
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(7): 13074–13103.
DOI: 10.3934/math.2022723
Received: 27 November 2021
Revised: 04 April 2022
Accepted: 06 April 2022
Published: 10 May 2022

Research article

Generalized iterated function system for common attractors in partial
metric spaces

Melusi Khumalo, Talat Nazir∗ and Vuledzani Makhoshi

Department of Mathematical Sciences, University of South Africa, Florida 0003, South Africa

* Correspondence: Email: talatn@unisa.ac.za; Tel: +27817136769.

Abstract: In this paper, we aim to obtain some new common attractors with the assistance of finite
families of generalized contractive mappings, that belong to the special class of mappings defined
on a partial metric space. Consequently, a variety of results for iterated function systems satisfying a
different set of generalized contractive conditions are acquired. We present some examples to reinforce
the results proved herein. These results generalize, unify and extend a variety of results that exist in
current literature.

Keywords: common attractor; generalized iterated function system; common fixed point;
generalized contraction; partial metric space
Mathematics Subject Classification: 47H04, 47H07, 47H10

1. Introduction

Iterated function system (IFS) has as a base, the mathematical foundations laid down in 1981 by
Hutchinson [13]. He proved that the Hutchinson operator defined on Rk has a fixed point, a set in Rk

which is closed and bounded, known as an attractor of IFS [6]. This, according to [7], may be viewed
as a generalized version of the celebrated Banach’s contraction principle which we state below. The
importance of Banach contraction mapping principle [8] in the study of fixed point theory in metric
spaces cannot be overspecialized. Its vast range of applications, which include among others, iterative
methods for solving linear and nonlinear difference, differential and integral equations, attracted several
researchers to intensify and extend the scope of fixed point theory in metric spaces, see for example [1,
2,9,11,12,14,15,17,22,23]. Secelean [21] studied generalized countable iterated function systems on
a metric space and it was Nadler [19] who pioneered the research of fixed point theory in metric spaces
involving multivalued operators.

Our primary objective in this paper is the construction of a fractal set of generalized iterated
function system of a generalized contractions in a partial metric space. We observe that the
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Hutchinson operator defined on a finite family of contractive mappings on a complete partial metric
space is itself a generalized contractive mapping on a family of compact subsets of Y. By successive
application of a generalized Hutchinson operator, a final fractal is obtained and this shall be followed
by a presentation of a nontrivial example in support of the proved result.

Notations N, R+, R and Rk will denote a set of natural numbers, a set of nonnegative real numbers,
a set of real numbers and a set of k-tuples of real numbers respectively.

Consistent with [18], we give the following preliminary definitions and results.
Definition 1.1. Let Y be any non-empty set and p : Y × Y → R+ be a mapping. A pair (Y, p) is called a
partial metric space if for all t1, t2, t3 ∈ Y , the following properties hold:

(p1) t1 = t2 if and only if p(t1, t1) = p(t1, t2) = p(t2, t2),
(p2) p(t1, t1) ≤ p(t1, t2),
(p3) p(t1, t2) = p(t2, t1),
(p4) p(t1, t2) + p(t3, t3) ≤ p(t1, t3) + p(t3, t2).

The mapping p is a partial metric on a non-empty set Y .
From the definition, we see that if p(t1, t2) = 0, then properties (p1) and (p2) imply that t1 = t2 but in

general, the converse is not true. An elementary example [3] is given by a partial metric space (R+, p),
with p(t1, t2) = max{t1, t2} for all t1, t2 ∈ R

+.

Example 1.2. [3, 18] If Y = {[φ1, φ2] : φ1, φ2 ∈ R, φ1 ≤ φ2}, then p([φ1, φ2], [φ3, φ4]) = max{φ2, φ4} −

min{φ1, φ3} which is a partial metric p defined on Y .
Following [18], a T0 topology τp on Y having as a base, a family of open p-balls {Bp(t1, ε) : t1 ∈

Y, ε > 0} such that Bp(t1, ε) = {t2 ∈ Y : p(t1, t2) < p(t1, t1) + ε} for all t1 ∈ Y and ε > 0, is generated by
each partial metric p on Y .

Let p be a partial metric on Y. Then the mapping ps : Y × Y → R+ defined as ps(t1, t2) = 2p(t1, t2) −
[p(t1, t1) + p(t2, t2)] for all t1, t2 ∈ Y , is a metric on Y [4].
Definition 1.3. [15, 18] Consider a partial metric space (Y, p). Then

(i) {tk} is called a Cauchy sequence in Y if lim
k,η→+∞

p(tk, tη) exists and is finite.

(ii) (Y, p) is said to be complete if every Cauchy sequence {tk} in Y converges to a point t ∈ Y with
respect to a topology τp such that p(t, t) = lim

k→+∞
p(tk, t).

(iii) A mapping h : X → X is continuous at a point u0 ∈ X if for each ε > 0, there exists ς > 0 such
that h(Bp(u0, ς)) ⊆ BP(hu0, ε).

We shall denote by CBp(Y) [3], a collection of all closed and bounded non-empty subsets of the
partial metric space (Y, p).

ForM,N ∈ CBp(Y) and v ∈ Y , define

p(v,M) = inf{p(v, µ) : µ ∈ M}, δp(M,N) = sup{p(µ,N) : µ ∈ M}

and
δp(N ,M) = sup{p(η,M) : η ∈ N}.

Remark 1.4. [4] For a partial metric space (Y, p) and any non-empty setM in (Y, p),

p(µ, µ) = p(µ,M) if and only if µ ∈ M.
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FurthermoreM =M if and only ifM is closed in (Y, p).
Let (Y, p) be a partial metric space, then for L,M ∈ CBp(Y), define

Hp(L,M) = max{δp(L,M), δp(M,L)}.

Proposition 1.5. [3] Consider a partial metric space (Y, p). Then for all L,M,N ∈ CBp(Y),

(a) Hp(L,L) ≤ Hp(L,M),

(b) Hp(L,M) = Hp(M,L),

(c) Hp(L,M) ≤ Hp(L,N) + Hp(N ,M) − infη∈N p(η, η).

Corollary 1.6. [3] Consider a partial metric space (Y, p), then

Hp(L,M) = 0 implies that L =M

for L,M,N ∈ CBp(Y).
Based on Proposition 1.5 and Corollary 1.6, we shall refer to the mapping

Hp : CBp(Y) × CBp(Y)→ [0,∞),

as a partial Hausdorff metric induced by p.
Definition 1.7. [3] Let (Y, p) be a partial metric space and Cp ⊆ Y . Then Cp is said to be compact if
every sequence {vn} in Cp contains a subsequence {vni} which converges to a point in Cp.

Note that closed and bounded subsets of an Euclidean space Rk are compact. Similarly, every finite
set in Rk is compact. The half-open interval (0, 1] ⊂ R is an example of a set which is not compact
since {1, 1

2 ,
1
22 , ...} ⊂ (0, 1] does not have any convergent subsequence. Similarly the set of integers, Z

is not compact subset of R.
Consider a partial metric space (Y, p) and denote by Cp(Y) the set of all non-empty compact subsets

of Y . ForM,N ∈ Cp(Y), let

Hp(M,N) = max{sup
η∈N

p(η,M), sup
µ∈M

p(µ,N)},

where p(t,M) = inf{p(t, µ) : µ ∈ M} is a measure of how far a point t is from the set M. Such a
mapping Hp is referred to as the Pompeiu-Hausdorff metric induced by the partial metric p. (Cp(Y),Hp)
is a complete partial metric space, provided (Y, p) is a complete partial metric space.
Lemma 1.8. Let (Y, p) be a partial metric space. Then for all K ,L,M,N ∈ Cp(Y), the following
conditions are true:

(a) If L ⊆ M, then sup
k∈K

p(k,M) ≤ sup
k∈K

p(k,L),

(b) sup
t∈K∪L

p(y,M) = max{sup
k∈K

p(k,M), sup
`∈L

p(`,M)},

(c) Hp(K ∪ L,M∪N) ≤ max{Hp(K ,M),Hp(L,N)}.
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Proof. (a) Since L ⊆ M, for all k ∈ K , we have

p(k,M) = inf{p(k, µ) : µ ∈ M}
≤ inf{p(k, `) : ` ∈ L} = p (k,L) ,

this implies that
sup
k∈K

p(k,M) ≤ sup
k∈K

p(k,L).

(b) Note that

sup
t∈K∪L

p (t,M) = sup{p (t, M) : t ∈ K ∪ L}

= max{sup{p (t,M) : t ∈ K}, sup{p (t,M) : t ∈ L}}

= max{sup
k∈K

p (k,M) , sup
`∈L

p (`,M)}.

(c) We note that

sup
t∈K∪L

p(t,M∪N)

≤ max{sup
k∈K

p(k,M∪N), sup
`∈L

p(`,L ∪N)} (from (b))

≤ max{sup
k∈K

p(k,M), sup
`∈L

p(`,N)} (from (a))

≤ max
{

max{sup
k∈K

p(k,M), sup
m∈M

p(m,K)},max{sup
`∈L

p(`,N), sup
η∈N

p(η,L)}
}

= max
{
Hp (K ,M) ,Hp (L,N)

}
.

Similarly,
sup

v∈N∪M
p(v,L ∪K) ≤ max

{
Hp (K ,M) ,Hp (L,N)

}
.

Hence, it follows that

Hp(K ∪ L,N ∪M) = max
{

sup
v∈L∪N

p(v,K ∪ L), sup
t∈K∪C

p(t,M∪N)
}

≤ max
{
Hp (K ,M) ,Hp (L,N)

}
. �

Theorem 1.9. [18] Consider a complete partial metric space (Y, p) and let h : Y → Y be a contraction
mapping such that, for any λ ∈ [0, 1),

p (ht1, ht2) ≤ λp(t1, t2),

is true for all t1, t2 ∈ Y. Then there exists a unique fixed point u of h in Y and for every v0 in Y, the
sequence {v0, hv0, h2v0, ...} converges to the fixed point u of h.

The following result shows the existence of multivalued contraction mapping with domain of sets.
Theorem 1.10. Consider a partial metric space (Y, p) and let h : Y → Y be a contraction mapping.
Then
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(a) h maps elements in Cp(Y) to elements in Cp(Y).

(b) If for anyM ∈ Cp(Y),
h(M) = {h(t1) : t1 ∈ M},

then h : Cp(Y)→ Cp(Y) is a contraction mapping on (Cp(Y),Hp).

Proof. (a) We know that every contraction mapping is continuous. Moreover, under every continuous
mapping h : Y → Y , the image of a compact subset is also compact, that is, if

M ∈ Cp(Y) then h(M) ∈ Cp(Y).

(b) LetM,N ∈ Cp(Y). Since h : Y → Y is contraction, we obtain that

p (ht1, h (N)) = inf
t2∈N

p (ht1, ht2) ≤ λ inf
t2∈N

p (t1, t2) = λp (t1,N) .

Also
p (ht2, h (M)) = inf

t1∈M
p (ht2, ht1) ≤ λ inf

t1∈M
p (t2, t1) = λp (t2,M) .

Now

Hp (h (M) , h (N)) = max{sup
t1∈M

p(ht1, h (N)), sup
t2∈N

p(ht2, h (M))}

≤ max{λ sup
t1∈M

p(t1,N), λ sup
t2∈N

p(t2,M)} = λHp (M,N) .

Thus, h satisfies
Hp (h (M) , h (N)) ≤ λHp (M,N)

for all t1, t2 ∈ C
p(Y), and so h : Cp(Y)→ Cp(Y) is a contraction mapping. �

Theorem 1.11. Consider a partial metric space (Y, p). Let {hk : k = 1, 2, ..., r} be a finite collection of
contraction mappings on Y with contraction constants λ1, λ2, ..., λr, respectively. Define Ψ : Cp(Y) →
Cp(Y) by

Ψ(M) = h1(M) ∪ h2(M) ∪ · · · ∪ hr(M)
= ∪r

k=1hk(M),

for each M ∈ Cp(Y). Then Ψ is a contraction mapping on Cp(Y) with contraction constant
λ = max{λ1, λ2, ..., λr}.
Proof. We illustrate the claim for r = 2. Let h1, h2 : Y → Y be two contractions. We take M,N ∈

Cp(Y). Using the result from Lemma 1.8 (c), we have

Hp(Ψ(M),Ψ(N)) = Hp(h1(M) ∪ h2(M), h1(N) ∪ h2(N))
≤ max{Hp(h1(M), h1(N)),Hp(h2(M), h2(N))}
≤ max{λ1Hp(M,N)), λ2Hp(M,N))}
≤ λHp(M,N),

where λ = max{λ1, λ2}. �
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Theorem 1.12. Consider a complete partial metric space (Y, p) and let {hk : k = 1, 2, ..., r} be a finite
collection of contraction mappings on Y. Let a mapping on Cp(Y) be defined by

Ψ(M) = h1(M) ∪ h2(M) ∪ · · · ∪ hr(M)
= ∪r

k=1hk(M),

for eachM ∈ Cp(Y). Then

(i) Ψ : Cp(Y)→ Cp(Y);

(ii) Ψ has at most one fixed point U1 ∈ C
p(Y), this means that U1 = Ψ (U1) = ∪r

k=1hk(U1);

(iii) for any initial setM0 ∈ C
p(Y), the sequence

{M0,Ψ (M0) ,Ψ2 (M0) , ...}

of compact sets is convergent and has a fixed point of Ψ.

Proof. (i) From the definition of Ψ and Theorem 1.10 the conclusion follows immediately since each
hk is a contraction. (ii) Ψ : Cp(Y) → Cp(Y) is a contraction too, by Theorem 1.11. Thus if (Y, p) is a
complete partial metric space, then (Cp(Y),Hp) is complete. As a consequence, (ii) and (iii) may be
deduced from Theorem 1.10. �
Definition 1.13. Let (Y, p) be a complete partial metric space. If hk : Y → Y , for each k = 1, 2, ..., r are
contraction mappings, then {Y; hk, k = 1, 2, · · · , r} is called an iterated function system (IFS).
Definition 1.14. [20] LetM ⊆ Y be a non-empty compact set, thenM is an attractor of the IFS if

(i) Ψ(M) =M and
(ii) there exist an open set V1 ⊆ Y such that M ⊆ V1 and lim

k→+∞
Ψk(N) = M for any compact set

N ⊆ V1, where the limit is taken with respect to the partial Hausdorff metric.

Thus, the maximal open set V1 such that (ii) is satisfied is referred to as a basin of attraction.

2. Generalized iIterated function system

Some results on a generalized iterated function system for multivalued mapping in a metric space
may be found in [10]. In this section, we define the generalized iterated function system in the setup
of partial metric spaces. We begin with the definition of a generalized contraction self-map which will
be followed by some preliminary results.
Definition 2.1. Let (Y, p) be a partial metric space and h, g : Y → Y be two mappings. A pair (h, g) is
called a generalized contraction if

p (ht1, gt2) ≤ λp (t1, t2)

for all t1, t2 ∈ Y, where λ ∈ [0, 1).
Theorem 2.2.Let (Y, p) be a partial metric space and h, g : Y → Y be two continuous mappings. If the
pair (h, g) is a generalized contraction with λ ∈ [0, 1), then

(1) the elements in Cp(Y) are mapped to elements in Cp(Y) under h and g;
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(2) if for any U ∈ Cp(Y), the mappings h, g : Cp(Y)→ Cp(Y) defined as

h(U) = {h(t1) : t1 ∈ U} and
g(U) = {g(t1) : t1 ∈ U},

then the pair (h, g) is a generalized contraction on (Cp(Y),Hp).

Proof. (1) Since h is a continuous mapping and the image of a compact subset under a continuous
mapping, h : Y → Y is compact, then

U ∈ Cp(Y) implies that h(U) ∈ Cp(Y).

Similarly, we have
U ∈ Cp(Y) implies that g(U) ∈ Cp(Y).

(2) LetM,N ∈ Cp(Y). Since the pair (h, g) is a generalized contraction, then

p (ht1, gt2) ≤ λp (t1, t2) for all t1, v ∈ Y,

where λ ∈ [0, 1).
Thus, we have

p (ht1, g (V)) = inf
t2∈V

p (ht1, gt2)

≤ inf
t2∈V

λp (t1, t2)

= λp (t1,V) .

Also

p (gv, h (U)) = inf
t1∈U

p (ht2, gt1)

≤ inf
t1∈U

λp (t2, t1)

= λp (t2,U) .

Now

Hp (h (U) , g (V)) = max{sup
t1∈U

p(ht1, g (V)), sup
t2∈V

p(gt2, h (U))}

≤ max{sup
t1∈U

λp(t1,V), sup
t2∈V

λp(t2,U)}

= max{λ sup
t1∈U

p(t1,V), λ sup
t2∈B

p(t2,U)}

= λmax{sup
t1∈U

p(t1,V), sup
t2∈V

p(t2,U)}

= λHp (U,V) .

Consequently,
Hp (h (U) , g (V)) ≤ λHp (U,V) .
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Hence, the pair (h, g) is a generalized contraction mapping on (Cp(Y),Hp). �
Proposition 2.3. Consider a partial metric space (Y, p). Suppose that the mappings hk, gk : Y → Y for
k = 1, 2, · · · , r are continuous and satisfy

p (hkt1, gkt2) ≤ λk p (t1, t2) for all t1, t2 ∈ Y,

where λk ∈ [0, 1) for each k ∈ {1, 2, · · · , r} . Then the mappings Ψ,Φ : Cp(Y)→ Cp(Y) defined as

Ψ(U) = h1(U) ∪ h2(U) ∪ · · · ∪ hr(U)
= ∪r

k=1hk(U) for each U ∈ Cp(Y)

and

Φ(U) = g1(U) ∪ g2(U) ∪ · · · ∪ gr(U)
= ∪r

k=1gk(U) for each U ∈ Cp(Y)

also satisfy
Hp (ΨU,ΦV) ≤ λ̃Hp (U,V) for all U,V ∈ Cp(Y),

where λ̃ = max{λk : k ∈ {1, 2, ..., r}}. Then the pair (Ψ,Φ) is a generalized contraction on Cp (Y).
Proof. We shall prove the result for r = 2. Let h1, h2, g1, g2 : Y → Y be two contractions. For
M,N ∈ Cp(Y) and using Lemma 1.12 (c), we have

Hp(Ψ (M) ,Φ(N)) = Hp(h1(M) ∪ h2(M), g1(N) ∪ g2(N))
≤ max{Hp(h1(M), g1(N)),Hp(h2(M), g2(N))}
≤ max{λ1Hp(M,N), λ2Hp(M,N)}
≤ λ̃Hp(M,N). �

Definition 2.4. Consider a partial metric space (Y, p) with the mappings Ψ,Φ : Cp(Y)→ Cp(Y). A pair
of mappings (Ψ,Φ) is called

(1) A generalized Hutchinson contractive operator if a constant λ ∈ [0, 1) exists such that for any
M,N ∈ Cp(Y), the following holds:

Hp (Ψ (M) ,Φ (N)) ≤ λZΨ,Φ(M,N),

where

ZΨ,Φ(M,N) = max{Hp(M,N),Hp(M,Ψ (M)),Hp(N ,Φ (N)),
Hp(M,Φ (N)) + Hp(N ,Ψ (M))

2
}.

(2) A generalized rational Hutchinson contractive operator if a constant λ∗ ∈ [0, 1) exists such that
for anyM,N ∈ Cp(Y), the following holds:

Hp (Ψ (M) ,Φ (N)) ≤ λ∗RΨ,Φ(M,N),

AIMS Mathematics Volume 7, Issue 7, 13074–13103.



13082

where

RΨ,Φ(M,N) = max
{

Hp(M,Φ (N))[1 + Hp(M,Ψ(M))]
2(1 + Hp (M,N))

,

Hp(N ,Φ (N))[1 + Hp(M,Ψ(M))]
1 + Hp (M,N)

,

Hp(M,N)[1 + Hp(M,Ψ (M))]
1 + Hp(M,N)

}
.

Note that if the pair (Ψ,Φ) defined as in Proposition 2.3 is generalized contraction on Cp (Y), then
the pair (Ψ,Φ) is a generalized Hutchinson contractive operator but the converse is not true.
Definition 2.5. Let (Y, p) be a complete partial metric space. If hk, gk : Y → Y , k = 1, 2, ..., r are
continuous mappings such that each pair (hk, gk) for k = 1, 2, ..., r is a generalized contraction, then
{Y; (hk, gk) , k = 1, 2, · · · , r} is called a generalized iterated function system (GIFS).
Definition 2.6. LetM ⊆ Y be a non-empty compact set, thenM is a common attractor of the GIFS if

(i) Ψ(M) = Φ(M) =M and
(ii) there exists an open set V1 ⊆ Y such thatM ⊆ V1 and lim

k→+∞
Ψk(N) = lim

k→+∞
Φk(N) = M for any

compact set N ⊆ V1, where the limit is taken with respect to the partial Hausdorff metric.

Thus the maximal open set V1 such that (ii) is satisfied is referred to as a basin of common attraction.

3. Main results

In this part, we state and prove some results on the existence and uniqueness of a common attractor
of generalized Hutchinson contractive operators in the setup of partial metric space. We start with the
following main result.
Theorem 3.1. Let (Y, p) be a complete partial metric space and {Y; (hk, gk), k = 1, 2, · · · , r} be a the
generalized iterated function system. Let Ψ,Φ : Cp(Y)→ Cp(Y) be defined by

Ψ(M) = ∪r
k=1hk(M),

and
Φ(N) = ∪r

k=1gk(N)

for eachM,N ∈ Cp(Y). If the pair (Ψ,Φ) is a generalized Hutchinson contractive operator, then Ψ and
Φ have a unique common attractor U1 ∈ C

p(Y), that is,

U1 = Ψ (U1) = Φ (U1) .

Furthermore, for an arbitrarily chosen initial setM0 ∈ C
p(Y), the sequence

{M0,Ψ (M0) ,ΦΨ (M0) ,ΨΦΨ (M0) , ...}

of compact sets converges to the common attractor U1 of Ψ and Φ.
Proof. Choose an elementM0 randomly in Cp(Y). Define

M1 = Ψ(M0), M3 = Ψ (M2) , ...,M2k+1 = Ψ (M2k)
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and
M2 = Φ(M1), M4 = Φ (M3) , ...,M2k+2 = Φ (M2k+1)

for k ∈ {0, 1, 2, ...}.
Now, as the pair (Ψ,Φ) is generalized Hutchinson contractive operator, we have

Hp(M2k+1,M2k+2) = Hp(Ψ (M2k) ,Φ (M2k+1))
≤ λZΨ,Φ (M2k,M2k+1) ,

where

ZΨ,Φ (M2k,M2k+1) = max{Hp(M2k,M2k+1),Hp (M2k,Ψ (M2k)) ,
Hp (M2k+1,Φ (M2k+1)) ,
Hp (M2k,Φ (M2k+1)) + Hp (M2k+1,Ψ (M2k))

2
}

= max{Hp(M2k,M2k+1),Hp (M2k,M2k+1) ,
Hp (M2k+1,M2k+2) ,
Hp (M2k,M2k+2) + Hp (M2k+1,M2k+1)

2
}

≤ max{Hp(M2k,M2k+1),Hp (M2k+1,M2k+2) ,
Hp (M2k,M2k+1) + Hp (M2k+1,M2k+2)

2
}

= max{Hp (M2k,M2k+1) ,Hp (M2k+1,M2k+2)}.

Thus, we have

Hp(M2k+1,M2k+2) ≤ λmax{Hp (M2k,M2k+1) ,Hp (M2k+1,M2k+2)}
= λHp (M2k,M2k+1) .

Also,

Hp (M2k+2,M2k+3) = Hp (M2k+3,M2k+2)

= Hp(Ψ (M2k+2) ,Φ (M2k+1))
≤ λZΨ,Φ (M2k+2,M2k+1) ,

where

ZΨ,Φ (M2k+2,M2k+1) = max{Hp(M2k+2,M2k+1),Hp (M2k+2,Ψ (M2k+2)) ,
Hp (M2k+1,Φ (M2k+1)) ,
Hp (M2k+2,Φ (M2k+1)) + Hp (M2k+1,Ψ (M2k+2))

2
}

= max{Hp(M2k+2,M2k+1),Hp (M2k+2,M2k+3) ,
Hp (M2k+1,M2k+2) ,
Hp (M2k+2,M2k+2) + Hp (M2k+1,M2k+3)

2
}
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≤ max{Hp(M2k+2,M2k+1),Hp (M2k+2,M2k+3) ,
Hp (M2k+1,M2k+2) + Hp (M2k+2,M2k+3)

2
}

= max{Hp (M2k+2,M2k+1) ,Hp (M2k+2,M2k+3)}.

Thus, we have

Hp(M2k+2,M2k+3) ≤ λmax{Hp (M2k+2,M2k+1) ,Hp (M2k+2,M2k+3)}
= λHp (M2k+2,M2k+1) .

Therefore, for all k ∈ {0, 1, 2, ...}, we have

Hp(Mk+1,Mk+2) ≤ λHp (Mk,Mk+1)

≤ λ2Hp (Mk−1,Mk)

≤ · · ·

≤ λk+1Hp (M0,M1) .

Now, we have for l > k, with k, l ∈ {0, 1, 2, ...},

Hp (Mk,Ml) ≤ Hp (Mk,Mk+1) + Hp (Mk+1,Mk+2) + · · · + Hp (Ml−1,Ml)

− inf
mk+1∈Mk+1

p(mk+1,mk+1) − inf
mk+2∈Mk+2

p(mk+2,mk+2) −

· · · − inf
mk−1∈Mk−1

p(mk−1,mk−1),

≤ [λk + λk+1 + · · · + λl−1]Hp (M0,M1) ,
= λk[1 + λ + λ2 + · · · + λl−k−1]Hp(M0,M1)],

≤
λk

1 − λ
Hp (M0,M1)

and so lim
k,l→+∞

Hp (Mk,Ml) = 0. Thus {Mk} is a Cauchy sequence in Cp(Y). Since (Cp(Y),Hp) is a

complete partial metric space, there exists U1 ∈ Cp(Y) such that lim
k→+∞

Mk = U1, that is,

lim
k→+∞

Hp (Mk,U1) = lim
k→+∞

Hp (Mk,Mk+1) = Hp (U1,U1) and so, we have lim
k→+∞

Hp (Mk,U1) = 0.
To show that Ψ (U1) = U1, we have

Hp(Ψ (U1) ,U1) ≤ Hp(Ψ (U1) ,Φ (M2k+1)) + Hp(Φ (M2k+1) ,U1)
− inf

m2k+1∈M2k+1
p(m2k+1,m2k+1),

≤ λZΨ,Φ (U1,M2k+1) + Hp (M2k+2,U1)

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

for all k ∈ {0, 1, 2, ...}, where

ZΨ,Φ (U1,M2k+1) = max{Hp(U1,M2k+1),Hp(U1,Ψ (U1)),Hp(M2k+1,Φ (M2k+1)),
Hp(U1,Φ (M2k+1)) + Hp(M2k+1,Ψ (U1))

2
}
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− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

= max{Hp(U1,M2k+1),Hp(U1,Ψ (U1)),Hp(M2k+1,M2k+2),
Hp(U1,M2k+2) + Hp(M2k+1,Ψ (U1))

2
}

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1).

Now, we examine the following cases:
(1) If ZΨ,Φ (U1,M2k+1) = Hp(U1,M2k+1), then

Hp(Ψ (U1) ,U1) ≤ λHp (U1,M2k+1) + Hp (M2k+2,U1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ λHp (U1,M2k+1) + Hp (M2k+2,U1) ,

which together with our taking the limit as k → +∞, gives

Hp(Ψ (U1) ,U1) ≤ λHp (U1,U1) + Hp (U1,U1) ,

and we get Hp(Ψ (U1) ,U1) = 0, that is, U1 = Ψ(U1).
(2) Provided ZΨ,Φ (U1,M2k+1) = Hp(U1,Ψ (U1)), then

Hp(Ψ (U1) ,U1) ≤ λHp(U1,Ψ (U1)) + Hp (M2k+2,U1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ λHp(U1,Ψ (U1)) + Hp (M2k+2,U1) ,

that is,

Hp(Ψ (U1) ,U1) ≤
1

1 − λ
Hp (M2k+2,U1) ,

which together with our taking the limit as k → +∞ implies that Hp(Ψ (U1) ,U1) ≤ 0 and so U1 =

Ψ(U1).
(3) In the case of ZΨ,Φ (U1,M2k+1) = Hp(M2k+1,M2k+2), we get

Hp(U1,Φ (U1)) ≤ λHp(M2k+1,M2k+2) + Hp (M2k+2,U1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ λHp(M2k+1,M2k+2) + Hp (M2k+2,U1) ,

which together with our taking the limit as k → +∞ implies that U1 = Ψ (U1).

(4) If ZΨ,Φ (U1,M2k+1) =
Hp(U1,M2k+2) + Hp(M2k+1,Ψ (U1))

2
, then

Hp(U1,Ψ (U1)) ≤
λ

2
[Hp(U1,M2k+2) + Hp(M2k+1,Ψ (U1))]

+Hp (M2k+2,U1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤
λ

2
[Hp(U1,M2k+2) + Hp(M2k+1,U1) + Hp(U1,Ψ (U1))

− inf
u∈U1

p(u, u)] + Hp (M2k+2,U1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤
λ

2
[Hp(U1,M2k+2) + Hp(M2k+1,U1) + Hp(U1,Ψ (U1))]
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+Hp (M2k+2,U1) ,

which together with our taking the limit as k → +∞, we get

Hp(U1,Ψ (U1)) ≤
λ

2
Hp(U1,Ψ (U1)),

giving us Hp(U1,Ψ (U1)) = 0, and so U1 = Ψ (U1) .
Thus, from the above cases, U1 is the attractor of Ψ.
In a similar manner, we have

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + Hp(M2k+1,Φ (U1))
− inf

m2k+1∈M2k+1
p(m2k+1,m2k+1)

= Hp(U1,M2k+1) + Hp(Ψ (M2k) ,Φ (U1))
− inf

m2k+1∈M2k+1
p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) + λZΨ,Φ (M2k,U1)

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1),

where

ZΨ,Φ (M2k,U1) = max{Hp(M2k,U1),Hp (M2k,Ψ (M2k)) ,Hp (U1,Φ (U1)) ,
Hp (M2k,Φ (U1)) + Hp (U1,Ψ (M2k))

2
}

= max{Hp(M2k,U1),Hp (M2k,M2k+1) ,Hp (U1,Φ (U1)) ,
Hp (M2k,Φ (U1)) + Hp (U1,M2k+1)

2
}.

Now, the following cases arise:
(1) If ZΨ,Φ (M2k,U1) = Hp(M2k,U1), then

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + λHp(M2k,U1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) + λHp(M2k,U1),

which together with our taking the limit as k → +∞, gives

Hp(U1,Φ (U1)) ≤ Hp (U1,U1) + λHp (U1,U1) ,

and we get Hp(U1,Φ (U1)) = 0, that is, U1 = Φ(U1).
(2) For ZΨ,Φ (M2k,U1) = Hp (M2k,M2k+1) , then

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + λHp (M2k,M2k+1) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) + λHp (M2k,M2k+1) ,

which together with our taking the limit as k → +∞, we have

Hp(U1,Φ (U1)) ≤ Hp (U1,U1) + λHp (U1,U1) ,
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which implies that Hp(U1,Φ (U1)) ≤ 0 and so U1 = Φ (U1) .
(3) In the case of ZΨ,Φ (M2k,U1) = Hp (U1,Φ (U1)) , we get

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + λHp (U1,Φ (U1)) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) + λHp (U1,Φ (U1)) ,

that is,

Hp(U1,Φ (U1)) ≤
1

1 − λ
Hp(U1,M2k+1),

which together with our taking the limit as k → +∞, we can write Hp(U1,Φ (U1)) ≤ 0 and so U1 =

Φ (U1) .

(4) If ZΨ,Φ (M2k,U1) =
Hp (M2k,Φ (U1)) + Hp (U1,M2k+1)

2
, then

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) +
λ

2

[
Hp (M2k,Φ (U1)) + Hp (U1,M2k+1)

]
− inf

m2k+1∈M2k+1
p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) +
λ

2
[Hp (M2k,Φ (U1)) + Hp (M2k,U1)

+Hp (U1,Φ (U1)) − inf
u∈U1

p(u, u) + Hp (U1,M2k+1)]

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) +
λ

2
[Hp (M2k,Φ (U1)) + Hp (M2k,U1)

+Hp (U1,Φ (U1)) + Hp (U1,M2k+1)],

which together with our taking the as k → +∞ implies

Hp(U1,Φ (U1)) ≤ Hp(U1,U1) +
λ

2
[Hp (U1,Φ (U1)) + Hp (U1,U1)

+Hp (U1,Φ (U1)) + Hp (U1,U1)]
= λHp (U1,Φ (U1)) ,

giving us Hp(U1,Φ (U1)) = 0 and so U1 = Ψ (U1) .
Thus U1 = Ψ (U1) = Φ (U1) , which means that U1 is the common attractor of Ψ and Φ.
Now, to establish the uniqueness of the common attractor, let U2 be another common attractor of Ψ

and Φ. Since the pair (Ψ,Φ) is generalized Hutchinson contractive operator, we have

Hp(U1,U2) = Hp(Ψ (U1) ,Φ (U2))
≤ λmax{Hp(U1,U2),Hp(U1,Ψ (U1)),Hp(U2,Φ (U2)),

Hp(U1,Φ (U2)) + Hp(U2,Ψ (U1))
2

}

= λmax{Hp(U1,U2),Hp(U1,U1),Hp(U2,U2),
Hp(U1,U2) + Hp(U2,U1)

2
}
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≤ λHp(U1,U2),

and so (1 − λ)Hp(U1,U2) ≤ 0, that is, Hp (U1,U2) = 0 and hence U1 = U2. Thus U1 ∈ C
p(Y) is a

unique common attractor of Ψ and Φ. �
Theorem 3.2. (Generalized Collage) Let (Y, p) be a complete partial metric space. For a given
generalized iterated function system

{
Y; h1, h2..., hr; g1, g2,..., gr

}
which have contractive constant λ ∈

[0, 1) and for a given ε ≥ 0, if for anyM ∈ Cp(Y), we have either

Hp(M,Ψ(M)) ≤ ε,

or
Hp(M,Φ(M)) ≤ ε,

where Ψ(M) = ∪r
k=1hk(M) and Φ(M) = ∪r

k=1gk(M). Then,

Hp(M,U1) ≤
ε

1 − λ
,

where U1 ∈ C
p(Y) is a common attractor of Ψ and Φ.

Proof. It follows from Proposition 2.3 that the mappings Ψ,Φ : Cp(Y)→ Cp(Y) satisfy

Hp(Ψ (U) ,Φ(V)) ≤ λHp(U,V) for allU,V ∈ Cp(Y).

From Theorem 3.1, there exists a unique common attractor U1 ∈ C
p(Y) of mappings Ψ and Φ, that

is, U1 = Ψ (U1) = Φ (U1) .
In addition, for anyN0 ∈ C

p(Y), a sequence {Nk} defined byN2k+1 = Ψ (N2k) andN2k+2 = Φ (N2k+1)
for k = 0, 1, 2, ..., we have

lim
k→+∞

Hp (Ψ (N2k) ,U1) = lim
k→+∞

Hp (Φ (N2k+1) ,U1) = 0.

Assume that Hp(M,Ψ(M)) ≤ ε for anyM ∈ Cp(Y), one can write

Hp(M,U1) ≤ Hp(M,Ψ(M)) + Hp(Ψ(M),Φ(U1)) − inf
m∈Ψ(M)

p(m,m)

≤ ε + λHp(M,U1),

which further implies that
Hp(M,U1) ≤

ε

1 − λ
.

In a similar manner, by assuming that Hp(M,Φ(M)) ≤ ε for anyM ∈ Cp(Y). Then,

Hp(M,U1) ≤ Hp(M,Φ(M)) + Hp(Φ(M),Ψ(U1)) − inf
m∈Φ(M)

p(m,m)

≤ ε + λHp(M,U1),

implies
Hp(M,U1) ≤

ε

1 − λ
. �
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Remark 3.3. If we take in Theorem 3.1, Sp(Y) the collection of all singleton subsets of the given space
Y, then Sp(Y) ⊆ Cp(Y). Furthermore, if we take a pair of mappings (hk, gk) = (h, g) for each k, where
h = h1 and g = g1 then the pair of operators (Ψ,Φ) becomes

(Ψ (y1) ,Φ (y2)) = (h(y1), g (y2)) .

Consequently, the following common fixed point result is obtained.
Corollary 3.4. Suppose {Y; (hk, gk) , k = 1, 2, · · · , r} is a generalized iterated function system defined
in a complete partial metric space (Y, p) and define a pair of mappings h, g : Y → Y as in Remark 3.3.
If some λ ∈ [0, 1) exists such that for any y1, y2 ∈ Y , the following condition holds:

p (hy1, gy2) ≤ λZh,g(y1, y2),

where
Zh,g(y1, y2) = max{p(y1, y2), p(y1, hy1), p(y, gy2),

p(y1, gy2) + p(y, hy1)
2

}.

Then h and g have a unique common fixed point u ∈ Y. Furthermore, for any u0 ∈ Y , the sequence
{u0, hu0, ghu0, hghu0, · · · } converges to the common fixed point of h and g.
Corollary 3.5. Let {Y; (hk, gk) , k = 1, 2, · · · , r} be a generalized iterated function system defined in a
complete partial metric space (Y, p) and (hk, gk) for k = 1, 2, ..., r be a pair of generalized contractive
self-mappings on Y. Then the pair (Ψ,Φ) : Cp(Y) → Cp(Y) defined in Theorem 3.1 has at most one
common attractor in Cp (Y) . Furthermore, for any initial set M0 ∈ Cp (Y) , the sequence
{M0,ΦΨ (M0) ,ΨΦΨ (M0) , · · · } of compact sets has a limit point which is the common attractor of Ψ

and Φ.
The following example shows the validity of Corollary 3.5.

Example 3.6. Let Y = [0, 10] be endowed with the partial metric p : Y × Y → R+ defined by

p(y1, y2) =
1
2

max{y1, y2} +
1
4
|y1 − y2| for all y1, y2 ∈ Y.

Define h1, h2 : Y → Y as

h1 (y) =
10 − y

3
for all y ∈ Y,

h2 (y) =
16 − y

4
for all y ∈ Y

and g1, g2 : Y → Y as

g1 (y) =
15 − y

3
for all y ∈ Y,

g2 (y) =
y2 + 4

4
for all y ∈ Y.

Now, for y1, y2 ∈ Y, we have

p (h1 (y1) , g1 (y2)) =
1
2

max
{

10 − y1

3
,

15 − y2

3

}
+

1
4

∣∣∣∣∣10 − y1

3
−

15 − y2

3

∣∣∣∣∣
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=
1
3

[
1
2

max{10 − y1, 15 − y2} +
1
4
|(10 − y1) − (15 + y2)|

]
≤ λ1 p (y1, y2) ,

where λ1 =
1
3
.

Also, for y1, y2 ∈ Y, we have

p (h2 (y1) , g2 (y2)) =
1
2

max
{

16 − y1

4
,

y2 + 4
4

}
+

1
4

∣∣∣∣∣16 − y1

4
−

y2 + 4
4

∣∣∣∣∣
=

1
4

[
1
2

max{16 − y1, y2 + 4} +
1
4
|(16 − y1) − (y2 + 4)|

]
≤ λ2 p (y1, y2) ,

where λ2 =
1
4
.

Consider the generalized iterated function system {Y; (h1, g1) , (h2, g2)} with the mappings Ψ,Φ : Cp

(Y)→ Cp (Y) given as

(Ψ,Φ) (U) = (h1, g1) (U) ∪ (h2, g2) (U) for all U ∈ Cp (Y) .

By Proposition 2.3, forM,N ∈ Cp (Y), we have

Hp (Ψ (M) ,Φ (N)) ≤ λ∗Hp (M,N) ,

where λ∗ = max
{

1
3
,

1
4

}
=

1
3
.

Thus, all conditions of Corollary 3.5 are satisfied. Moreover, for any initial set M0 ∈ C
p(Y), the

sequence
{M0,Ψ (M0) ,ΦΨ (M0) ,ΨΦΨ (M0) , · · · }

of compact sets is convergent and has a limit point which is the common attractor of Ψ and Φ. �

The following result shows the existence of unique common attractor of generalized rational
Hutchinson contractive operators in partial metric space.
Theorem 3.7. Consider a complete partial metric space (Y, p) and the generalized iterated function
system given as {Y; (hk, gk), k = 1, 2, · · · , r}. Let Ψ,Φ : Cp(Y)→ Cp(Y) be defined by

Ψ(M) = ∪r
k=1hk(M)

and
Φ(N) = ∪r

k=1gk(N),

for eachM,N ∈ Cp(Y). If the pair (Ψ,Φ) is generalized rational Hutchinson contractive operator, then
Ψ and Φ have a unique common attractor U1 ∈ C

p(Y), that is,

U1 = Ψ (U1) = Φ (U1) .
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Furthermore, for arbitrarily chosen initial setM0 ∈ C
p(Y), the sequence

{M0,Ψ (M0) ,ΦΨ (M0) ,ΨΦΨ (M0) , · · · }

of compact sets converges to a common attractor U1.
Proof. LetM0 be arbitrarily chosen in Cp(Y). Define

M1 = Ψ(M0), M3 = Ψ (M2) , · · · ,M2k+1 = Ψ (M2k)

and
M2 = Φ(M1), M4 = Φ (M3) , · · · ,M2k+2 = Φ (M2k+1)

for k ∈ {0, 1, 2, · · · }.
Now, since the pair (Ψ,Φ) is a generalized rational Hutchinson contractive operator, we have

Hp(M2k+1,M2k+2) = Hp(Ψ (M2k) ,Φ (M2k+1))
≤ λ∗RΨ,Φ (M2k,M2k+1)

for k ∈ {0, 1, 2, · · · }, where

RΨ,Φ (M2k,M2k+1) = max
{

Hp(M2k,Φ (M2k+1))[1 + Hp(M2k,Ψ(M2k))]
2(1 + Hp (M2k,M2k+1))

,

Hp(M2k+1,Φ (M2k+1))[1 + Hp(M2k,Ψ(M2k))]
1 + Hp (M2k,M2k+1)

,

Hp(M2k,M2k+1)[1 + Hp(M2k,Ψ (M2k))]
1 + Hp(M2k,M2k+1)

}
= max

{
Hp(M2k,M2k+2)[1 + Hp(M2k,M2k+1)]

2(1 + Hp (M2k,M2k+1))
,

Hp(M2k+1,M2k+2)[1 + Hp(M2k,M2k+1)]
1 + Hp (M2k,M2k+1)

,

Hp(M2k,M2k+1)[1 + Hp(M2k,M2k+1)]
1 + Hp(M2k,M2k+1)

}
= max{

Hp(M2k,M2k+2)
2

,Hp(M2k+1,M2k+2),

Hp(M2k,M2k+1)}

= max{
Hp(M2k,M2k+2)

2
,Hp(M2k,M2k+1)}.

Thus, we have

Hp(M2k+1,M2k+2) ≤
λ∗
2

[Hp(M2k,M2k+1) + Hp(M2k+1,M2k+2)

− inf
m2k+1∈M2k+1

p (m2k+1,m2k+1)]

≤
λ∗
2

[Hp(M2k,M2k+1) + Hp(M2k+1,M2k+2)],
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that is,

Hp(M2k+1,M2k+2) ≤
λ∗

2 − λ∗
Hp(M2k,M2k+1)

and for η∗ =
λ∗

2 − λ∗
< 1, we have

Hp(M2k+1,M2k+2) ≤ η∗Hp(M2k,M2k+1)

for all k ∈ {0, 1, 2, ...}. Therefore for k < l, with k, l ∈ {0, 1, 2, ...}

Hp(Mk,Ml) ≤ Hp(Mk,Mk+1) + Hp(Mk+1,Mk+2) + · · · + Hp(Ml−1,Ml)
− inf

mk+1∈Mk+1
p(mk+1,mk+1) − inf

mk+2∈Mk+2
p(mk+2,mk+2) −

· · · − inf
ml−1∈Ml−1

p(ml−1,ml−1),

≤ ηk
∗Hp(M0,M1) + ηk+1

∗ Hp(M0,M1) + · · · + ηl−1
∗ Hp(M0,M1),

≤ [ηk
∗ + ηk+1

∗ + · · · + ηl−1
∗ ]Hp(M0,M1),

≤ ηk
∗[1 + η∗ + η2

∗ + · · · + ηl−k−1
∗ ]Hp(M0,M1),

≤
ηk
∗

1 − η∗
Hp(M0,M1).

By convergence towards 0 from the right hand side, we get Hp (Mk,Ml) → 0 as k, l → +∞.
Therefore {Mk} is a Cauchy sequence in Cp(Y). But (Cp(Y),Hp) is complete, we haveMk → U1 as k →
+∞ for some U1 ∈ C

p(Y), in other words, lim
k→+∞

Hp (Mk,U1) = lim
k→+∞

Hp (Mk,Mk+1) = Hp (U1,U1) and

we have lim
k→+∞

Hp (Mk,U1) = 0.
To prove that U1 is a common attractor of Ψ and Φ, we have

Hp(Ψ (U1) ,U1) ≤ Hp(Ψ (U1) ,Φ (M2k+1)) + Hp(Φ (M2k+1) ,U1)
− inf

m2k+1∈M2k+1
p(m2k+1,m2k+1),

≤ λ∗RΨ,Φ (U1,M2k+1) + Hp(M2k+2,U1)
− inf

m2k+1∈M2k+1
p(m2k+1,m2k+1)

for all k ∈ {0, 1, 2, ...}, where

RΨ,Φ (U1,M2k+1) = max
{

Hp(U1,Φ (M2k+1))[1 + Hp(U1,Ψ(U1))]
2(1 + Hp (U1,M2k+1))

,

Hp(M2k+1,Φ (M2k+1))[1 + Hp(U1,Ψ(U1))]
1 + Hp (U1,M2k+1)

,

Hp(M2k+1,U1)[1 + Hp(U1,Ψ (U1))]
1 + Hp(U1,M2k+1)

}
= max

{
Hp(M2k+2,U1)[1 + Hp(U1,Ψ(U1))]

2(1 + Hp (U1,M2k+1))
,

Hp(M2k+1,M2k+2)[1 + Hp(U1,Ψ(U1))]
1 + Hp (U1,M2k+1)

,
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Hp(U1,M2k+1)[1 + Hp(U1,Ψ (U1))]
1 + Hp(U1,M2k+1)

}
.

Consider the following three cases:

(1) If RΨ,Φ (U1,M2k+1) =
Hp(U1,M2k+2)[1 + Hp(U1,Ψ(U1))]

2(1 + Hp (U1,M2k+1))
, then we have

Hp(Ψ (U1) ,U1) ≤
λ∗Hp(U1,M2k+2)[1 + Hp(U1,Ψ(U1))]

2(1 + Hp (U1,M2k+1))
+ Hp(M2k+2,U1)

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1),

which together with our taking the limit as k → +∞, we get Hp(U1,Ψ(U1)) ≤ 0 and so U1 = Ψ(U1).

(2) If RΨ,Φ (U1,M2k+1) =
Hp(M2k+1,M2k+2)[1 + Hp(U1,Ψ(U1))]

1 + Hp (U1,M2k+1)
, we have

Hp(Ψ (U1) ,U1) ≤ λ∗
Hp(M2k+1,M2k+2)[1 + Hp(U1,Ψ(U1))]

1 + Hp (U1,M2k+1)
+ Hp(M2k+2,U1)

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ λ∗
Hp(M2k+1,M2k+2)[1 + Hp(U1,Ψ(U1))]

1 + Hp (U1,M2k+1)
+ Hp(M2k+2,U1)),

which together with our taking the limit as k → +∞, we get Hp(U1,Ψ(U1)) ≤ 0 and thus U1 = Ψ(U1).

(3) In case of RΨ,Φ (U1,M2k+1) =
Hp(M2k+1,U1)[1 + Hp(U1,Ψ (U1))]

1 + Hp(U1,M2k+1)
, we obtain

Hp(U1,Ψ(U1)) ≤ λ∗
Hp(M2k+1,U1)[1 + Hp(U1,Ψ (U1))]

1 + Hp(U1,M2k+1)
+ Hp(M2k+2,U1)

− inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤
λ∗Hp(M2k+1,U1)[1 + Hp(U1,Ψ (U1))]

1 + Hp(U1,M2k+1)
+ Hp(M2k+2,U1),

which together with our taking the limit as k → +∞, we get

Hp(U1,Ψ(U1)),

that is, U1 = Ψ(U1).
In a similar manner, one can obtain

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + Hp(M2k+1,Φ (U1)) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

= Hp(U1,M2k+1) + Hp(Ψ (M2k) ,Φ (U1)) − inf
m2k+1∈M2k+1

p(m2k+1,m2k+1)

≤ Hp(U1,M2k+1) + λ∗RΨ,Φ (M2k,Φ (U1)) ,

where

RΨ,Φ (M2k,U1) = max
{

Hp(M2k,Φ (U1))[1 + Hp(M2k,Ψ(M2k))]
2(1 + Hp (M2k,U1))

,
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Hp(U1,Φ (U1))[1 + Hp(M2k,Ψ(M2k))]
1 + Hp (M2k,U1)

,

Hp(M2k,U1))[1 + Hp(M2k,Ψ(M2k))]
1 + Hp (M2k,U1)

}
= max

{
Hp(M2k,Φ (U1))[1 + Hp(M2k,M2k+1)]

2(1 + Hp (M2k,U1))
,

Hp(U1,Φ (U1))[1 + Hp(M2k,M2k+1)]
1 + Hp (M2k,U1)

,

Hp(M2k,U1)[1 + Hp(M2k,M2k+1)]
1 + Hp (M2k,U1)

}
.

Again, we have the following three cases:

(1) If RΨ,Φ (M2k,U1) =
Hp(M2k,Φ (U1))[1 + Hp(M2k,M2k+1)]

2(1 + Hp (M2k,U1))
, then

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + λ∗

{
Hp(M2k,Φ (U1))[1 + Hp(M2k,M2k+1)]

2(1 + Hp (M2k,U1))

}
.

Which together with our taking the limit as k → +∞, we get

Hp(U1,Φ (U1)) ≤ Hp(U1,U1) +
λ∗
2

{
Hp(U1,Φ (U1))[1 + Hp(U1,U1)]

(1 + Hp (U1,U1))

}
,

that is, (
1 −

λ∗
2

)
Hp(U1,Φ (U1)) ≤ 0,

thus, U1 = Φ(U1).

(2) If RΨ,Φ (M2k,U1) =
Hp(U1,Φ (U1))[1 + Hp(M2k,M2k+1)]

1 + Hp (M2k,U1)
, then

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k+1) + λ∗

{
Hp(U1,Φ (U1))[1 + Hp(M2k,M2k+1)]

1 + Hp (M2k,U1)

}
,

which together with our taking the limit as k → +∞, we get

(1 − λ∗) Hp(U1,Φ (U1)) ≤ 0,

which implies that U1 = Φ(U1).

(3) If RΨ,Φ (M2k,U1) =
Hp(M2k,U1)[1 + Hp(M2k,M2k+1)]

1 + Hp (M2k,U1)
then

Hp(U1,Φ (U1)) ≤ Hp(U1,M2k) + λ∗

{
Hp(M2k,U1)[1 + Hp(M2k,M2k+1)]

1 + Hp (M2k,U1)

}
,

which together with our taking the limit as k → +∞, we get Hp(U1,Φ (U1)) ≤ 0, which gives U1 =

Φ(U1).
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Thus U1 is a common attractor of the mappings Ψ and Φ.

For the uniqueness, assume that U1 and U2 are distinct common attractors of Ψ and Φ. Since the
pair (Ψ,Φ) is generalized rational Hutchinson contractive operator, we obtain that

Hp(U1,U2) = Hp(Ψ (U1) ,Φ (U2))

≤ λ∗max
{

Hp(U1,Φ (U2))[1 + Hp(U1,Ψ(U1))]
2(1 + Hp (U1,U2))

,

Hp(U2,Φ (U2))[1 + Hp(U1,Ψ(U1))]
1 + Hp (U1,U2)

,

Hp(U1,U2)[1 + Hp(U1,Ψ (U1))]
1 + Hp(U1,U2)

}
= λ∗max

{
Hp(U1,U2)[1 + Hp(U1,U1)]

2(1 + Hp (U1,U2))
,

Hp(U2,U2)[1 + Hp(U1,U1)]
1 + Hp (U1,U2)

,
Hp(U1,U2)[1 + Hp(U1,U1)]

1 + Hp(U1,U2)

}
≤ λ∗Hp(U1,U2),

and so (1−λ∗)Hp(U1,U2) ≤ 0, which implies that Hp(U1,U2) = 0 and hence U1 = U2. Thus U1 ∈ C
p(Y)

is a unique common attractor of Ψ and Φ. �
Corollary 3.8. Consider a generalized iterated function system {Y; hk, gk, k = 1, 2, · · · , r} on a complete
partial metric space (Y, p) and the mappings h, g : Y → Y as given in Remark 3.3. If there exists
λ∗ ∈ [0, 1) such that for any y1, y2 ∈ Y , the following condition holds:

p (hy1, gy2) ≤ λ∗Rh,g(y1, y2),

where

Rh,g(y1, y2) = max
{

p(y1, gy2)[1 + p(y1, hy1)]
2(1 + p(y1, y2))

,
p(y2, gy2)[1 + p(y1, hy1)]

1 + p(y1, y2)
,

p(y1, y2)[1 + p(y1, hy1)]
1 + p(y1, y2)

}
.

Then a unique common fixed point for h and g exists. Furthermore, for any initial choice of v0 ∈ Y ,
the sequence {v0, hv0, ghv0, hghv0, ...} converges to the common fixed point of h and g.

4. Well-posedness

Now, we investigate the well-posedness of attractor-based problems of generalized Hutchinson
contractive operators pair and generalized rational Hutchinson contractive operators pair given in
Definitions 2.4 and 2.5, respectively, in the framework of Hausdorff partial metric spaces. Some
useful results of well-posedness of fixed point problems are appearing in [16].

First we define the well-posedness of common attractor-based problem.
Definition 4.1. A common attractor-based problem of a pair of mappings Ψ,Φ : Cp(Y) → Cp(Y) is
said to be well-posed if the pair (Ψ,Φ) has a unique common attractor Λ∗ ∈ C

p(Y) and for any sequence

AIMS Mathematics Volume 7, Issue 7, 13074–13103.



13096

{Λk} in Cp(Y) such that lim
k→+∞

Hp(Ψ(Λk),Λk) = 0 and lim
k→+∞

Hp(Φ(Λk),Λk) = 0, then lim
k→+∞

Hp(Λk,Λ∗) =

Hp(Λ∗,Λ∗), that is, lim
k→+∞

Λk = Λ∗.

The following result shows the well-posedness of common attractor-based problem of a generalized
Hutchinson contractive operators.
Theorem 4.2. Let (Y, p) be a complete partial metric space and Ψ,Φ : Cp(Y)→ Cp(Y) be defined as in
Theorem 3.1. Then the pair (Ψ,Φ) has a well-posed common attractor-based problem.
Proof. From Theorem 3.1, it follows that the mappings Ψ and Φ have a unique common attractor (say)
B∗.

Let a sequence {Bk} in Cp(Y) be such that lim
k→+∞

Hp(Ψ(Bk), Bk) = 0 and lim
k→+∞

Hp(Φ(Bk), Bk) = 0. We
want to show that B∗ = lim

k→+∞
Bk. As the pair (Ψ,Φ) is generalized Hutchinson contractive operator, so

that

Hp(B∗, Bk) ≤ Hp(Ψ(B∗),Ψ(Bk)) + Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk)

≤ λZΨ(B∗, Bk) + Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk),

where

ZΨ,Φ(B∗, Bk) = max
{
Hp(B∗, Bk),Hp(B∗,Ψ(B∗)),Hp(Bk,Φ(Bk)),

Hp(B∗,Φ(Bk) + Hp(Bk,Ψ(B∗))
2

}.

Then we have the following cases:

(i) If ZΨ,Φ(B∗, Bk) = Hp(B∗, Bk), then

Hp(B∗, Bk) ≤ λHp(B∗, Bk) + Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk),

which further implies

(1 − λ) Hp(B∗, Bk) ≤ Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk),

that is,

Hp(B∗, Bk) ≤
1

1 − λ
[Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk)].

As k → +∞, we have

lim
k→+∞

Hp(B∗, Bk) ≤
1

1 − λ
lim

k→+∞
[Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk)],

this implies that lim
k→+∞

Bk = B∗.

(ii) In case of ZΨ,Φ(B∗, Bk) = Hp(B∗,Φ(B∗)), we have

Hp(B∗, Bk) ≤ λHp(B∗,Φ(B∗)) + Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk).

As k → +∞, we have

lim
k→+∞

Hp(B∗, Bk) ≤ λ lim
k→+∞

[Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk)].

Thus lim
k→+∞

Bk = B∗.
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(iii) If ZΨ,Φ(B∗, Bk) = Hp(B∗,Ψ (Bk)), then

Hp(B∗, Bk) ≤ λHp(B∗,Ψ (Bk)) + Hp(Bk,Ψ(Bk)) − inf
βk∈Ψ(Bk)

p(βk, βk)

≤ λ[Hp(B∗, Bk) + Hp(Bk,Ψ (Bk)) − inf
βk∈Ψ(Bk)

p(βk, βk)]

+Hp(Bk,Ψ(Bk)) − inf
βk∈Ψ(Bk)

p(βk, βk),

which further implies that

Hp(B∗, Bk) ≤
λ

1 − λ
[Hp(Bk,Ψ (Bk)) − inf

bk∈Bk
p(bk, bk)]

+
1

1 − λ
[Hp(Bk,Ψ (Bk)) − inf

βk∈Ψ(Bk)
p(βk, βk)]

As k → +∞, we have that lim
k→+∞

Bk = B∗.

(iv) Finally, if ZΨ,Φ(B∗, Bk) =
Hp(B∗,Φ(Bk) + Hp(Bk,Ψ(B∗))

2
, then we have

Hp(B∗, Bk) ≤
λ

2
[Hp(B∗,Φ(Bk) + Hp(Bk,Ψ(B∗))]

+Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk)

≤
λ

2
[Hp(B∗, Bk) + Hp(Bk,Ψ(Bk)) − inf

bk∈Bk
p(bk, bk) + Hp(Bk, B∗)]

+Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk),

which gives

Hp(B∗, Bk) ≤
λ

2(1 − λ)
[Hp(Bk,Ψ(Bk)) − inf

bk∈Bk
p(bk, bk)]

+
1

1 − λ
[Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk)]

and by k → +∞, we obtain
lim

k→+∞
Hp(B∗, Bk) ≤ 0,

which implies that lim
k→+∞

Bk = B∗. �

The following result shows the well-posedness of common attractor-based problem of a generalized
rational Hutchinson contractive operators.
Theorem 4.3. Consider a complete partial metric space (Y, p) with Ψ,Φ : Cp(Y)→ Cp(Y) defined as
in Theorem 3.7. Then the pair (Ψ,Φ) has a well-posed common attractor-based problem.
Proof. From Theorem 3.7, it follows that the mappings Ψ and Φ have a unique common attractor (say)
B∗.
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Let a sequence {Bk} in Cp(Y) be such that lim
k→+∞

H(Ψ(Bk), Bk) = 0 and lim
k→+∞

H(Φ(Bk), Bk) = 0. We
want to show that B∗ = lim

k→+∞
Bk. As the pair (Ψ,Φ) is generalized rational Hutchinson contractive

operator, so that

Hp(Bk, B∗) ≤ Hp(Ψ(Bk),Ψ(B∗)) + Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk)

≤ λ∗RΨ,Φ(Bk, B∗) + Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk),

where

RΨ,Φ(Bk, B∗) = max
{

Hp(Bk,Φ(B∗))[1 + Hp(Bk,Ψ(Bk))]
2(1 + Hp(Bk, B∗))

,

Hp(B∗,Φ(B∗))[1 + Hp(Bk,Ψ(Bk))]
1 + Hp(Bk, B∗)

,

Hp(B∗, Bk)[1 + Hp(Bk,Ψ(Bk))]
1 + Hp(Bk, B∗)

}
.

We consider the following three cases:

(i) For RΨ,Φ(Bk, B∗) =
Hp(Bk,Φ(B∗))[1 + Hp(Bk,Ψ(Bk))]

2(1 + Hp(Bk, B∗))
, we have

Hp(Bk, B∗) ≤ λ∗
Hp(Bk,Φ(B∗))[1 + Hp(Bk,Ψ(Bk))]

2(1 + Hp(Bk, B∗))
+Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk)

≤ λ∗Hp(Bk, B∗)[1 + Hp(Bk,Ψ(Bk))]
+Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk),

which implies that

Hp(Bk, B∗) − λ∗Hp(Bk, B∗)[1 + Hp(Ψ(Bk), Bk)] ≤ Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk)

and so

Hp(Bk, B∗) ≤
1

1 − λ∗[1 + Hp(Ψ(Bk), Bk)]
[Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk)].

And taking the limit as k → +∞ gives

lim
k→+∞

Hp(Bk, B∗) ≤ 0,

which implies that lim
k→+∞

Bk = B∗.

(ii) If RΨ,Φ(Bk, B∗) =
Hp(B∗,Φ(B∗))[1 + Hp(Bk,Ψ(Bk))]

1 + Hp(Bk, B∗)
, then

Hp(Bk, B∗) ≤ λ∗

(
Hp(B∗,Φ(B∗))[1 + Hp(Bk,Ψ(Bk))]

1 + Hp(Bk, B∗)

)
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+Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk)

= Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk).

And taking the limit as k → +∞, we have

lim
k→+∞

Hp(Bk, B∗) ≤ 0,

which implies that lim
k→+∞

Bk = B∗.

(iii) Finally if RΨ,Φ(Bk, B∗) =
Hp(B∗, Bk)[1 + Hp(Bk,Ψ(Bk))]

1 + Hp(Bk, B∗)
, then

Hp(Bk, B∗) ≤ λ∗
Hp(B∗, Bk)[1 + Hp(Bk,Ψ(Bk))]

1 + Hp(Bk, B∗)
+Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk),

that is,

Hp(Bk, B∗)[1 − λ∗
[1 + Hp(Bk,Ψ(Bk))]

1 + Hp(Bk, B∗)
]

≤ Hp(Ψ(Bk), Bk) − inf
βk∈Ψ(Bk)

p(βk, βk),

which further implies

Hp(Bk, B∗)[1 − λ∗[1 + Hp(Bk,Ψ(Bk))]]
≤ Hp(Ψ(Bk), Bk) − inf

βk∈Ψ(Bk)
p(βk, βk).

On taking the limit as k → +∞, gives lim
k→+∞

Hp(Bk, B∗) ≤ 0 implies that lim
k→+∞

Bk = B∗. Thus the
proof is complete. �

5. Application to functional equations

In this section, we are applying our obtained results to solve a functional equation arising in the
dynamic programming.

Let W1 and W2 be two Banach spaces with U ⊆ W1 and V ⊆ W2. Suppose that

κ : U × V −→ U, g1, g2 : U × V −→ R, h1, h2 : U × V × R −→ R.

If we consider U and V as the state and decision spaces respectively, then the problem of dynamic
programming reduces to the problem of solving the functional equations:

q1(x) = sup
y∈V
{g1(x, y) + h1(x, y, q1(κ(x, y)))}, for x ∈ U (5.1)

q2(x) = sup
y∈V
{g1(x, y) + h2(x, y, q2(κ(x, y)))}, for x ∈ U. (5.2)
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The Eqs (5.1) and (5.2) can be reformulated as

q1(x) = sup
y∈V
{g2(x, y) + h1(x, y, q1(κ(x, y)))} − b, for x ∈ U (5.3)

q2(x) = sup
y∈V
{g2(x, y) + h2(x, y, q2(κ(x, y)))} − b, for x ∈ U, (5.4)

where b > 0.
We study the existence and uniqueness of the bounded solution of the functional Eqs (5.3) and (5.4)

arising in dynamic programming in the setup of partial metric spaces.
Let B(U) denotes the set of all bounded real valued functions on U. For an arbitrary η ∈ B(U),

define ‖η‖ = sup
t∈U
|η(t)|. Then (B(U), ‖·‖) is a Banach space. Now consider

pB(η, ξ) = sup
t∈U
|η (t) − ξ (t)| + b,

where η, ξ ∈ B(U). Then pB is a partial metric on B(U) (see also [5]).
Assume that:
(D1) : g1, g2, h1 and h2 are bounded and continuous.
(D2) : For x ∈ U, η ∈ B(U) and b > 0, take Ψ,Φ : B(U)→ B(U) as

Ψη(x) = sup
y∈V
{g2(x, y) + h1(x, y, η(κ(x, y)))} − b, for x ∈ U, (5.5)

Φη(x) = sup
y∈V
{g2(x, y) + h2(x, y, η(κ(x, y)))} − b, for x ∈ U. (5.6)

Moreover, for every (x, y) ∈ U × V , η, ξ ∈ B(U) and t ∈ U implies

|h1(x, y, η (t)) − h2(x, y, ξ (t))| ≤ λZΨ,Φ(η (t) , ξ (t)) − 2b, (5.7)

where

ZΨ,Φ(η (t) , ξ (t)) = max{pB(η (t) , ξ (t)), pB(η (t) ,Ψη (t)), pB(ξ (t) ,Φξ (t)),
pB(η (t) ,Φξ (t)) + pB(ξ (t) ,Ψη (t))

2
}.

Theorem 5.1. Assume that the conditions (D1) and (D2) hold. Then, the functional Eqs (5.3) and (5.4)
have a unique common and bounded solution in B(U).
Proof. Note that (B(U), pB) is a complete partial metric space. By (D1), Ψ and Φ are self-mappings
of B(U). By (5.5) and (5.6) in (D2), it follows that for any η, ξ ∈ B (U) and b > 0, choose x ∈ U and
y1, y2 ∈ V such that

Ψη < g2(x, y1) + h1(x, y1, η(κ(x, y1))) (5.8)

Φξ < g2(x, y2) + h2(x, y2, ξ(κ(x, y2))), (5.9)

which further implies that
Ψη ≥ g2(x, y2) + h1(x, y2, η(κ(x, y2))) − b (5.10)

Φξ ≥ g2(x, y1) + h2(x, y1, ξ(κ(x, y1))) − b. (5.11)

AIMS Mathematics Volume 7, Issue 7, 13074–13103.
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From (5.8) and (5.11) together with (5.7) implies

Ψη (t) − Φξ (t) < h1(x, y1, η(κ(x, y1))) − h2(x, y1, ξ(κ(x, y1))) + b
≤ |h1(x, y1, η(κ(x, y1))) − h2(x, y1, ξ(κ(x, y1)))| + b

≤ λZΨ,Φ(η (t) , ξ (t)) − b.
(5.12)

From (5.9) and (5.10) together with (5.7) implies

Φξ (t) − Ψη (t) < h2(x, y2, ξ(κ(x, y2))) − h1(x, y2, η(κ(x, y2))) + b
≤ |h1(x, y2, η(κ(x, y2))) − h2(x, y2, ξ(κ(x, y2)))| + b

≤ λZΨ,Φ(η (t) , ξ (t)) − b.
(5.13)

From (5.12) and (5.13), we get

|Ψη (t) − Φξ (t)| + b ≤ λZΨ,Φ(η (t) , ξ (t)). (5.14)

The inequality (5.14) implies that

pB(Ψη (t) ,Φξ (t)) ≤ λZΨ,Φ(η (t) , ξ (t)), (5.15)

where

ZΨ,Φ(η (t) , ξ (t)) = max{pB(η (t) , ξ (t)), pB(η (t) ,Ψη (t)), pB(ξ (t) ,Φξ (t)),
pB(η (t) ,Φξ (t)) + pB(ξ (t) ,Ψη (t))

2
}.

Therefore, all conditions of Corollary 3.4 hold. Thus, there exists a common fixed point of Ψ and
Φ, that is, η∗ ∈ B(U), where η∗ (t) is a common solution of functional Eqs (5.3) and (5.4). �

6. Conclusions

The results of this paper broadened the scope of iterated function system and fixed point theory of
pair of mappings by incorporating the generalized contraction approaches. We obtained unique
common attractors with the assistance of finite families of generalized contractive mappings, that
belong to the special class of mappings defined on a partial metric space. The well-posedness of these
obtained results is also established. The ideas in this work, being discussed in the setting of partial
metric spaces, are completely fundamental. Hence, they can be made better, when presented in the
extended generalized metric spaces, like dislocated metric, semi metric, b-metric spaces, G-metric
spaces and some other pseudo-metric or quasi metric spaces.
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