset
A ⊆ U, the third kind of generalized lower and upper approximations, boundary regions, accuracy and
roughness of A using ideal and according to R are respectively defined by

apr
′I

R
(A) = ∪{< x > R̆ :< x > R̆ ∩ Ac ∈ I}. (5.1)

apr′
I

R(A) = (apr
′

R
(Ac))c. (5.2)

Boundary
′I

R(A) = apr′
I

R(A) − apr
′I

R
(A). (5.3)

Accuracy
′I

R(A) =
|apr

′I

R
(A)|

|apr′
I

R(A)
|, apr′

I

R(A) , φ. (5.4)
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Roughness
′I

R(A) = 1 − Accuracy
′I

R(A). (5.5)

Proposition 5.1. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) A ⊆ B⇒ apr
′I

R
(A) ⊆ apr

′I

R
(B).

(2) apr
′I

R
(A) ∪ apr

′I

R
(B) ⊆ apr

′I

R
(A ∪ B).

(3) apr
′I

R
(A ∩ B) ⊆ apr

′I

R
(A) ∩ apr

′I

R
(B).

(4) apr
′I

R
(A) = (apr′

I

R(Ac))c.

(5) If I ⊆ J , then apr
′I

R
(A) ⊆ apr

′J

R
(A).

(6) apr
′I∩J

R
(A) = apr

′I

R
(A) ∩ apr

′J

R
(A).

Proof.

(1) Let A ⊆ B and x ∈ apr
′I

R
(A). Then, ∃ y ∈ U such that x ∈< y > R̆ ∩ Ac ∈ I. Hence, x ∈<

y > R̆ ∩ Bc ∈ I (by Bc ⊆ Ac, and the properties of an ideal). Thus, x ∈ apr
′I

R
(B). Therefore,

apr
′I

R
(A) ⊆ apr

′I

R
(B).

(2) The proof is immediately by (1).
(3) The proof is immediately by (1).
(4) The proof is straightforward by Definition 5.1.
(5) Let I ⊆ J and x ∈ apr

′I

R
(A). Then, ∃ y ∈ U such that x ∈< y > R̆ ∩ Ac ∈ I ⊆ J . So,

x ∈ apr
′J

R
(A), and hence apr

′I

R
(A) ⊆ apr

′J

R
(A).

(6)

apr
′I∩J

R
(A) = ∪{< x > R̆ :< x > R̆ ∩ Ac ∈ I ∩ J}

= (∪{< x > R̆ :< x > R̆ ∩ Ac ∈ I}) and (∪{< x > R̆ :< x > R̆ ∩ Ac ∈ J})
= (∪{< x > R̆ :< x > R̆ ∩ Ac ∈ I}) ∩ (∪{< x > R̆ :< x > R̆ ∩ Ac ∈ J})

= apr
′I

R
(A) ∩ apr

′J

R
(A).

Proposition 5.2. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) A ⊆ B⇒ apr′
I

R(A) ⊆ apr′
I

R(B).

(2) apr′
I

R(A ∩ B) ⊆ apr′
I

R(A) ∩ apr′
I

R(B).

(3) apr′
I

R(A) ∪ apr′
I

R(B) ⊆ apr′
I

R(A ∪ B).

(4) apr′
I

R(A) = (apr
′I

R
(Ac))c.

(5) If I ⊆ J , then apr′
J

R (A) ⊆ apr′
I

R(A).
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(6) apr′
I∩J

R (A) = apr′
I

R(A) ∪ apr′
J

R (A).

Proof.

(1) Let A ⊆ B. Thus, Bc ⊆ Ac, and apr
′I

R
(Bc) ⊆ apr

′I

R
(Ac) (by (1) in Proposition 5.1). So,

(apr
′I

R
(Ac))c ⊆ (apr

′I

R
(Bc))c. Consequently, apr′

I

R(A) ⊆ apr′
I

R(B).

(2) The proof is immediately by (1).
(3) The proof is immediately by (1).
(4) The proof is straightforward by Definition 5.1.
(5) Let I ⊆ J and x ∈ apr′

J

R (A). Then, x ∈ (apr
′J

R
(Ac))c ⊆ (apr

′I

R
(Ac))c, (by (5) in Proposition 5.1).

Thus, x ∈ (apr
′I

R
(Ac))c = apr′

I

R(A). Therefore, apr′
J

R (A) ⊆ apr′
I

R(A).
(6)

apr′
I∩J

R (A) = (apr
′I∩J

R
(Ac))c

= (apr
′I

R
(Ac) ∩ apr

′J

R
(Ac))c (by (6) in Proposition 5.1)

= (apr
′I

R
(Ac))c ∪ (apr

′J

R
(Ac))c

= apr′
I

R(A) ∪ apr′
J

R (A).

Remark 5.1. (1) Example 3.1 (i) shows that the converse of (1) in Propositions 5.1 and 5.2 is not
necessarily true in general. Take

(a) A = {a} and B = {d}; then, apr′
I

R(A) = φ and apr′
I

R(B) = {a, d}. Therefore, apr′
I

R(A) ⊆

apr′
I

R(B), but A * B.

(b) A = {b} and B = {a, c, d}; then, apr
′I

R
(A) = {b, c} and apr

′I

R
(B) = U. Therefore, apr

′I

R
(A) ⊆

apr
′I

R
(B), but A * B.

(2) Example 3.1 (iii) shows that the inclusion of (2) in Propositions 5.1 and 5.2 cannot be replaced
by an equality relation in general. Take A = {a, d} and B = {b, c}, then

(a) apr′
I

R(A) = U, apr′
I

R(B) = {b, c} and apr′
I

R(A ∩ B) = φ. Therefore, apr′
I

R(A) ∩ apr′
I

R(B) =

{b, c} , φ = apr′
I

R(A ∩ B).

(b) apr
′I

R
(A) = A, apr

′I

R
(B) = φ and apr

′I

R
(A ∪ B) = U. Therefore, apr

′I

R
(A) ∪ apr

′I

R
(B) = A ,

U = apr
′I

R
(A ∪ B).

(3)

Example 5.1. Let U = {a, b, c, d},I = {φ, {a}} and R = {(a, a), (a, c), (a, d), (b, a), (b, b), (b, c),
(d, a), (d, b)} be a binary relation defined on U; thus, < a > R̆ =< c > R̆ = U, < b > R̆ = {a, b, c}
and < d > R̆ = {a, c, d}. This example shows that the inclusion of (3) in Propositions 5.1 and 5.2
cannot be replaced by an equality relation in general. Take

(a) A = {a, c, d}, B = {a, b, c} and A∩B = {a, c}; then, apr
′I

R
(A) = A, apr

′I

R
(B) = B and apr

′I

R
(A∩

B) = φ. Therefore, apr
′I

R
(A) ∩ apr

′I

R
(B) = {a, c} , φ = apr

′I

R
(A ∩ B).
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(b) A = {b}, B = {d} and A∪ B = {b, d}; then, apr′
I

R(A) = A, apr′
I

R(B) = B and apr′
I

R(A∪ B) = U.

Therefore, apr′
I

R(A) ∪ apr′
I

R(B) = {b, d} , U = apr′
I

R(A ∪ B).

(4) Example 3.1 (ii) shows that the converse of (5) in Propositions 5.1 and 5.2 is not necessarily true
in general. Take

(a) A = {a, d}; then, apr′
I

R(A) = {a, d} and apr′
J

R (A) = {d}. Therefore, apr′
J

R (A) ⊆ apr′
I

R(A), but
I * J .

(b) A = {b, c}; then, apr
′I

R
(A) = {b, c} and apr

′J

R
(A) = {a, b, c}. Therefore, apr

′I

R
(A) ⊆ apr

′J

R
(A),

but I * J .

Remark 5.2. There are some properties that are not held or satisfied for the third type.

(i) Considering Example 3.1 (i), take

(1) A = {a}; then, apr′
I

R(A) = φ. Hence, A * apr′
I

R(A).

(2) A = {b, c, d}; then, apr
′I

R
(A) = U. Hence, apr

′I

R
(A) * A.

(3) A = U; then, apr′
I

R(U) = {a, d}. Hence, apr′
I

R(U) , U.

(4) A = φ; then, apr
′I

R
(φ) = {b, c}. Hence, apr

′I

R
(φ) , φ.

(ii)

Example 5.2. Let U = {a, b, c, d},I = {φ, {a}} and R = {(a, a)} be a binary relation defined on U;
thus, < a > R̆ = {a} and < b > R̆ =< c > R̆ =< d > R̆ = φ. Take

(1) A = U; then, apr
′I

R
(U) = {a}. Hence, apr

′I

R
(U) , U.

(2) A = φ; then, apr′
I

R(φ) = {b, c, d}. Hence, apr′
I

R(φ) , φ.

(iii) Considering Example 5.2, take

(1) A = {b, c, d}; then, Ac ∈ I and apr
′I

R
(A) = {a}. Hence, if Ac ∈ I; apr

′I

R
(A) = U or A.

(2) A = {a} ∈ I; then, apr′
I

R(A) = {b, c, d}. Hence, if A ∈ I; apr′
I

R(A) = φ or A.

(3) A = {b, c, d} and I = P(U); then, apr
′I

R
(A) = {a}. Hence, if I = P(U) ; apr

′I

R
(A) = U, or

A.

(4) A = {a} and I = P(U); then, apr′
I

R(A) = {b, c, d}. Hence, if I = P(U) ; apr′
I

R(A) = φ, or A.

Theorem 5.1. Let A ⊆ U, I,J be two ideals on U and R be a binary relation on U. If I ⊆ J , then

(1) Boundary
′J

R (A) ⊆ Boundary
′I

R(A).

(2) Accuracy
′I

R(A) ≤ Accuracy
′J

R (A).

Proof. Similar to Theorem 3.1.

Remark 5.3. Example 3.1 (ii) shows that the converse of (1) and (2) in Theorem 5.1 is not necessarily
true in general. Take A = {b, c}; then,
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(1) Boundary
′J

R (A) = {d} ⊆ {d} = Boundary
′I

R(A), but I * J .

(2) Accuracy
′I

R(A) = 2
3 < 1 = Accuracy

′J

R (A), but I * J .

The following example shows that the corresponding lower and upper approximations, boundary
regions, accuracy measures and roughness measures for the third type do not have monotonicity.

Example 5.3. Let U = {a, b, c, d, e, f , g},I = {φ, {a}} and R1,R2 be two relations on U where

R1 = ∆ ∪ {(a, c), (c, a), (c, g), (d, f ), (e, g), ( f , d), (g, c), (g, e)},

R2 = ∆ ∪ {(a, c), (a, d), (a, e), (b, f ), (c, a), (c, g), (d, a), (d, f ), (e, a), (e, g), ( f , b), ( f , d), (g, c), (g, e)}.

Thus, < a > R̆1 = {a, c, g}, < b > R̆1 = {b}, < c > R̆1 =< g > R̆1 = {a, c, e, g}, < d > R̆1 =< f > R̆1 =

{d, f }, < e > R̆1 = {c, e, g}, < a > R̆2 = {a, c, d, e, f , g}, < b > R̆2 = {b, d, f }, < c > R̆2 =< e > R̆2 =

{a, c, d, e, g}, < d > R̆2 = {a, b, c, d, e, f }, < f > R̆2 = {a, b, d, f } and < g > R̆2 = {a, c, e, g}. Take

(1) A = {a, b, c, d, e, f }; then, apr
′I

R1
(A) = {b, d, f } and apr

′I

R2
(A) = A. Therefore,

apr
′I

R1
(A) + apr

′I

R2
(A).

(2) A = {g}; then, apr′
I

R1
(A) = {a, c, e, g} and apr′

I

R2
(A) = {g}. Therefore, apr′

I

R1
(A) * apr′

I

R2
(A).

(3) A = {a, b, c, d, e, f }; then, apr
′I

R1
(A) = {b, d, f }, apr′

I

R1
(A) = U, apr

′I

R2
(A) = A and apr′

I

R2
(A) = U.

Therefore,

(a) Boundary
′I

R1
(A) = {a, c, e, g} * {g} = Boundary

′I

R2
(A).

(b) Accuracy
′I

R1
(A) = 3

7 <
6
7 = Accuracy

′I

R2
(A).

(c) Roughness
′I

R1
(A) = 4

7 >
1
7 = Roughness

′I

R2
(A).

Although, R1 ⊆ R2.

Theorem 5.2. Let A ⊆ U, I be an ideal on U and R be a reflexive relation on U. Then,

(1) aprI
R
(A) ⊆ aprI

R
(A) ⊆ apr

′I

R
(A) ⊆ A ⊆ apr′

I

R(A) ⊆ aprIR(A) ⊆ apr
I

R(A).

(2) Boundary
′I

R(A) ⊆ BoundaryIR(A) ⊆ BoundaryI
R
(A).

(3) AccuracyI
R
(A) ≤ AccuracyIR(A) ≤ Accuracy

′I

R(A).

Proof. We prove (1) only and the others are straightforward from (1). By Theorem 4.3, we have
aprI

R
(A) ⊆ aprI

R
(A). To prove aprI

R
(A) ⊆ apr

′I

R
(A), let x ∈ aprI

R
(A); then, < x > R̆ ∩ Ac ∈ I. Hence,

< x > R̆ ⊆ apr
′I

R
(A). Since R is a reflexive relation, it follows that x ∈< x > R̆ ⊆ apr

′I

R
(A). Therefore,

x ∈ apr
′I

R
(A). Since R is reflexive. It follows that apr

′I

R
(A) ⊆ A ⊆ apr′

I

R(A) is straightforward from

Definition 5.1. To prove apr′
I

R(A) ⊆ aprIR(A), let x ∈ apr′
I

R(A) = (apr
′

R
(Ac))c; then, x < apr

′

R
(Ac).

Hence, by Definition 5.1, we get < x > R̆ ∩ A < I. It follows that x ∈ aprIR(A). By Theorem 4.3, we

have aprIR(A) ⊆ apr
I

R(A).
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Remark 5.4. Example 3.1 (iii) shows that the inclusion and less than relation in Theorem 5.2 cannot

be replaced by an equality relation in general. Take A = {b, c}; then, apr′
I

R(A) = {b, c}  {a, b, c} =

aprIR(A). Moreover, take A = {a, d}, then

(1) aprI
R
(A) = {d}  {a, d} = apr

′I

R
(A).

(2) Boundary
′I

R(A) = {b, c}  {a, b, c} = BoundaryIR(A).

(3) AccuracyIR(A) = 1
4 �

1
2 = Accuracy

′I

R(A).

The following theorem shows that the current approximations in Definition 5.1 constitute an
extension and a generalization of the previous Definition 2.6 [11].

Theorem 5.3. Let A ⊆ U, I be an ideal on U and R be a similarity relation on a non-empty set U.
Then,

(1) apr′
I

R(A) ⊆ apr′R(A).

(2) apr
′

R
(A) ⊆ apr

′I

R
(A).

(3) Boundary
′I

R(A) ⊆ Boundary
′

R(A).

(4) Accuracy
′

R(A) ≤ Accuracy
′I

R(A).

Proof. The proof is similar to that of Theorem 3.3.

Remark 5.5. Example 3.3 shows that the inclusion and less than relation in Theorem 5.3 cannot be
replaced by an equality relation in general. Take A = {a, c, d}; then,

(1) apr′
I

R1
(A) = {a, b} , U = aprR1

(A).
(2) apr

′

R1
(A) = {c, d} , U = apr

′I

R1
(A).

(3) Boundary
′I

R1
(A) = φ , {a, b} = Boundary

′

R1
(A).

(4) Accuracy
′

R1
(A) = 1

2 � 2 = Accuracy
′I

R1
(A).

6. Fourth method to obtain generalized rough sets using ideals

The objective of this section is to define the fourth type of the generalized rough approximations.
The basic properties of these approximations are constructed and established. Moreover, the
comparisons between these approximations and the approximations in Sections 3, 4 and 5 are
illustrated. At the end of this section, the relationships between these approximations and the
approximations in [11] are presented.

Definition 6.1. Let R be a binary relation on a non-empty set U and I be an ideal on U. For any subset
A ⊆ U, the fourth kind of generalized upper and lower approximations, boundary regions, accuracy
and roughness of A using ideal and according to R are respectively defined by

apr′′R(A) = ∪{< x > R̆ :< x > R̆ ∩ A < I}. (6.1)
apr

′′

R
(A) = (apr′′R(Ac))c. (6.2)
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Boundary
′′I

R(A) = apr′′
I

R(A) − apr
′′I

R
(A). (6.3)

Accuracy
′′I

R(A) =
|apr

′′I

R
(A)|

|apr′′
I

R(A)
|, apr′′

I

R(A) , φ. (6.4)

Roughness
′′I

R(A) = 1 − Accuracy
′′I

R(A). (6.5)

Proposition 6.1. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) apr′′
I

R(φ) = φ.

(2) A ⊆ B⇒ apr′′
I

R(A) ⊆ apr′′
I

R(B).

(3) apr′′
I

R(A ∩ B) ⊆ apr′′
I

R(A) ∩ apr′′
I

R(B).

(4) apr′′
I

R(A ∪ B) = apr′′
I

R(A) ∪ apr′′
I

R(B).

(5) apr′′
I

R(A) = (apr
′′I

R
(Ac))c.

(6) If A ∈ I, then apr′′
I

R(A) = φ.

(7) If I ⊆ J , then apr′′
J

R (A) ⊆ apr′′
I

R(A).

(8) If I = P(U), then apr′′
I

R(A) = φ.

(9) apr′′
I∩J

R (A) = apr′′
I

R(A) ∪ apr′′
J

R (A).

(10) apr′′
I∨J

R (A) = apr′′
I

R(A) ∩ apr′′
J

R (A).

Proof.

(1) apr′′
I

R(φ) = ∪{< x > R̆ :< x > R̆ ∩ φ < I} = φ.

(2) Let A ⊆ B and x ∈ apr′′
I

R(A). Then, ∃ y ∈ U such that x ∈< y > R̆ and < y > R̆ ∩ A < I. Thus,

< y > R̆ ∩ B < I. So, x ∈ apr′′
I

R(B). Consequently, apr′′
I

R(A) ⊆ apr′′
I

R(B).
(3) The proof is immediately by (2).
(4)

apr′′
I

R(A ∪ B) = ∪{< x > R̆ :< x > R̆ ∩ (A ∪ B) < I}.
= (∪{< x > R̆ :< x > R̆ ∩ A < I}) ∪ (∪{< x > R̆ :< x > R̆ ∩ B < I}).
= (∪{< x > R̆ :< x > R̆ ∩ A < I}) or (∪{< x > R̆ :< x > R̆ ∩ B < I}).

= apr′′
I

R(A) ∪ apr′′
I

R(B).

(5)

(apr
′′I

R
(Ac))c = ((apr′′

I

R(A))c)c.

= apr′′
I

R(A).

(6) The proof is straightforward by Definition 6.1.
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(7) Let I ⊆ J , x ∈ apr′′
J

R (A). Then, ∃ y ∈ U such that x ∈< y > R̆ and < y > R̆ ∩ A < J . Thus,

< y > R̆ ∩ A < I as I ⊆ J . So, x ∈ apr′′
I

R(A). Hence, apr′′
J

R (A) ⊆ apr′′
I

R(A).
(8) The proof is straightforward by Definition 6.1.
(9)

apr′′
I∩J

R (A) = ∪{< x > R̆ :< x > R̆ ∩ A < I ∩ J}

= (∪{< x > R̆ :< x > R̆ ∩ A < I}) or (∪{< x > R̆ :< x > R̆ ∩ A < J})
= (∪{< x > R̆ :< x > R̆ ∩ A < I}) ∪ (∪{< x > R̆ :< x > R̆ ∩ A < J})

= apr′′
I

R(A) ∪ apr′′
J

R (A).

(10)

apr′′
I∨J

R (A) = ∪{< x > R̆ :< x > R̆ ∩ A < I ∨ J}

= ∪{< x > R̆ :< x > R̆ ∩ A < I ∪ J}

= (∪{< x > R̆ :< x > R̆ ∩ A < I}) and (∪{< x > R̆ :< x > R̆ ∩ A < J})
= (∪{< x > R̆ :< x > R̆ ∩ A < I}) ∩ (∪{< x > R̆ :< x > R̆ ∩ A < J})

= apr′′
I

R(A) ∩ apr′′
J

R (A).

Proposition 6.2. Let A, B ⊆ U, I,J be two ideals on U and R be a binary relation on U. Then, the
following properties hold:

(1) apr
′′I

R
(U) = U.

(2) A ⊆ B⇒ apr
′′I

R
(A) ⊆ apr

′′I

R
(B).

(3) apr
′′I

R
(A) ∪ apr

′′I

R
(B) ⊆ apr

′′I

R
(A ∪ B).

(4) apr
′′I

R
(A ∩ B) = apr

′′I

R
(A) ∩ apr

′′I

R
(B).

(5) apr
′′I

R
(A) = (apr′′

I

R(Ac))c.

(6) If Ac ∈ I, then apr
′′I

R
(A) = U.

(7) If I ⊆ J , then apr
′′I

R
(A) ⊆ apr

′′J

R
(A).

(8) If I = P(U), then apr
′′I

R
(A) = U.

(9) apr
′′I∩J

R
(A) = apr

′′I

R
(A) ∩ apr

′′J

R
(A).

(10) apr
′′I∨J

R
(A) = apr

′′I

R
(A) ∪ apr

′′J

R
(A).

Proof.

(1) apr
′′I

R
(U) = (apr′′

I

R(φ))c = φc = U by (1) in Proposition 6.1.

(2) Let A ⊆ B. Thus, Bc ⊆ Ac and apr′′
I

R(Bc) ⊆ apr′′
I

R(Ac) (by (2) in Proposition 6.1). Then,

(apr′′
I

R(Ac))c ⊆ (apr′′
I

R(Bc))c. So, apr
′′I

R
(A) ⊆ apr

′′I

R
(B).

(3) The proof is immediately by (2).
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(4)

apr
′′I

R
(A ∩ B) = (apr′′

I

R(A ∩ B)c)c

= (apr′′
I

R(Ac ∪ Bc))c

= (apr′′
I

R(Ac) ∪ apr′′
I

R(Bc))c (by (4) in Proposition 6.1)

= (apr′′
I

R(Ac))c ∩ (apr′′
I

R(Bc))c

= apr
′′I

R
(A) ∩ apr

′′I

R
(B).

(5) The proof is straightforward by Definition 6.1.

(6) Let Ac ∈ I; then, apr
′′I

R
(A) = (apr′′

I

R(Ac))c = (φ)c = U according to Proposition 6.1 (6).

(7) Let I ⊆ J . Then, apr′′
J

R (Ac) ⊆ apr′′
I

R(Ac) according to Proposition 6.1 (7). Thus, (apr′′
I

R(Ac))c ⊆

(apr′′
J

R (Ac))c. Hence, apr
′′I

R
(A) ⊆ apr

′′J

R
(A).

(8) Let I = P(U); then, apr
′′I

R
(A) = (apr′′

I

R(Ac))c = (φ)c = U according to Proposition 6.1 (8).
(9)

apr
′′I∩J

R
(A) = (apr′′

I∩J

R (Ac))c

= (apr′′
I

R(Ac) ∪ apr′′
J

R (Ac))c (by (9) in Proposition 6.1)

= (apr′′
I

R(Ac))c ∩ (apr′′
J

R (Ac))c

= apr
′′I

R
(A) ∩ apr

′′J

R
(A).

(10)

apr
′′I∨J

R
(A) = (apr′′

I∨J

R (Ac))c

= (apr′′
I

R(Ac) ∩ apr′′
J

R (Ac))c by (10) in Proposition 6.1)

= (apr′′
I

R(Ac))c ∪ (apr′′
J

R (Ac))c

= apr
′′I

R
(A) ∪ apr

′′J

R
(A).

Remark 6.1. (1) Example 3.1 (i) shows that the converse of (2) in Propositions 6.1 and 6.2 is not
necessarily true in general. Take

(a) A = {a} and B = {d}; then, apr′′
I

R(A) = φ and apr′′
I

R(B) = U. Therefore, apr′′
I

R(A) ⊆ apr′′
I

R(B),
but A * B.

(b) A = {b} and B = {a, c, d}; then, apr
′′I

R
(A) = φ and apr

′′I

R
(B) = U. Therefore, apr

′′I

R
(A) ⊆

apr
′′I

R
(B), but A * B.

(2) Example 3.1 (ii) shows that the converse of (6)–(8) in Propositions 6.1 and 6.2 is not necessarily
true in general.

(i) For (6), take
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(a) A = {a, d}; then, apr′′
J

R (A) = φ. Therefore, apr′′
J

R (A) = φ, but A < J .

(b) A = {b, c}; then, apr
′′J

R
(A) = U. Therefore, apr

′′J

R
(A) = U, but Ac < J .

(ii) For (7), take

(a) A = {a, d}; then, apr′′
I

R(A) = {a} and apr′′
J

R (A) = φ. Therefore, apr′′
J

R (A) ⊆ apr′′
I

R(A),
but I * J .

(b) A = {b, c}; then, apr
′′I

R
(A) = {b, c, d} and apr

′′J

R
(A) = U. Therefore,

apr
′′I

R
(A) ⊆ apr

′′J

R
(A), but I * J .

(iii) For (8), take

(a) A = {a, d}; then, apr′′
J

R (A) = φ, but J , P(U).

(b) A = {b, c}; then, apr
′′J

R
(A) = U, but J , P(U).

(3) Example 3.1 (iii) shows that the inclusion of (3) in Propositions 6.1 and 6.2 cannot be replaced
by an equality relation in general. Take A = {a, d} and B = {b, c}; then,

(a) apr′′
I

R(A) = apr′′
I

R(B) = U and apr′′
I

R(A ∩ B) = φ. Therefore, apr′′
I

R(A) ∩ apr′′
I

R(B) = U ,

φ = apr′
I

R(A ∩ B).

(b) apr
′′I

R
(A) = apr

′′I

R
(B) = φ and apr

′′I

R
(A ∪ B) = U. Therefore, apr

′′I

R
(A) ∪ apr

′′I

R
(B) = φ ,

U = apr
′′I

R
(A ∪ B).

Remark 6.2. There are some properties that are not held or satisfied for the fourth type.

(i) Considering Example 3.1 (i), take

(1) A = {a}; then, apr′′
I

R(A) = φ. Hence, A * apr′′
I

R(A).

(2) A = {b, c, d}; then, apr
′′I

R
(A) = U. Hence, apr

′′I

R
(A) * A.

(ii) Considering Example 3.1 (ii), take

(1) A = U; then, apr′′
I

R(U) = {a, b, c}. Hence, apr′′
I

R(U) , U.

(2) A = φ; then, apr
′′I

R
(φ) = {d}. Hence, apr

′′I

R
(φ) , φ.

Theorem 6.1. Let A ⊆ U, I,J be two ideals on U and R be a binary relation on U. If I ⊆ J , then

(1) Boundary
′′J

R (A) ⊆ Boundary
′′I

R(A).

(2) Accuracy
′′I

R(A) ≤ Accuracy
′′J

R (A).

Proof. Similar to Theorem 3.1.

Remark 6.3. Example 3.1 (ii) shows that the converse of (1) and (2) in Theorem 6.1 is not necessarily
true in general. Take A = {b, c}; then,

(1) Boundary
′′J

R (A) = φ ⊆ φ = Boundary
′′I

R(A), but I * J .

(2) Accuracy
′′I

R(A) = 3
2 < 2 = Accuracy

′′J

R (A), but I * J .
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Theorem 6.2. Let φ , A ⊆ U, I be an ideal on U and R1,R2 be two binary relations on U. If R1 ⊆ R2,
then

(1) apr′′
I

R1
(A) ⊆ apr′′

I

R2
(A).

(2) apr
′′I

R2
(A) ⊆ apr

′′I

R1
(A).

(3) Boundary
′′I

R1
(A) ⊆ Boundary

′′I

R2
(A).

(4) Accuracy
′′I

R2
(A) ≤ Accuracy

′′I

R1
(A).

Proof.

(1) Let x ∈ apr′′
I

R1
(A). Then, ∃ y ∈ U such that x ∈< y > R̆1 ∩ A < I. Since < y > R̆1 ⊆< y > R̆2

(by Theorem 2.1 [7]), it follows that x ∈< y > R̆2 ∩ A < I. Thus, x ∈ apr′′
I

R2
(A). Hence,

apr′′
I

R1
(A) ⊆ apr′′

I

R2
(A).

(2) x ∈ apr
′′I

R2
(A) = (apr′′

I

R2
(Ac))c ⊆ (apr′′

I

R1
(Ac))c (according to (1)) = apr

′′I

R1
(A).

(3) Let x ∈ Boundary
′′I

R1
(A). Then, x ∈ apr′′

I

R1
(A) − apr

′′I

R1
(A). So, x ∈ apr′′

I

R1
(A) and

x ∈ (apr
′′I

R1
(A))c. Thus, x ∈ apr′′

I

R2
(A) and x ∈ (apr

′′I

R2
(A))c according to (1) and (2). Hence,

x ∈ Boundary
′′I

R2
(A). Therefore, Boundary

′′I

R1
(A) ⊆ Boundary

′′I

R2
(A).

(4) Accuracy
′′I

R2
(A) = |

apr
′′ I

R2
(A)

apr′′
I

R2
(A)
| ≤ |

apr
′′ I

R1
(A)

apr′′
I

R1
(A)
| = Accuracy

′′I

R1
(A).

Remark 6.4. Example 3.3 shows that the inclusion and less than relation in Theorem 6.2 cannot be
replaced by an equality relation in general. Take

(i) A = {a, d}; then,

(1) apr′′
I

R1
(A) = {a, b} , {a, b, c} = apr′′

I

R2
(A).

(2) Accuracy
′′I

R1
(A) = 2 , 4

3 = Accuracy
′′I

R2
(A).

(ii) A = {b, c}; then, apr
′′I

R1
(A) = {c, d} , {d} = apr

′′I

R2
(A).

Theorem 6.3. Let A ⊆ U, I be an ideal on U and R be a reflexive relation on U. Then,

(1) apr
′′I

R
(A) ⊆ aprI

R
(A) ⊆ apr

′I

R
(A) ⊆ A ⊆ apr′

I

R(A) ⊆ aprIR(A) ⊆ apr′′
I

R(A).

(2) Boundary
′I

R(A) ⊆ BoundaryIR(A) ⊆ Boundary
′′I

R(A).

(3) Accuracy
′′I

R(A) ≤ AccuracyIR(A) ≤ Accuracy
′I

R(A).

Proof. By Theorem 5.2, we have aprI
R
(A) ⊆ apr

′I

R
(A) ⊆ A ⊆ apr′

I

R(A) ⊆ aprIR(A). To prove

apr
′′I

R
(A) ⊆ aprI

R
(A), let x ∈ apr

′′I

R
(A) = apr′′

I

R(Ac)c. Then, x < apr′′
I

R(Ac). Thus, by Definition 6.1,
< x > R̆ ∩ Ac ∈ I. It follows that < x > R̆ ⊆ aprI

R
(A). Since R is a reflexive relation, it follows that

x ∈< x > R̆ ⊆ aprI
R
(A). Therefore, x ∈ aprI

R
(A). To prove aprIR(A) ⊆ apr′′

I

R(A), let x ∈ aprIR(A), then
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< x > R̆ ∩ A < I. It follows that < x > R̆ ⊆ apr′′
I

R(A). Since R is a reflexive relation, it follows that

x ∈< x > R̆ ⊆ apr′′
I

R(A). Therefore, x ∈ apr′′
I

R(A).

Remark 6.5. Example 3.1 (iii) shows that the inclusion and less than relation in Theorem 6.3 cannot be

replaced by an equality relation in general. Take A = {b, c}; then, aprIR(A) = {a, b, c}  U = apr′′
I

R(A).
Moreover, take A = {a, d}; then,

(1) apr
′′I

R
(A) = φ  {d} = aprI

R
(A).

(2) BoundaryIR(A) = {a, b, c}  U = Boundary
′′I

R(A).

(3) Accuracy
′′I

R(A) = 0 � 1
4 = AccuracyIR(A).

Remark 6.6. From the above results, it is noted that there are different methods to approximate the sets.
The best of these methods is the third type explained in Section 5, as the boundary regions in this case
are more effectively reduced (or canceled) by increasing the lower approximations and decreasing the
upper approximations as compared to the other types in the other sections. Moreover, the accuracy is
higher than the other types.

Theorem 6.4. Let A ⊆ U, I be an ideal on U and R be a similarity relation on a non-empty set U.
Then,

(1) apr′′
I

R(A) ⊆ apr′′R(A).

(2) apr
′′

R
(A) ⊆ apr

′′I

R
(A).

(3) Boundary
′′I

R(A) ⊆ Boundary
′′

R(A).

(4) Accuracy
′′

R(A) ≤ Accuracy
′′I

R(A).

Proof. The proof is similar to that of Theorem 3.3.

Remark 6.7. Example 3.3 shows that the inclusion and less than relation in Theorem 6.4 cannot be
replaced by an equality relation in general. Take A = {a, c, d}; then,

(1) apr′′
I

R1
(A) = {a, b, d} , U = apr′′R1

(A).
(2) apr

′′

R1
(A) = {c, d} , U = apr

′′I

R1
(A).

(3) Boundary
′′I

R1
(A) = φ , {a, b} = Boundary

′′

R1
(A).

(4) Accuracy
′′

R1
(A) = 1

2 �
4
3 = Accuracy

′′I

R1
(A).

Tables 1 and 2 summarize the differences among the properties of the proposed four methods.
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Table 1. Comparison between the first and second methods according to the properties in
Definition 2.3.

√
means that the property holds, while X denotes that the property does not

hold.

The first method The second method
L1

√ √

L2
√ √

L3 X
√

L4 X
√

L5
√ √

L6
√ √

L7
√ √

L8 X X
L9 X X
U1

√ √

U2 X
√

U3
√ √

U4 X
√

U5
√ √

U6
√ √

U7
√ √

U8 X X
U9 X X

Table 2. Comparison between the third and fourth methods according to the properties in
Definition 2.3.

The third method The fourth method
L1

√ √

L2 X
√

L3 X X
L4 X X
L5 X

√

L6
√ √

L1
√ √

U1
√ √

U2 X X
U3 X

√

U4 X X
U5 X

√

U6
√ √

U7
√ √
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7. Medical applications

The central goal of this section is to apply the suggested techniques to real-life problems, especially
in the domain of medical diagnosis, where more precise decisions are needed. Therefore, the features of
the proposed approximations in terms of ideals are scrutinized for two different medical applications.
These applications prove the adequacy of the generalization of rough sets using ideals to treat and
model a lot of real-life issues. It is shown that the application of ideals to the rough set theory helps to
remove the uncertainty and vagueness in data.

Example 7.1. Medical application: Decision-making for COVID-19

The purpose of this example is to demonstrate the significance of the current approximations in
obtaining the best tools to identify the decisive factors of infections for COVID-19 in humans. The
information in Table 3 was collected by the World Health Organization as well as through medical
groups specializing in COVID-19 [15]. It was taken from 1000 patients and reduced to 10 patients
because the attributes in rows (objects) are identical. So, the set of objects is

U = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}.

The most common symptoms (set of attributes) of COVID-19 are as follows:
{Difficulty breathing = a1, Chest pain = a2, Headache = a3, Dry cough = a4, High Temperature = a5,

Loss of smell or taste = a6} and Decision COVID-19 = {d}, as shown in Table 3.

Table 3. Decisive information data set.

Patients
Serious symptoms Most common symptoms Decision
a1 a2 a3 a4 a5 a6 COVID-19

{p1} yes yes no yes yes yes yes
{p2} yes yes yes yes yes yes yes
{p3} yes yes no yes no yes no
{p4} yes yes no no no no no
{p5} yes yes no yes no no no
{p6} yes no yes yes yes no yes
{p7} no no no yes yes no yes
{p8} no no no yes yes no no
{p9} no no no no no yes yes
{p10} no no yes yes yes no yes

From Table 3, the symptoms are given as follows:

V(p1) = {a1, a2, a4, a5, a6},V(p2) = {a1, a2, a3, a4, a5, a6},V(p3) = {a1, a2, a4, a6},V(p4) = {a1, a2},

V(p5) = {a1, a2, a4},V(p6) = {a1, a3, a4, a5},V(p7) = V(p8) = {a4, a5},V(p9) = {a6}

and
V(p10) = {a3, a4, a5}.
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Hence, the similarity relation is given as follows: piRp j ⇔V(pi) ∩V(p j) , φ. Consequently,

R = ∆ ∪ {(p1, p2), (p1, p3), (p1, p4), (p1, p5), (p1, p6), (p1, p7), (p1, p8), (p1, p9), (p1, p10),

(p2, p1), (p2, p3), (p2, p4), (p2, p5), (p2, p6), (p2, p7), (p2, p8), (p2, p9), (p2, p10), (p3, p1),

(p3, p2), (p3, p4), (p3, p5), (p3, p6), (p3, p7), (p3, p8), (p3, p9), (p3, p10), (p4, p1), (p4, p2),

(p4, p3), (p4, p5), (p4, p6), (p5, p1), (p5, p2), (p5, p3), (p5, p4), (p5, p6), (p5, p7), (p5, p8),

(p5, p10), (p6, p1), (p6, p2), (p6, p3), (p6, p4), (p6, p5), (p6, p7), (p6, p8), (p6, p10), (p7, p1),

(p7, p2), (p7, p3), (p7, p5), (p7, p6), (p7, p8), (p7, p10), (p8, p1), (p8, p2), (p8, p3), (p8, p5),

(p8, p6), (p8, p7), (p8, p10), (p9, p1), (p9, p2), (p9, p3), (p10, p1), (p10, p2), (p10, p3), (p10, p5),

(p10, p6), (p10, p7), (p10, p8)};

thus,
< p1 > R̆ =< p2 > R̆ =< p3 > R̆ =< p4 > R̆ =< p5 > R̆ =< p6 > R̆

=< p7 > R̆ =< p8 > R̆ =< p9 > R̆ =< p10 > R̆ = U.

Let
I = {φ, {p3}, {p4}, {p5}, {p8}, {p3, p4}, {p3, p5}, {p3, p8}, {p4, p5}, {p4, p8}, {p5, p8},

{p3, p4, p5}, {p3, p4, p8}, {p3, p5, p8}, {p4, p5, p8}, {p3, p4, p5, p8}}.

Hence, Table 3 represents a decision system; thus, the patients with confirmed infections for
COVID-19 are surely A = {p1, p2, p6, p7, p9, p10}. Then,

(1) By the previous approximations [11], the first (second/third) kind of lower and upper
approximations, boundary regions and accuracy of A are respectively φ,U,U and 0. This means
that the patients p1, p2, p6, p7, p9 and p10 are not infected with COVID-19, which contradicts the
decision system in Table 3. Therefore, we are unable to decide whether the patient is infected
with COVID-19 and this produced vagueness in the medical diagnosis decision-making process.
Consequently, Dai et al.’s methods [11] are not suitable for obtaining an accurate decision.

(2) According to the proposed second type, the lower and upper approximations, boundary regions
and accuracy of A are respectively A,U, {p3, p4, p5, p8} and 6

10 . This means that the patients
p1, p2, p6, p7, p9 and p10 are surely infected with COVID-19 according to the present technique
which is consistent with Table 3. Accordingly, the vagueness is reduced in the data and the
accuracy measure is increased.

Example 7.2. Medical application: Decision-making for a heart attack problem

In this example the proposed methods are applied to decision-making for heart attacks. The data
set in Table 4 was obtained from Al-Azhar University’s cardiology department [10] (Hospital of Sayed
Glal University, Cairo, Egypt). Table 4 represents the set of objects (patients) as

U = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12}.

It was reduced to {p1, p2, p3, p4, p5, p8, p9} because the attributes in rows (objects) are identical. The
study included patients with different symptoms, i.e., the set of attributes = {Breathlessness = a1,
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Orthopnea = a2, Paroxysmal nocturnal dyspnea = a3, Reduced exercise tolerance = a4, Ankle swelling
= a5} and decision of heart attacks is confirmed or ruled out = {d} as shown in Table 4.

Table 4. Decision information data set.

Patients a1 a2 a3 a4 a5 d
{p1} yes yes yes yes no yes
{p2} no no no yes yes no
{p3} yes yes yes yes yes yes
{p4} no no no yes no no
{p5} yes no no yes yes no
{p8} yes yes no yes yes yes
{p9} yes no yes yes no yes

Therefore, from Table 4, the symptoms are given as follows: V(p1) = {a1, a2, a3, a4},V(p2) =

{a4, a5},V(p3) = {a1, a2, a3, a4, a5},V(p4) = {a4},V(p5) = {a1, a4, a5},V(p8) = {a1, a2, a4, a5} and
V(p9) = {a1, a3, a4}.

Hence, the following binary relation is obtained: piRp j ⇔V(pi) ( V(p j). Consequently,

R = {(p1, p3), (p2, p3), (p2, p5), (p2, p8), (p4, p1), (p4, p2), (p4, p3), (p4, p5), (p4, p8),

(p4, p9), (p5, p3), (p5, p8), (p8, p3), (p9, p1), (p9, p3)};

thus,
< p1 > R̆ =< p2 > R̆ =< p3 > R̆ =< p5 > R̆ =< p8 > R̆

=< p9 > R̆ = {p1, p2, p3, p5, p8, p9} and < p4 > R̆ = φ.

Let
I = {φ, {p2}, {p4}, {p5}, {p2, p4}, {p2, p5}, {p4, p5}, {p2, p4, p5}}.

Thus, Table 4 represents a decision system and the patients with confirmed heart attacks were
surely A = {p1, p3, p8, p9}. Thus, we respectively computed the approximations, the boundary and the
accuracy measure of A to be as follows:

(1) The first (second/third) kind in Dai et al.’s approach [11] yielded {p4}, {p1, p2, p3, p5, p8, p9},

{p1, p2, p3, p5, p8, p9} and 1
6 which means that A is a rough set according to the Dai technique.

Further, the patients p4 and p6 experienced heart attacks, which contradicts the decision system
in Table 4. Therefore, we are unable to decide whether the patient has experienced a heart attack.

(2) The second kind in the present approach yield A, {p1, p2, p3, p5, p8, p9}, {p2, p5} and 4
6 . This

means that the patients {p1, p3, p8, p9} surely experienced heart attack according to the proposed
technique which is consistent with Table 4. Additionally, the boundary region is reduced and the
accuracy measure is increased.

Remark 7.1. It should be noted that

(1) The relation is identified according to the viewpoint of the system’s experts.
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(2) Dai et al.’s approximations [11] satisfy some properties of the basic properties of the rough set
when the relation is a binary relation. Meanwhile, the reminders of the properties are achieved
only if the relation is a similarity relation.

(3) The present techniques extend the applicability of rough sets. The similarity relations do not
always hold for many real-life applications; consequently this restriction limits the application of
this set.

8. Conclusions

This work combines two disciplines, namely, rough set theory and ideals. Rough set theory deals
with vagueness and imperfect knowledge by using the lower and upper approximations, whereas an
ideal is a fundamental concept in topological spaces that plays an important role in the study of the
generalization of rough sets. Since the advent of the ideals, several research papers with interesting
results in different respects has come to existence. In view of the recent applications of ideals in rough
set theory, it seems very natural to extend the interesting concept of the rough set further by using
ideals as done here. So, in this study different methods dependent on ideals and the maximal right
neighborhood which was generated by binary relations, were proposed to approximate the sets. The
use of ideals made the boundary region smaller; consequently, the accuracy measure was higher than
that achieved through the use of Dai et al.’s approximations [11], which depended only on the maximal
neighborhood generated by similarity relations. Hence, the present approach was a generalization of
Dai et al.’s approach [11]. The basic properties of the current methods were studied. More importantly,
it was proved for three of the current methods that the corresponding lower and upper approximations,
boundary regions, accuracy measures and roughness measures were monotonic. Moreover, to add
strength and make the current work vivid two medical applications were proposed to illustrate the
main idea of the present results. The present techniques were successful and powerful techniques to
reduce the boundary region and improve the accuracy measure. They allowed the medical staff to
decide the impact factors of COVID-19 infections and heart attacks. They handled any imperfect data
for symptoms of the diseases and this automatically made the diagnosis of patients easy and accurate.
Consequently, this can help the medical staff to make a precise decision about the diagnosis of patients.

In upcoming works, we will

(1) Study new types of approximations resulting from neighborhoods and ideals.
(2) Search how these approximations can be applied to model real-life issues.
(3) Investigate the concepts and results presented here to generalize rough multisets using multisets

ideals.
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