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1. Introduction

Almost all systems are affected by noise and possess certain random characteristics. Therefore,
it is reasonable and necessary to use random systems to model actual systems. When modeling or
optimizing a stochastic system, due to the complexity of the internal structure and the uncertainty of
the external environment, system parameters are unknown. It is necessary to use theoretical tools to
estimate the system parameters. In the last few decades, some authors have studied the parameter
estimation problem for stochastic models driven by Brownian motion [2, 9, 18]. For example, Ding
et al. [4] implemented a least squares algorithm for parameter estimation for stochastic dynamical
systems with ARMA noise using the model equivalence. Ji et al. [8] investigated the use of a
hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse
response systems. Shen et al. [21] analyzed parameter estimation for the discretely observed Vasicek
model with small fractional Lévy noise. Wang et al. [22] developed a recursive parameter estimation
algorithm for multivariate output-error systems. Wei and Shu [23] studied the existence, consistency
and asymptotic normality of the maximum likelihood estimator for the nonlinear stochastic differential
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equation. Wei [25] used a least squares method to obtain the estimators of a stochastic Lotka-Volterra
model driven by small α-stable noises and discussed the consistency and asymptotic distribution
of the estimators. Long memory processes have been widely applied in various fields, such as
finance, hydrology and network traffic analysis. The fractional Brownian motion, which is a suitable
generalization of Brownian motion, is one of the simplest stochastic processes exhibiting long-range
dependence. When a long-memory model is used to describe some phenomena, it is important to
identify the parameters in the model. Therefore, some authors investigated the parameter estimation
problem for stochastic models driven by fractional Brownian motion [10, 16, 17, 26]. For example,
Dai et al. [3] derived the Girsanov formula for the stochastic differential equation driven by fractional
Brownian motion and used maximum likelihood estimation to estimate the parameters. Hu et al. [6]
discussed the strong consistency of the least squares estimator for the fractional stochastic differential
system. Prakasa Rao [19] studied parameter estimation for models governed by a stochastic differential
equation driven by mixed fractional Brownian motion with Gaussian random effects based on discrete
observations.

When controlling a system and due to some reasons, the state of a system cannot be directly obtained
or the cost of obtaining the system state is high, it is necessary to estimate the state of the system by
using some algorithms. In the last few decades, some authors have investigated the state estimation
problem for stochastic systems [1, 5, 11, 12]. When parameters and state are unknown simultaneously,
it is necessary to combine the use of theory and algorithms to estimate the parameters and state. For
example, for a system that is observed partially, Imani and Braga-Neto [7] presented a framework
for the simultaneous estimation of the state and parameters of partially observed Boolean dynamical
systems. Onsy et al. [14] studied the parameter estimation problem for the Ornstein-Uhlenbeck process
with long-memory noise. Rathinam and Yu [20] discussed state and parameter estimation from the
perspective of exact partial state observation in stochastic reaction networks. Wei [24] analyzed state
and parameter estimation for nonlinear stochastic systems by using extended Kalman filtering.

Although the parameter estimation problem for stochastic differential equations has been studied
by many authors, there is minimal literature on parameter estimation for partially observed stochastic
differential equations driven by fractional Brownian motion. In this paper, we investigate this topic. We
give the state estimation equation and obtain the parameter estimator. We prove the strong consistency
and asymptotic normality of the maximum likelihood estimator by applying the strong law of large
numbers for continuous martingales and the central limit theorem for stochastic integrals with respect
to Gaussian martingales.

The paper is organized as follows. In Section 2, we give some assumptions and definitions and
derive the state estimation equation and maximum likelihood estimator. In Section 3, we derive the
strong consistency and asymptotic normality of the estimator. In Section 4, an example is provided.
The conclusion is given in Section 5.

2. Problem formulation and preliminaries

Let (Ω, F,P) be a basic probability space equipped with a right continuous and increasing family of
σ-algebras {Ft}t≥0.

Here, we consider the following partially observed stochastic differential equations driven by
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fractional Brownian motion: 
dYt =θ f (Xt)dt + g(Xt)dWH

t

dXt =m(Xt)dt + n(Xt)dVt, t ∈ [0,T ],
Y0 =ξ, X0 = η,

(2.1)

where WH,H ∈ ( 1
2 , 1) represents the fractional Brownian motion, V denotes standard Brownian motion

independent of WH 0 and θ is an unknown parameter to be estimated on the observation {Yt, 0 ≤ t ≤ T }.
We assume that the conditional distribution of ξ and η is some fixed π0.

Firstly, we introduce some assumptions below.

Assumption 1. | f (x)| + |g(x)| ≤ K(1 + |X|) for all t ∈ [0,T ] where K > 0 is constant.

Assumption 2. | f (x) − f (y)| + |g(x) − g(y)| ≤ K1(|x − y|) for all t ∈ [0,T ] where K1 > 0 is constant.

Assumption 3. |m(x)| + |n(x)| ≤ K2(1 + |X|) for all t ∈ [0,T ] where K2 > 0 is constant.

Assumption 4. |m(x) − m(y)| + |n(x) − n(y)| ≤ K3(|x − y|) for all t ∈ [0,T ] where K3 > 0 is constant.

Remark 1. Assumptions 1 and 3 are the linear growth condition and Assumptions 2 and 4 are the
Lipschitz condition. From Mao [13], it can be confirmed that the stochastic differential equation (2.1)
has a unique solution.

Let Ω = C([0,T ];R2) be the space of continuous functions from [0,T ] into R2. Consider the
canonical process (X,W∗) = (Xt,W∗

t , t ∈ [0,T ]) on Ω where (Xt,W∗
t )(x, y) = (xt, yt) for any (x, y) ∈ Ω.

The probability P̃ denotes the unique probability measure on Ω such that defining the variable ξ by
ξ = W∗

0 and W̃ = (W̃t), t ∈ [0,T ] by W̃t = W∗
t −W∗

0 , t ∈ [0,T ], the pair (X, ξ) is independent of W̃ and
the process W̃ is fractional Brownian motion with the Hurst parameter H. The canonical filtration on
Ω is (Ft, t ∈ [0,T ]) where Ft = σ{(Xs,W∗

s ), 0 ≤ s ≤ t} ∨ N with N denoting the set of null sets of
(Ω, P̃).

Define the function a(θ, x) on [0,T ] for all continuous functions x = (xt, t ∈ [0,T ]) by

a(θ, x)(t) =
θ f (xt)
g(xt)

, t ∈ [0,T ]). (2.2)

Let kt
a(θ,x) = (kt

a(θ,x)).
Define the processes N = (Nt, t ∈ [0,T ]) and < N >= (< N >t, t ∈ [0,T ]) as follows:

Nt := Na(θ,X)
t , < N >t:=< Na(θ,X) >t . (2.3)

Notice that Nt and < N >t depend only on the values of X(t) = (Xs, 0 ≤ s ≤ t).
Let

< N,N∗ >t:=< Na(θ,X),N∗ >t=

∫ t

0
kt
∗(s)a(θ, X)(s)ds, t ∈ [0,T ], (2.4)

and
bt(θ, X) := ba(θ,X)

t =
d < N,N∗ >t

d < N∗ >t
, t ∈ [0,T ], (2.5)

where b̃t(X) := bt(θ,X)
θ

.

AIMS Mathematics Volume 7, Issue 7, 12952–12961.



12955

Define the processes

Ñt(θ, x) =

∫ t

0
kt

a(θ,x)dW̃H
s , < Ñ >t (θ, x) :=

∫ t

0
a(θ, x)(s)kt

h(s)ds, t ∈ [0,T ], (2.6)

where Ñt(θ, x) is a Gaussian martingale under P̃.
Let

Λt(θ, x) = exp{Ñt(θ, x) −
1
2
< Ñ >t (θ, x)}, t ∈ [0,T ], (2.7)

and
Λt(θ) = Λt(θ, X). (2.8)

Let P = ΛT (θ)̃P, Yt = σ({Ys, 0 ≤ s ≤ t}), t ∈ [0,T ], the optimal filter πt(φ) = E[φ(Xt)|Yt] and the
unnormalized filter σt(φ) = Ẽ[φ(Xt)Λt|Yt], t ∈ [0,T ].

Then, for all t ∈ [0,T ], it can be checked that

πt(φ) =
σt(φ)
σt(1)

. (2.9)

Define

Zt =

∫ t

0
kt

a(θ,X)(s)g−1(Xs)dYs, t ∈ [0,T ], (2.10)

and

Z∗t =

∫ t

0
kt
∗(s)g−1(Xs)dYs, t ∈ [0,T ]. (2.11)

Thus, it can be checked that the processes Z and Z∗ are semimartingales with the following
decomposition:

Zt =< N >t +Nt, t ∈ [0,T ], (2.12)

and
Z∗t =< N,N∗ >t +N∗t , t ∈ [0,T ]. (2.13)

Then, we have

Zt =

∫ t

0
b2

s(θ, X)d < N∗ >s +

∫ t

0
bs(θ, X)dN∗s , t ∈ [0,T ], (2.14)

and

Z∗t =

∫ t

0
bs(θ, X)d < N∗ >s +N∗t , t ∈ [0,T ]. (2.15)

Thus, we obtain

Zt =

∫ t

0
bs(θ, X)dZ∗t , t ∈ [0,T ]. (2.16)

Let

νt = Z∗t −
∫ t

0
πs(b)d < N∗ >s, t ∈ [0,T ], (2.17)

which plays the role of the innovation process in the usual situation where the noise is Brownian
motions.
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Recall the notation πs(b) = E[bs(θ, X)|Ys], 0 ≤ s ≤ t.
The particular case of an unnormalized filter is

Λ̃t(θ) = σt(1) = Ẽ[Λt|Yt], t ∈ [0,T ]. (2.18)

Then, we have

Λ̃T (θ,Yt) = exp{θ
∫ T

0
πs(̃b)dZ∗s −

θ2

2

∫ T

0
π2

s (̃b)d < N∗ >s}. (2.19)

Therefore, the maximum likelihood estimator of θ is

θ̂T =

∫ T

0
πs(̃b)dZ∗s∫ T

0
π2

s (̃b)d < N∗ >s

. (2.20)

In the next section, we shall prove the strong consistency and derive the asymptotic normality of
the estimator.

3. Main results and proofs

In the following theorem, we prove the strong consistency of the maximum likelihood estimator.

Theorem 1. Under the Assumptions 1–4, when T → ∞, θ̂T is a strongly consistent estimator of θ,
namely

θ̂T
a.s.
→ θ.

Proof. Note that
dZ∗t = πt(b)d < N∗ >t +dνt. (3.1)

It is known that ν is a continuous Gaussian martingale on (Yt,P) such that < ν >=< N∗ >.
Then, we have

θ̂T =

∫ T

0
πs(̃b)dZ∗s∫ T

0
π2

s (̃b)d < N∗ >s

= θ +

∫ T

0
πs(̃b)dνs∫ T

0
π2

s (̃b)d < N∗ >s

, (3.2)

which means that

θ̂T − θ =

∫ T

0
πs(̃b)dνs∫ T

0
π2

s (̃b)d < N∗ >s

. (3.3)

By the strong law of large numbers for continuous martingales, we have∫ T

0
πs(̃b)dνs∫ T

0
π2

s (̃b)d < N∗ >s

a.s.
→ 0. (3.4)

Therefore, we obtain
θ̂T

a.s.
→ θ.

The proof is complete. �
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Remark 2. According to Assumptions 1–4, we could also obtain that

lim sup
T

A
1
2
T |̂θT − θ|

(2 log log AT )
1
2

= 1, a.s.

where AT =
∫ T

0
π2

s (̃b)d < N∗ >s.

In the following theorem, the asymptotic normality of the estimator is proved.

Theorem 2. Under the Assumptions 1–4, when T → ∞,√∫ T

0
π2

s (̃b)d < N∗ >s(̂θT − θ)
d
→ N(0, 1).

Proof. √∫ T

0
π2

s (̃b)d < N∗ >s(̂θT − θ) =

∫ T

0
πs(̃b)dνs√∫ T

0
π2

s (̃b)d < N∗ >s

.

By the central limit theorem for stochastic integrals with respect to Gaussian martingales, it can be
checked that ∫ T

0
πs(̃b)dνs√∫ T

0
π2

s (̃b)d < N∗ >s

d
→ N(0, 1).

Therefore, √∫ T

0
π2

s (̃b)d < N∗ >s(̂θT − θ)
d
→ N(0, 1). (3.5)

The proof is complete. �

4. Example

Consider the following stochastic system with fractional Brownian motion observation noise
dYt =θXtdt + dWH

t

dXt = − Xtdt + dVt, t ∈ [0,T ],
Y0 =0, X0 = 0,

(4.1)

where WH,H ∈ ( 1
2 , 1) represents the fractional Brownian motion, V denotes standard Brownian motion

independent of WH and θ < 0 is an unknown parameter to be estimated on the observation {Yt, 0 ≤ t ≤
T }.

It is easy to check that the system satisfies the conditions for Assumptions 1–4 mentioned in
Section 2.

Let X̂t = E(Xt|Yt) and λt = E([Xt − X̂t]2|Yt).
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Then, we obtain dX̂t = − X̂tdt + θλtdνt, t ∈ [0,T ]

X̂0 =0,
(4.2)

and dλt =dt − 2λtdt − θ2λ2
t d < N∗ >t

λ0 =0.
(4.3)

Thus, when t → ∞, we have

λt →
−1 +

√
1 + θ2

θ2 . (4.4)

Let λθ = −1+
√

1+θ2

θ2 .
When the system has reached the steady state, it follows thatdX̂t = − X̂tdt + θλθdνt, t ∈ [0,T ]

X̂0 =0,
(4.5)

Then, we obtain

X̂t = θλθ

∫ t

0
exp{
√

1 + θ2(t − s)}dYs. (4.6)

It is easy to check that the maximum likelihood estimator satisfies the asymptotic properties
mentioned in Theorems 1 and 2.

Now we will describe the numerical simulations of the estimator derived in this study. The fractional
Brownian motion was simulated by using the Paxson’s method [15]. Let H = 0.75. In Table 1, T is
increasing from 10000 to 50000.

Table 1. Least squares estimator simulation results for θ.

True Average Absolute Error

θ Size T θ̂T |θ − θ̂T |

1

10000 1.0531 0.0531

30000 1.0082 0.0082

50000 1.0007 0.0007

2

10000 2.0439 0.0439

30000 2.0063 0.0063

50000 2.0002 0.0002
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5. Discussion

There exist several stochastic processes that are self-similar and exhibiting long-range dependence
but fractional Brownian motion seems to be one of the simplest. Moreover, when controlling a
system, due to some reasons, the state of the system cannot be directly obtained. Therefore, it is
of great importance to consider the parameter estimation problem for partially observed stochastic
differential equations driven by fractional Brownian motion. Here, we studied the parameter and state
estimation problem in the meantime and discussed the strong consistency and asymptotic normality of
the maximum likelihood estimator.

6. Conclusions

The aim of this study was to investigate the parameter estimation problem for partially observed
stochastic differential equations driven by fractional Brownian motion. The state estimation equation
has been given and the parameter estimator has been obtained. The strong consistency and asymptotic
normality of the maximum likelihood estimator have been derived by applying the strong law of large
numbers for continuous martingales and the central limit theorem for stochastic integrals with respect
to Gaussian martingales. Further research will include investigating the parameter estimation problem
for stochastic differential equations driven by Lévy noises.
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Vasicek model with small fractional Lévy noise, Acta Math. Sin., 36 (2020), 443–461.
https://doi.org/10.1007/s10114-020-9121-y

22. Y. Wang, F. Ding, M. Wu, Recursive parameter estimation algorithm for multivariate output-error
systems, J. Franklin Inst., 355 (2018), 5163–5181. https://doi.org/10.1016/j.jfranklin.2018.04.013

23. C. Wei, H. S. Shu, Maximum likelihood estimation for the drift parameter in diffusion processes,
Stochastics, 88 (2016), 699–710. https://doi.org/10.1080/17442508.2015.1124879

24. C. Wei, Estimation for incomplete information stochastic systems from discrete observations, Adv.
Differ. Equ., 227 (2019), 1–16. https://doi.org/10.1186/s13662-019-2169-2

25. C. Wei, Y. Wei, Y. Y. Zhou, Least squares estimation for discretely observed stochastic Lotka-
Volterra model driven by small α-stable noises, Discrete Dyn. Nat. Soc., 2020 (2020), 1–11.
https://doi.org/10.1155/2020/8837689

26. X. Yan, D. Tong, Q. Chen, W. N. Zhou, Y. H. Xu, Adaptive state estimation of stochastic delayed
neural networks with fractional Brownian motion, Neural Process. Lett., 50 (2019), 2007–2020.
https://doi.org/10.1007/s11063-018-9960-z

© 2022 Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 7, 12952–12961.

http://dx.doi.org/https://doi.org/10.1080/07362994.2018.1462714
http://dx.doi.org/https://doi.org/10.1007/s42519-020-00138-z
http://dx.doi.org/https://doi.org/10.1007/s42519-020-00138-z
http://dx.doi.org/https://doi.org/10.1080/07362994.2021.1902352
http://dx.doi.org/https://doi.org/10.1063/5.0032539
http://dx.doi.org/https://doi.org/10.1007/s10114-020-9121-y
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2018.04.013
http://dx.doi.org/https://doi.org/10.1080/17442508.2015.1124879
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2169-2
http://dx.doi.org/https://doi.org/10.1155/2020/8837689
http://dx.doi.org/https://doi.org/10.1007/s11063-018-9960-z
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation and preliminaries
	Main results and proofs
	Example
	Discussion
	Conclusions

