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1. Introduction

Diarrhea is a very serious condition of someone in which feces are released frequently from the
intestines in a liquid-like form. When this happens more than three times a day, a large amount of
water and nutrients are discharged from the body and the patients become dehydrated. Generally,
diarrhea is caused by many factors including bacteria, viruses some micro-organisms, malnutrition,
allergies to certain foods, medications, and many more. The consequences of diarrhea vary from
mild to very severe. The minerals and other necessary salts are drained out from the body tissue [1].
So, resultantly human body feels weak leading to death if untreated [2]. The common symptoms of
diarrhea are nausea, abdominal pain, bloating, dehydration, fever, frequent stools, etc.

Diarrhea can be divided into two fundamental stages namely, the acute stage and chronic stage. If
there are three or a few more loose stools per day last, no longer than two weeks can be considered
an acute stage of diarhea [3]. The chronic stage is very serious and is recognized by the different
episodes of watery stools that last beyond the fourteen days (two weeks) [4]. Such classification is
very important not only to study the epidemic dynamics but also necessary from a practical view. The
findings of this study lead to a better understanding of the outbreak and the control of diarrhea and
any other fatal disease [5]. Diarrhea is more common among children and it continuously weakens
them. As a result, more than seventy-six thousand children die yearly on the planet [6]. Another
reason for the contemporary research is that the maximum number of diarrhea cases are 1.74 billion
reported in a single year [7]. Diarrhea, in developing countries, is even more dangerous because of food
and health conditions. Every child is suffered from this disease 3.2 times on average, every year [8].
This disease is more dangerous for children than other viral diseases such as HIV, AIDS, Malaria, or
Measles. Approximately, this disease causes more than 500,000 deaths each year around the world [9].
Undoubtedly, this disease is a great threat to human lives than any other viral disease. Africa is the
most vulnerable to this disease due to many reasons, for instance, poverty, climate changes, lack of
facilities, heavy rains, and lack of water sanitization [4]. It is now a proven fact that the main roots of
the diarrhea viruses are grown in contaminated water and waste food items. Diarrhea has two types
which are infectious and non-infectious diarrhea. Noninfectious diarrhea does not transmit from person
to person so, it is not an epidemic. The noninfectious diarrhea only disturbs the immunity for a short
time and after some time the immune system is restored. So, the disease dies out. Luckily, diarrhea
is a curable and preventable disease that can be controlled by using the available antibiotics [10].
Liquid supplements such as ORS are suggested to overcome, dehydration. Ardkaew and co-authors
investigated that the diarrhea disease incidence is higher in children who are below the age of 5-
year in the provinces which are in Northeastern Thailand. Their research is based on the recorded
cases of patients from 1999 to 2004. In linear regression models of the infectious disease epidemic,
seasons, districts, and years are considered as factors to good fit the long-transformed disease incidence
with generalized estimated expressions. It helped to describe the spatial co-relations between the
districts [11]. The other regions showed a larger periodic mode from January to March and from
the period that lasts from April to June. Their word proposed that the regional study can help the
health department and other authorities in designing disease-control strategies. These policies may
help the disease eradication from papulation. Adewale and co-authors discussed the diarrhea disease
mathematically by considering the vaccination as an important factor [12]. They calculated the basic
reproduction number R0 and find out that the disease becomes endemic for R0 > 1 and it will persist
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in the population. The numerical simulations with the considered parameters revealed the graphical
results, epidemic analysis in a practical scenario. The stability of the model was done by using the
Routh-Hurwitz principle [13].

Diarrhea disease is a very contagious disease. Its classical mathematical model has been solved
by different numerical methods. While the fractional-order model of this disease has not been
formulated and the proposed method is an efficient numerical method. The existence and uniqueness
of the solution are certified by using contraction mapping theory. The stability of the model at
both equilibrium points is made possible by the classical Jacobian theory. The role of the basic
reproductive number R0 is investigated to describe the disease dynamics as well as for the stability
of the model. Computer-aided numerical graphs demonstrate the important key physical features of
the state variables. These features include the convergence towards the true steady-state, which is the
main contribution.

This work has a more realistic approach. As the biological phenomenon contains memory effect
and the classical epidemic models do not cover this important fact. This deficiency in the integer-order
model enticed us to investigate the dynamics of the diarrhea infection in the fractional setup. Several
mathematical models with various fractional operators are presented in the literature [14–19].

In the literature numerous fractional different operators are defined which can be classified on the
basis of the kernel defined therein. The kernels described in these operators are singular or non-
singular. The advantage of the Atangana -Baleanu fractional-order derivative is that it has a nonsingular
kernel, which is very helpful in the calculation and description of disease dynamics at different stages
of the virus propagation in society.

2. Preliminaries

In this section, we describe below some definitions in fractional calculus.

Definition 2.1. Gamma function Γ(ν) is defined as Γ(ν) =
∫ ∞

0
exp(−t)tνdt and it converges in the right

half of the complex plane R(z) > 0.

Definition 2.2. [20] The caputo fractional derivative of order ν, (k − 1 < ν ≤ k) for k ∈ N of the
function g(s) is defined by s0D

ν
sg(s) = 1

Γ(k−ν)

∫ s

s0
(s − ζ)k−ν−1gk(ζ)dζ.

Definition 2.3. [21] The Mittag Leffler function which generalizes the exponential function for
fractional calculus to defined by Eµ,ν(Z) =

∑∞
k=0

Zk

Γ(νk+1) , ν ∈ R
+ ,Z ∈ C.

3. Diarrhea mathematical model and corresponding fractional expression

Here, S (t) expresses the representation of the constituents of the human population and shows that
the susceptible humans who shall have the maximum probability to be affected by the diarrhea disease,
I(t) represent the infected humans who have convicted with diarrhea, T (t) is treated class of people and
the class of recovered humans is denoted by R(t) where t is the time and the total population is denoted
by N(t). Such that N(t) = S (t) + I(t) + T (t) + R(t).

Also, we described the parameters used in the model. Λ: expresses the Recruitment rate, β1:
describes Effective contact rate, β2: demonstrates Saturation treatment rate, η: used for Enhancement
factor, P: for Proportion of infected individuals joining either the class R or T, γ: for Rate of treated
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individuals from infection, σ: for the Rate at which treated individuals move to recovered class, ω:
for Rate at which recovered individuals move to susceptible class, µ: for the natural death rate in all
compartments and κ: for Educational adjustment

dS
dt

= λ + wR − µS − (β1
I

1 + KI
+ β2

wT
1 + KT

)S , (3.1)

dI
dt

= (β1
I

1 + KI
+ β2

wT
1 + KT

)S − (µ + γ)I, (3.2)

dT
dt

= PγI − (µ + σ)T, (3.3)

dR
dt

= (1 − P)γI + σT − (µ + w)R. (3.4)

The corresponding Fractional version of the above diarrhea disease is given by

ABDν
t S (t) = λ + wR − µS − (β1

I
1 + KI

+ β2
wT

1 + KT
)S ∀t ≥ 0, (3.5)

ABDν
t I(t) = (β1

I
1 + KI

+ β2
wT

1 + KT
)S − (µ + γ)I ∀t ≥ 0, (3.6)

ABDν
t T (t) = PγI − (µ + σ)T ∀t ≥ 0, (3.7)

ABDν
t R(t) = (1 − P)γI + σT − (µ + w)R ∀t ≥ 0. (3.8)

Subjected to the following initial conditions

S = S 0 ≥ 0, I = I0 ≥ 0,T = T0 ≥=,R = R0.

4. Existence and uniqueness of the mdel fractional differential equations

Our goal is to find the solutions of the system (3.5)–(3.8) and unique existence of the solutions for
underlying IVP (3.5)–(3.8).

So, we derived the conditions for existence and uniqueness of the solution for this system (3.5)–
(3.8) one by one by fixed point theory, using Banach fixed point theorem, Lipschitz condition [22]
for this we see (1) Self Mapping, (2) Contraction Mapping to understand in the simple way we say,
subjected to the following initial conditions

Q1(t, S , I,T,R) = λ + wR − µS − (β1
I

1 + KI
+ β2

wT
1 + KT

)S ∀t ≥ 0,

Q2(t, S , I,T,R) = (β1
I

1 + KI
+ β2

wT
1 + KT

)S − (µ + γ)I ∀t ≥ 0,

Q3(t, S , I,T,R) = PγI − (µ + σ)T ∀t ≥ 0,
Q4(t, S , I,T,R) = (1 − P)γI + σT − (µ + w)R ∀t ≥ 0.

Applying the AB integral [23], above model is reduce to the following fixed point operators,

HS (t) = S (0) +
1 − ν
AB(ν)

Q1(t, S , I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q1(τ, S , I,T,R)dτ (4.1)
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HI(t) = I(0) −
1 − ν
AB(ν)

Q2(t, S , I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q2(τ, S , I,T,R)dτ (4.2)

HT (t) = T (0) −
1 − ν
AB(ν)

Q3(t, S , I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q3(τ, S , I,T,R)dτ (4.3)

HR(t) = R(0) −
1 − ν
AB(ν)

Q4(t, S , I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q4(τ, S , I,T,R)dτ (4.4)

Here we construct the four closed balls for the above operators such that as given below, Let C be
the space of all continuous functions and we consider four closed balls with the radius r and center
S 0, I0,T0,R0 respectively, in the space of all continuous functions such that

Br(S 0) =
[
S , S ∈ C[0, ρ]; ||S − S 0|| ≤ r

]
, ||S || ≤ r + S 0.

Similarly,
Br(I0) =

[
I, I ∈ C[0, ρ]; ||I − I0|| ≤ r

]
, ||I|| ≤ r + I0.

Also,
Br(T0) =

[
T,T ∈ C[0, ρ]; ||T − T0|| ≤ r

]
, ||T || ≤ (r + T0)

Lastly,
Br(R0) =

[
R,R ∈ C[0, ρ]; ||R − R0|| ≤ r

]
, ||R|| ≤ (r + R0)

HS (t) = S (0) +
1 − ν
AB(ν)

Q1(t, S , I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q1(τ, S , I,T,R)dτ.

Now, for self mapping, applying norm on both sides, we have

||HS (t) − S (0)|| ≤
∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ ||Q1(t, S , I,T,R)|| +
∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ ∫ t

0
|t − τ|ν−1||Q1(τ, S , I,T,R)||dτ.

so we have,

||Q1(t, S , I,T,R)|| ≤ |λ| + |w|(r + R0) +
[
|µ| + (|β1|(r + I0) − |β2||w|(r + T0))

]
(r + S 0).

Now, putting,
S 0 = C1, I0 = C2,T0 = C3,R0 = C4

Say,
C = Max(C1,C2,C3,C4)

then

||Q1(t, S , I,T,R)|| ≤ |λ| +
[
|w| +

[
|µ| + (|β1 − β2w|(r + C))

]]
(r + C),

and
||Q1(t, S , I,T,R)|| ≤ |λ| + Q∗1(r + C),
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where
Q∗1 =

[
|w| +

[
|µ| + (|β1 − β2w|(r + C))

]]
and

λ > 0.

So,

||Q1(t, S , I,T,R)|| ≤ λ + Q∗1(r + C),

Now,

||HS (t) − S (0)|| ≤
∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)] +

∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ ∫ t

0
|t − τ|ν−1[λ + Q∗1(r + C)]dτ,

||HS (t) − S (0)|| ≤
∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)] +

∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ ∫ t

0
|t − τ|ν−1[λ + Q∗1(r + C)]dτ,

∵ ||S ||=(r + s0)

||HS (t) − S (0)|| ≤
∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)] +

∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)]
∫ t

0
|t − τ|ν−1dτ,

||HS (t) − S (0)|| ≤
∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)] +

∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)]
ρν

ν
.

∵ In both the cases t > τ and τ > t the integral
∫ t

0
|t − τ|ν−1dτ =

ρν

ν
,

For self Mapping we know
||HS (t) − S (0)|| ≤ r

So, ∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ [λ + Q∗∗1 (r + C)] +

∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ [λ + Q∗1(r + C)]
ρν

ν
≤ r,∣∣∣∣∣ 1 − ν

AB(ν)

∣∣∣∣∣ +

∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ ρνν ≤ r
[λ + Q∗1(r + C)]

,∣∣∣∣∣ ν

AB(ν)Γ(ν)

∣∣∣∣∣ ρνν ≤ r
[λ + Q∗∗1 (r + C)]

−

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ ,
ρ ≤

 ν∣∣∣∣ ν
AB(ν)Γ(ν)

∣∣∣∣
(

r
[λ + Q∗1(r + C)]

−

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣)


1
ν

,

ρS ≤

 ν∣∣∣∣ ν
AB(ν)Γ(ν)

∣∣∣∣
(

r
[λ + Q∗1(r + C)]

−

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣)


1
ν (

r
[λ + Q∗1(r + C)]

>

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣) . (4.5)
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Which is the condition for self mapping.
Now, for contraction mapping, we proceeds as follows;

HS (t) = S (0) +
1 − ν
AB(ν)

Q1(t, S , I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q1(τ, S , I,T,R)dτ.

For contraction Mapping we have the two images S 1 and S 2 than we have two pre-images HS 1 and
HS 2 , such that

HS 1(t) = S (0) +
1 − ν
AB(ν)

Q1(t, S 1, I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q1(τ, S 1, I,T,R)dτ, (4.6)

HS 2(t) = S (0) +
1 − ν
AB(ν)

Q1(t, S 2, I,T,R) +
ν

AB(ν)Γ(ν)

∫ t

0
(t − τ)ν−1Q1(τ, S 2, I,T,R)dτ, (4.7)

ρS <

 ν

| ν
AB(ν)Γ(ν) |

(
1

Q∗∗1
− |

1 − ν
AB(ν)

|

)
1
ν

,

(
1

Q∗∗1
>

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣) . (4.8)

Which is the condition for contraction mapping, where [|µ| + |β1| + |β2||w|](r + C) = Q∗∗1 . Similarly for
the

ρI ≤

 ν∣∣∣∣ ν
AB(ν)Γ(ν)

∣∣∣∣
(

r
Q∗2
−

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣)


1
ν

,

(
r

Q∗2
>

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣) , (4.9)

where ||Q2(τ, S , I,T,R)|| ≤ Q∗2, and which is the condition for self mapping.
Similarly for I

ρI <

 ν∣∣∣∣ ν
AB(ν)Γ(ν)

∣∣∣∣ |Q′

2(τ∗)|

(
1 −

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ |Q′

2(t∗)|
)

1
ν

,

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ ∣∣∣Q′

2(t∗)
∣∣∣ < 1. (4.10)

Which is the condition for contraction mapping.
(4.3) =⇒ the conditions for contraction and self mapping as,

ρT ≤

 ν

| ν
AB(ν)Γ(ν) |

(
r

Q∗3
− |

1 − ν
AB(ν)

|

)
1
ν

,
r

Q∗3
> |

1 − ν
AB(ν)

|, (4.11)

is the condition for self mapping

ρT <

 ν∣∣∣∣ ν
AB(ν)Γ(ν)

∣∣∣∣
(

1
|µ + σ|

−

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣)


1
ν

,
1

|µ + σ|
>

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ . (4.12)

Which is the condition for contraction mapping.

ρR ≤

 ν

| ν
AB(ν)Γ(ν) |

(
r

Q∗4
− |

1 − ν
AB(ν)

|

)
1
ν

,
r

Q∗4
> |

1 − ν
AB(ν)

|, (4.13)
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is the condition for self mapping.

ρR <

 ν∣∣∣∣ ν
AB(ν)Γ(ν)

∣∣∣∣
(

1
|(µ + w)|

−

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣)


1
ν

,
1

|(µ + w)|
>

∣∣∣∣∣ 1 − ν
AB(ν)

∣∣∣∣∣ . (4.14)

Which is the condition for contraction mapping.

5. Analysis on stability

In this section, local stability for these fractional equations is investigated for the disease free point
of equilibrium, and point of endemic equilibrium.

Definition 5.1. [24, 25] A point t∗ is called an equilibrium point of the system

s0D
ν
s = g(s, t(s)), t(s0) > 0 g(s, t∗(s)) = 0

5.1. Equilibrium point

The system (3.5)–(3.8) demonstrates two equilibrium points, namely the disease free and endemic
equilibrium points. We define the diarrhea free equilibrium point as

E0 = (S 0, I0,T 0,R0) = (
λ

µ
, 0, 0, 0),

and diarrhea existence equilibrium point as

E1 = (S ∗, I∗,T ∗,R∗),

where,
S ∗ = C + DI∗,T ∗ = AI∗,R∗ = BI∗,

by defining,

A =
Pγ
µ + σ

, B =
γµ − µPγ + σγ

(µ + w)(µ + σ)
,

C =
λ

µ
,D =

w(γµ − µP + σγ)
µ(µ + w)(µ + σ)

−
µ + γ

µ
,

I∗ =
−(m5 − m2) +

√
(m5 − m2)2 − 4(m4 − m1)(m6 − m3)

2(m4 − m1)
.

The m′i s i = 1, 2, 3, 4, 5, 6 are defined as,

m1 = (KAβ1 + β2WAK)D,

m2 = (β1 + β2WA)D,
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m3 = C(β1 + β2WA) + C(KAβ1 + β2WAK),

m4 = K2A(µ + γ),

m5 = (µ + γ)(K + KA),

m6 = (µ + γ).

Basic Reproduction number is presented as,

R0 =
λ(µβ1 + σβ1 + PγWβ2)

µ(µ + γ)(µ + σ)
.

Lemma 5.1. Consider the system with fractional order as

cDν
t v(t) = g(v), 0 < ν < 1.

If, all the eigenvalues λ of the Jacobian matrix, Jv∗ =
∂g
∂v|v∗

fulfill |argλ| > νπ2 , then v∗ is locally

asymptotically stable.

Theorem 5.1. The underlying system (3.5)–(3.8) at disease-free equilibrium is locally asymptotically
stable if R0 < 1.

Proof. J =


−(µ∗ +Φ) −ζ1

S (1+KI)−IS K
(1+KI)2 −ζ2

ηS (1+KT )−ηTS K
(1+KT )2 ω

Φ −ζ2
S (1+KI)−IS K

(1+KI)2 − (µ∗ + γ∗) −ζ2
ηS (1+KT )−ηTS K

(1+KT )2 0
0 Pγ∗ (−µ∗ − σ∗) 0
0 (1 − P)γ∗ σ∗ (−ω − µ∗)


where ϕ =

(
−ζ1

1
(1+KI) ) + −ζ1

ηT
(1+KI)

)
.

Evaluating the Jacobian at E0. Hence, we obtain the following matrix,

JE0=


−µ∗ −ζ1

λ∗

µ∗
−ζ2

ηλ∗

µ∗
ω

Φ ζ1
λ∗

µ∗
− (µ∗ + γ∗) ζ2

ηλ∗

µ∗
0

0 Pγ∗ −(µ∗ + σ∗) 0
0 γ∗(1 − P) σ∗ (−ω − µ∗)

.
Now, we evaluate eigenvalues, by setting |JE0 − λ ∗ I|=0.

|JE0 − λ
∗I|=

∣∣∣∣∣∣∣∣∣∣∣∣
−µ∗ − λ∗ −ζ1

λ∗

µ∗
−ζ2

ηλ∗

µ∗
ω

Φ ζ1
λ∗

µ∗
− (µ∗ + γ∗) − λ∗ ζ2

ηλ∗

µ∗
0

0 Pγ∗ −(µ∗ + σ∗) − λ∗ 0
0 (1 − P)γ∗ σ∗ −(µ∗ + ω) − λ∗

∣∣∣∣∣∣∣∣∣∣∣∣ = 0

Then, we have λ∗I = -µ∗ < 0 and λ∗2 = −(µ∗ + ω)< 0. The remaining values can be evaluated as

H =

∣∣∣∣∣∣ ζ1
λ∗

µ∗
− (µ∗ + γ∗) − λ∗ ζ2

ηλ∗

µ∗

Pγ∗ −(µ∗ + σ∗) − λ∗

∣∣∣∣∣∣ = 0. So, we get the following characteristic equation,

λ∗2 +
(
2µ∗ + γ∗ + σ∗ − ζ1

λ∗

µ∗

)
λ∗ + µ∗2 +

(
σ∗ + γ∗ − ζ1

λ∗

µ∗

)
µ∗ +

(
γ∗ − ζ1

λ∗

µ∗

)
− ζ2

Pγ∗ηλ∗

µ∗
= 0.
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Simply, the above equation can be put in the form as given below,

P(λ) = λ∗2 + a1λ
∗ + a2 = 0,

where a1 = (µ∗ + γ∗) + (µ∗ + σ∗) − ζ1
λ∗

µ∗
. And a2 = (µ∗ + σ∗)(µ∗ + γ∗)[1 − R0].

If R0 < 1, then a2 > 0 and if R0 < 1 and ζ1
λ∗

µ∗(µ∗+1) < 1 implies that a1 > 0. hence, the disease-free
equilibrium is locally asymptotically stable if R0 < 1. �

Theorem 5.2. The underlying system (3.5)–(3.8) at disease free equilibrium is globally asymptotically
stable if R0 < 1.

Proof. For the global stability, we use the method of Castillo-Chavez, as followings;

a1 :
dX
dt

= F∗(X,Z), a2 :
dZ
dt

= G∗(X,Z),G∗(X, 0) = 0. (5.1)

Here, X = (S, R), Z = (I, T) with X ∈ R+
2 representing the uninfected individuals and Z ∈ R+

2 representing
infected individuals including the latent and infectious individuals. Let us denote the disease-free
equilibrium point by

E0 = (N0, 0),N0 =

(
λ
µ∗
, 0

)
. (5.2)

A point (E0) = (N0, 0) is said to be globally asymptotically stable equilibrium point for the given

equations if the following axioms are hold: b1 : E0 is globally asymptotically stable for
dX
dt

= F∗(X, 0),

b2 : G∗
′

(X,Z) ≥ 0, (X, Z) ∈ π, here G∗(X,Z) = AZ − G∗
′

(X,Z), A = DZG∗(N0, 0) which is called
Metzler matrix. So we will write this matrix A as = F∗ −V and π which is given in the above equation.

So, we have:
dX
dt

= F∗(X,Z) =

[
λ + ωR − (ϕ + µ∗)S

(1 − P)γ∗I + σT − (µ∗ + ω)R

]
, where, ϕ =

(
ζ1

1
(1+KI) ) + ζ2

ηT
(1+KT )

)
,

F∗(X,Z) =

[
λ − µ∗S

0

]
,

dZ
dt

= G∗(X,Z) =

[
ΦS − (µ∗ + γ∗)I

Pγ∗I − (µ∗ + σ)T

]
, G∗(X, 0) = 0 . Hence, N0 =

(
λ
µ∗
, 0

)
is known as globally asymptotically stable equilibrium point of

dX
dt

= F∗(X, 0), which is, b1 :
dX
dt

=

F∗(X, 0) =

[
λ − µ∗S

0

]
.

By solving this for the condition b2, we attain the following form, A =

F∗ − V =

[
ζ1

λ
µ∗
− (µ∗ + γ∗) − µ∗S ζ2

ηλ

µ∗

Pγ∗ −(µ∗ + σ)

]
, and AZ is given by: AZ =[

ζ1
λ
µ∗
− (µ∗ + γ∗) ζ2

ηλ

µ∗

Pγ∗ −(µ∗ + σ)

] [
I
T

]
=

[
ζ1

λ
µ∗

I − (µ∗ + γ∗)I + ζ2
ηλT
µ∗

Pγ∗I − (µ∗ + σ)T

]
, So, G∗

′

(X,Z) =

AZ −G∗(X,Z) =

[
0
0

]
=

[
G∗

′

(X,Z)1

G∗
′

(X,Z)2

]
.

Given G∗
′

(X,Z)1 = 0, also G∗
′

(X,Z)2 = 0, we get G∗
′

(X,Z) ≥ 0 for (X, Z) ∈ π. So, the disease free
equilibriums point E0 is said to be globally asymptotically stable point if, R0 < 1.

�
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Theorem 5.3. The fractional epidemic system (3.5)–(3.8) is locally-asymptotically stable at E1 if R0 >

1.

Proof. Now, by solving this Jacobian matrix at E1, we get JE1=


−(ν + A1) −A2 −A3 −ω

A1 A2 − A4 A3 0
0 Pγ −A5 0
0 (1 − P)γ θ −A6

,
where A1 =

(
β1

I∗
1+KI∗ + β2

ηT ∗

1+KT ∗

)
, A2 = β1S ∗(1+KI∗)−IS ∗K

(1+KI∗)2 , A3 = β2

(
S ∗(1+KT ∗)−ηT ∗S ∗K

(1+KT ∗)2

)
, A4 = (ν + φ),

A5 = (ν + θ), A6 = (ν + ω) .
The eigenvalues of the Jacobian matrix above are, |JE1 −

λI|=

∣∣∣∣∣∣∣∣∣∣∣
−(ν + A1) − λ −A2 −A3 −ω

A1 A2 − A4 − λ A3 0
0 Pγ −A5 − λ 0
0 (1 − P)γ θ −A6 − λ

∣∣∣∣∣∣∣∣∣∣∣ = 0.

This will have the following type of the characteristic equation −((ν+ A1)+λ)[−(A6 +λ)](λ2 +a1λ+

a2) = 0. where

a1 = −kν(φ + ν)(ν + θ)(Pφ + ν + θ)(ν + θ) − (ν + θ)(ν(φ + ν)(ν + θ))
+(ν(ν + θ) + φ(2ν − Pν + 2θ))ω − kPφΛ(ν + ω)β1

+Pφη(−ην(ν + θ) + φ((−2 + P)ν
−2θ)ω + (kΛ − ν)(ν + θ)(ν + ω))β2

and a2 = −(ν + θ)(ν + ω)[1 − R0].
We can see that λ1 = −U, λ2 = −(ν + A1), (a1, a2) > 0. Then, we have all the results of this

characteristic equation also we have -ve real parts. Therefore, the endemic equilibrium point of this
Equation is known locally asymptotically stable if R0 > 1. �

6. Analysis of the model with Mittag-Leffler kernel

Here we let the some discussed problems with the derivative using Atangana and Baleanu derivative
as:

ABDν
t∗S (t∗) = λ + wR − µS − (β1

I
1 + KI

+ β2
wT

1 + KT
)S , ∀t∗ ≥ 0, (6.1)

ABDν
t∗ I(t∗) = (β1

I
1 + KI

+ β2
wT

1 + KT
)S − (µ + γ)I, ∀t∗ ≥ 0, (6.2)

ABDν
t∗T (t∗) = PγI − (µ + σ)T, ∀t∗ ≥ 0, (6.3)

ABDν
t∗R(t∗) = (1 − P)γI + σT − (µ + w)R, ∀t∗ ≥ 0. (6.4)

For simplicity, we define

Q1(t∗, S , I,T,R) = λ + wR − µS − (β1
I

1 + KI
+ β2

wT
1 + KT

)S , ∀t∗ ≥ 0,

Q2(t∗, S , I,T,R) = (β1
I

1 + KI
+ β2

wT
1 + KT

)S − (µ + γ)I, ∀t∗ ≥ 0,
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Q3(t∗, S , I,T,R) = PγI − (µ + σ)T, ∀t∗ ≥ 0,
Q4(t∗, S , I,T,R) = (1 − P)γI + σT − (µ + w)R, ∀t∗ ≥ 0.

Then, we get

AB(ν)
1 − ν

d
dt

∫ t∗

0
S (ξ)Eα

(
−ν

1 − ν
(t∗ − ξ)ν

)
dξ = Q1(t∗, S , I,T,R),

AB(ν)
1 − ν

d
dt

∫ t∗

0
I(ξ)Eα

(
−ν

1 − ν
(t∗ − ξ)ν

)
dξ = Q2(t∗, S , I,T,R),

AB(ν)
1 − ν

d
dt

∫ t∗

0
T (ξ)Eα

(
−ν

1 − ν
(t∗ − ξ)ν

)
dξ = Q3(t∗, S , I,T,R),

AB(ν)
1 − ν

d
dt

∫ t∗

0
R(ξ)Eα

(
−ν

1 − ν
(t∗ − ξ)ν

)
dξ = Q4(t∗, S , I,T,R),

takingAB derivative,

S (t∗ − S (0) =
1 − ν
AB(ν)

Q1(t∗, S , I,R) +
ν

AB(ν)Γ(ν)

∫ t∗

0
(t∗ − ξ)ν−1Q1(ξ, S , I,T,R)dξ

I(t∗) − I(0) =
1 − ν
AB(ν)

Q2(t∗, S , I,R) +
ν

AB(ν)Γ(ν)

∫ t∗

0
(t∗ − ξ)ν−1Q2(ξ, S , I,T,R)dξ

T (t∗) − T (0) =
1 − ν
AB(ν)

Q3(t∗, S , I,R) +
ν

AB(ν)Γ(ν)

∫ t∗

0
(t∗ − ξ)ν−1Q3(ξ, S , I,T,R)dξ

R(t∗) − R(0) =
1 − ν
AB(ν)

Q4(t∗, S , I,R) +
ν

AB(ν)Γ(ν)

∫ t∗

0
(t∗ − ξ)ν−1Q4(ξ, S , I,T,R)dξ

Now discretized the equations on t∗p+1 such that:

S p+1 = S 0 +
1 − ν
AB(ν)

Q1(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)Γ(ν)

∫ t∗p+1

0
(t∗p+1 − ξ)

ν−1Q1(ξ, S , I,T,R)dξ

I p+1 = I0 +
1 − ν
AB(ν)

Q2(t∗p+1, S
,I p,T p,Rp)

+
ν

AB(ν)Γ(ν)

∫ t∗p+1

0
(t∗p+1 − ξ)

ν−1Q2(ξ, S , I,T,R)dξ

T p+1 = T 0 +
1 − ν
AB(ν)

Q3(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)Γ(ν)

∫ t∗p+1

0
(t∗p+1 − ξ)

ν−1Q3(ξ, S , I,T,R)dξ

Rp+1 = R0 +
1 − ν
AB(ν)

Q4(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)Γ(ν)

∫ t∗p+1

0
(t∗ − ξ)ν−1Q4(ξ, S , I,T,R)dξ
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we get

S p+1 = S 0 +
1 − ν
AB(ν)

Q1(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)

p∑
k=0

[
hνQ1(t∗k , S

p, I p,Rp)
Γ(ν + 2)

((p + 1 − k)ν(p − k + 2 + ν)

−(p − k)ν(p − k + 2 + 2ν))
]

−
ν

AB(ν)

p∑
k=0

[
hνQ1(t∗k−1, S

p−1, I p−1,T p−1,Rp−1)
Γ(ν + 2)

(
(p + 1 − k)ν+1

−(p − k)ν(p − k + 1 + ν))
]

I p+1 = I0 +
1 − ν
AB(ν)

Q2(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)

p∑
k=0

[
hνQ2(t∗k , S

p, I p,Rp)
Γ(ν + 2)

((p + 1 − k)ν(p − k + 2 + ν)

−(p − k)ν(p − k + 2 + 2ν))
]

−
ν

AB(ν)

p∑
k=0

[
hνQ2(t∗k−1, S

p−1, I p−1,T p−1,Rp−1)
Γ(ν + 2)

(
(p + 1 − k)ν+1

−(p − k)ν(p − k + 1 + ν))
]

T p+1 = T 0 +
1 − ν
AB(ν)

Q3(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)

p∑
k=0

[
hνQ3(t∗k , S

p, I p,Rp)
Γ(ν + 2)

((p + 1 − k)ν(p − k + 2 + ν)

−(p − k)ν(p − k + 2 + 2ν))
]

−
ν

AB(ν)

p∑
k=0

[
hνQ3(t∗k−1, S

p−1, I p−1,T p−1,Rp−1)
Γ(ν + 2)

(
(p + 1 − k)ν+1

−(p − k)ν(p − k + 1 + ν))
]

Rp+1 = R0 +
1 − ν
AB(ν)

Q4(t∗p+1, S
p, I p,T p,Rp)

+
ν

AB(ν)

p∑
k=0

[
hνQ4(t∗k , S

p, I p,Rp)
Γ(ν + 2)

((p + 1 − k)ν(p − k + 2 + ν)

−(p − k)ν(p − k + 2 + 2ν))
]

−
ν

AB(ν)

p∑
k=0

[
hνQ4(t∗k−1, S

p−1, I p−1,T p−1,Rp−1)
Γ(ν + 2)

(
(p + 1 − k)ν+1

−(p − k)ν(p − k + 1 + ν))
]
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7. Numerical and quantitative representations

In his portion, we will elaborate the numerical graphs of the state variables in the underlying model,
with the help of proposed method. The simulated graphs are plotted against the disease free and
endemic equilibrium points. The set of parametric values for both the fixed points are mentioned as,
For disease free: β1 = 1.00093, β2 = 1.0031, σ = 0.9, P = 0.04, λ = 0.5, w = 0.8, ν = 0.5, K = 0.012.
For endemic: β1 = 2.00093, β2 = 2.0031, σ = 0.9, P = 0.04, λ = 0.5, w = 0.8, ν = 0.5, K = 0.012.

It is observed that all the parametric values meet the criteria of the required stated of equilibrium.
Figure 1 demonstrates the path followed by the different graphs by the susceptible individuals. Four
graphs are sketched against the different values of fractional order parameter ν, it is noticeable that
each graph converges towards true fixed point of the diarrhea model. The basic difference between
these graphs is that, they posses the different rate of convergence to attain the steady state. Similarly,
the graphs in Figures 2–4 reveal the convergence towards the equilibrium points with different rate of
convergence.

t
0 5 10 15 20 25 30 35 40 45 50

S
(t

)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Proposed Method

ν=1.0
ν=0.95
ν=0.90
ν=0.85

Figure 1. Numerical simulations of S (t) at DFE for various values of ν.

t
0 5 10 15 20 25 30 35 40 45 50

I(
t)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
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Figure 2. Numerical simulations of I(t) at DFE for various values of ν.
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t
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Figure 3. Numerical simulations of R(t) at DFE for various values of ν.
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Figure 4. Numerical simulations of T (t) at DFE for various values of ν.
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Figure 5. Numerical simulations of S (t) at EE for various values of ν.
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Figure 6. Numerical simulations of I(t) at EE for various values of ν.
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Figure 7. Numerical simulations of R(t) at EE for various values of ν.
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Figure 8. Numerical simulations of T (t) at EE for various values of ν.
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Moreover, the Figures 5–7 explain the graphs of susceptible, infected, treated and recovered
individuals at endemic equilibrium point. Four values of fractional order parameters are chosen to draw
the graphs as shown in the figures. It is clear that every graph in any of the figure attains the steady
state value by following a specific trajectory depending upon the value of ν. The rate of convergence
has a direct relation with the fractional parameter ν i.e., the greater the value of ν, faster the rate of
convergence and vice versa.

8. Conclusions

In this work, a classical contagious diarrhea model is converted to the fractional order diarrhea
model. For the conversion, Atangana Baleanu fractional differential operators in Caputo-sense are
applied. After modification, the extended model is extended model is solved by using the method
of Mittag-Leffler Kernel. But, before solving the underlying model, the existence and uniqueness of
the solution is established. Computer aided numerical graphs are plotted to study the behavior of the
proposed method. All the graphs exhibit the convergence towards the exact steady state with a specific
rate of convergence depending upon the value ν. The rate of convergence is directly proportional to the
value of ν, which is the order of the fractional derivative. It is proved that the disease free and endemic
steady states are locally and globally stable. Furthermore, the role of basic reproduction number in
disease dynamics and stability of the equilibrium states is investigated and it is concluded that the
equilibrium points are locally and globally stable according to the values of R0. If the value of R0 is
less than one local and global stability is attained and similar for endemic state. As a future perspective
this work may be applied to modify and solve the various nonlinear systems.
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