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Abstract: Since the Marcus-Wyse (MW-, for brevity) topological spaces play important roles in
the fields of pure and applied topology (see Remark 2.2), the paper initially proves that the MW-
topological space satisfies the semi-T3-separation axiom. To do this work more efficiently, we first
propose several techniques discriminating between the semi-openness or the semi-closedness of a set
in the MW-topological space. Using this approach, we suggest the condition for simple MW-paths to
be semi-closed, which confirms that while every MW-path P with | P | ≥ 2 is semi-open, it may not be
semi-closed. Besides, for each point p ∈ Z2 the smallest open neighborhood of the point p is proved
to be a regular open set so that it is semi-closed. Note that the MW-topological space is proved to
satisfy the semi-T3-separation axiom, i.e., it is proved to be a semi-T3-space so that we can confirm
that it also satisfies an s-T3-separation axiom. Finally, we prove that the semi-T3-separation axiom is a
semi-topological property.
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1. Introduction

In relation to the study of semi-separation axioms, many concepts were established such as a
regular open set [40], a semi-open set [29], a semi-regular set [11, 35], a semi-closed set [11, 35], an
s-regular set [31,32], and so on. Furthermore, based on these notions, various types of mappings were
developed such as a semi-continuous mapping [37], an irresolute map [9], a pre-semi-open
mapping [9], a semi-homeomorphism (a bijection such that the images of semi-open sets are
semi-open (or pre-semi-open mapping) and inverses of semi-open sets are semi-open (or irresolute
mapping) [9] and so forth. Since both separation axioms and semi-separation axioms play important
roles in modern mathematics including pure and applied topology such as digital topology,
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computational topology, and so on, many works dealing with these axioms include the
papers [3, 4, 6–12, 14, 17, 23, 26, 29–32, 35–37]. In detail, the semi-Ti-separation axioms, where
i = 0, 1

2 , 1, 2, etc (see [6, 29, 31]), are obtained from the definitions of the usual separation axioms Ti

after replacing open sets by semi-open ones. Hence the axiom Ti obviously implies the axiom
semi-Ti [10] but the converse does not hold. Moreover, in case i ≤ j, the axiom semi-T j implies the
axiom semi-Ti, and the converse does not hold [6]. As usual, a property is called a semi-topological
property if the property is preserved by semi-homeomorphisms [9, 34]. Then each of the
semi-Ti-axioms, i ∈ {0, 1

2 , 1, 2}, is proved to be the semi-topological property [31]. Besides, the typical
regularity, normality, complete normality, T3, T4, T5, paracompactness, metrizability are not
semi-topological properties [9].

The paper [41] introduced a topology on Z2, called the Marcus-Wyse topology, which can be used
in applied topology as well as computer sciences. After that, many works dealt with the structure and
used it in applied sciences (see Remark 2.2). Since we will often use the name “ Marcus-Wyse” in this
paper, hereafter we will use the terminology “MW-” instead of “ Marcus-Wyse”, if there is no danger
of ambiguity. Furthermore, we use the notation “ ⊂” (resp. | X |) to denote a ‘proper subset or equal’
(resp. the cardinality of the given set X). Besides, Zo is used for indicating the set of odd integers. In
addition, the notation “ :=” will be used to introduce a new term.

The aim of the present paper is initially to prove that the MW-topological space satisfies the semi-
T3-separation axiom. In detail, the following topics will be treated.
• Study of various properties of the union and intersection of semi-closed and semi-open sets in the
MW-topological space.
• Establishment of some techniques of discriminating between semi-openness and semi-closedness of
subsets of the MW-topological space.
• Investigation of the MW-topological space with respect to the semi-T3-separation axiom.
• Examination of the semi-topological property of the semi-T3-separation axiom.

This paper is organized as follows: Section 2 provides some basic notions associated with the
MW-topology. Section 3 studies various properties of semi-closed and semi-open sets in the MW-
topological space. Section 4 studies both semi-openness and semi-closedness of some sets in the
MW-topological space. Section 5 investigates some properties relating to the study of the semi-T3-
separation axiom of MW-topological spaces. Section 6 proves a semi-topological property of the
semi-T3-separation axiom. Section 7 concludes the paper with summary and a further work.

2. Preliminaries

For a nonempty binary symmetric relation set (X, π), we say that X is π-connected [25] if for any
two elements x and y of X there is a finite sequence (xi)i∈[0,l]Z of elements in X such that x = x0, y = xl

and (x j, x j+1) ∈ π for j ∈ [0, l − 1]Z, where for distinct integers a, b ∈ Z [a, b]Z := {x ∈ Z | a ≤
x ≤ b}. More precisely, a topological space (X,T ) is called an Alexandroff space for each x ∈ X,
the intersection of all open sets of X containing x (denoted by S NT (x)) is T -open in X [1]. Let us
recall some properties of MW-topological spaces associated with the semi-separation axioms. As an
Alexandroff topological space [1, 2], the MW-topological space, denoted by (Z2, γ), was established
and many works investigated various properties of it including the papers [16, 18, 21, 23, 24, 41].

In relation to the study of digital images in Z2, let us recall some basic notations named by the
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digital k-neighborhood of a given point p ∈ Z2, as follows:
For a point p := (x, y) ∈ Z2 we follow the notation [38].

N4(p) := {(x ± 1, y), p, (x, y ± 1)}. (2.1)

called the 4-neighborhood of a given point p := (x, y) ∈ Z2.
Motivated by the 4-adjacency of Z2 of (2.1), the k(m, n)-adjacency relations of Zn were established,

as follows (see [15] in detail). The papers [15, 17, 21] initially developed some k-adjacency relations
for high dimensional digital images (X, k), X ⊂ Zn (see also (2.2) below). More precisely, the digital
k-adjacency relations (or digital k-connectivity) for X ⊂ Zn, n ∈ N, were initially developed in [17]
(see also [15, 16, 25]), as follows:

For a natural number t, 1 ≤ t ≤ n, the distinct points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈
Zn are k(t, n)-adjacent if at most t of their coordinates differ by ±1 and the others coincide.

According to this statement, the k(t, n)-adjacency relations of Zn, n ∈ N, were formulated [17] (see
also [21, 28]) as follows:

k := k(t, n) =

t∑
i=1

2iCn
i ,where Cn

i :=
n!

(n − i)! i!
. (2.2)

For instance, the following are obtained [15, 21]:

(n, t, k) ∈


(1, 1, 2),
(2, 1, 4), (2, 2, 8),
(3, 1, 6), (3, 2, 18), (3, 3, 26); and
(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80).


Using the k-adjacency relations of Zn in (2.2), n ∈ N, we will call the pair (X, k) a digital image on

Zn, where X ⊂ Zn. Besides, these k-adjacency relations can be essential to studying digital products
with normal adjacencies [15] and pseudo-normal adjacencies [27] and calculating digital
k-fundamental groups of digital products [20, 21].

Let us now recall basic concepts on the MW-topology. The MW-topology on Z2, denoted by (Z2, γ),
is induced by the set {U(p) | p ∈ Z2} in (2.3) below as a base [41], where for each point p = (x, y) ∈ Z2

U(p) :=

N4(p) if x + y is even, and
{p} : else.

 (2.3)

In relation to the further statement of a point in Z2, in the paper we call a point p = (x1, x2) double even
if x1 + x2 is an even number such that each xi is even, i ∈ {1, 2}; even if x1 + x2 is an even number such
that each xi is odd, i ∈ {1, 2}; and odd if x1 + x2 is an odd number [39].

In all subspaces of (Z2, γ) of Figures 1–5, the symbols ♦ and •mean a double even or even point and
an odd point, respectively. In view of (2.3), we can obviously obtain the following: Under (Z2, γ) the
singleton with either a double even point or an even point is a closed set. In addition, the singleton with
an odd point is an open set. Besides, for a subset X ⊂ Z2, the subspace induced by (Z2, γ) is obtained,
denoted by (X, γX) and called an MW-topological space. It is clear that (X, γX) is an Alexandroff space.
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In terms of this perspective, we clearly observe that the smallest (open) neighborhood of the point
p := (p1, p2) of Z2, denoted by S Nγ(p) ⊂ Z2, is the following [18]:

S Nγ(p) :=

{p} if p is an odd point
N4(p) if p is a double even or even point.

 (2.4)

Hereafter, in (X, γX), for a point p ∈ X we use the notation S Nγ(p) := S Nγ(p)∩X [18] for short. Using
the smallest open set of (2.4), the notion of MW-adjacency in (Z2, γ) is defined, as follows: For distinct
points p, q ∈ (Z2, γ), we say that p is MW-adjacent to q [16] if

p ∈ S Nγ(p) or q ∈ S Nγ(q)

In view of the properties of (2.1) and (2.4), we obviously obtain the following: Given the point
p := (p1, p2) of Z2, the closure of the singleton {p} is obtained and denoted by Clγ({p}) ⊂ Z2, as
follows [16]:

Clγ({p}) :=

{p} if p is a double even or even point,
N4(p) if p is an odd point.

 (2.5)

Hereinafter, when studying the MW-topological space, we will use the term ‘Cl’ for brevity instead
of Clγ if there is no danger of confusion.

Definition 2.1. [18] Let X := (X, γX) be an MW-topological space. Then we define the following:
(1) We say that an MW-path from x to y in X is a sequence (pi)i∈[0,l]Z ⊂ X, l ∈ N, in X such that p0 = x,
pl = y and each point pi is MW-adjacent to pi+1 and i ∈ [0, l − 1]Z. The number l is the length of this
path. In particular, a singleton in (Z2, γ) is assumed to be an MW-path.
(2) Distinct points x, y ∈ X are called MW-path connected (or MW-connected) if there is a finite
MW-path (p0, p1, ..., pm) on X with p0 = x and pm = y. For arbitrary points x, y ∈ X, if there is an
MW-path (pi)i∈[0,m]Z ⊂ X such that p0 = x and pm = y, then we say that X is MW-path connected (or
MW-connected).
(3) A simple MW-path in X means a finite MW-path (pi)i∈[0,m]Z in X such that the points pi and p j are
MW-adjacent if and only if | i − j | = 1.

It is well known that each of the subspaces of (Z2, γ) is a semi-T 1
2

space [5] and further, they are
Alexandroff spaces with the axiom T0.

When studying digital objects X in Z2, the properties of (2.4) and (2.5) enable us to get the following
utilities of the MW-topological structure of X.

Remark 2.2. (Utilities of the MW-topological structure)
(1) When studying a self-homeomorphism of (Z2, γ), we should consider the following map

h : (Z2, γ)→ (Z2, γ) defined by:

for each point x := (x1, x2) ∈ Z2,

h(x) = (x1 + t1, x2 + t2),
where ti ∈ Zo for each i ∈ [1, 2]Z, or

h(x) = (x1 + 2m1, x2 + 2m2),
for some mi ∈ Z, i ∈ M ⊂ [1, 2]Z.


(2.6)
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Since the modern electronic devices are usually operated on the finite digital planes with more than ten
million pixels to support the high-level display resolution, the mapping of (2.6) can be very admissible.
At the moment, note that the following map g cannot be a homeomorphism, where

g : (Z2, γ)→ (Z2, γ) defined by:

for each point x := (x1, x2) ∈ Z2,

g(x) = (x1 + t1, x2 + t2)
such that there is at least ti ∈ Zo, i ∈ M ( [1, 2]Z.


(2.7)

For instance, g : (Z2, γ) → (Z2, γ) defined by g(x1, x2) = (x1 + 2m1 + 1, x2 + 2m2),m1,m2 ∈ Z

cannot be a homeomorphism. Meanwhile, it is clear that the map h : (Z2, γ) → (Z2, γ) defined by
h(x1, x2) = (x1 + 2m1 + 1, x2 + 2m2 + 1) or (x1 + 2m1, x2 + 2m2), m1,m2 ∈ Z, is a homeomorphism.
(2) Since the MW-topological structure is one of the fundamental frames, motivated by this structure,
some more generalized topological structures on Zn can be established [19].
(3) Based on the MW-topological structure of Z2, we can obtain the digital 4-connectivity induced by
the given topological structure [18]. In detail, for distinct elements x, y ∈ (Z2, γ), they are
MW-adjacent if x ∈ S Nγ(y) or y ∈ S Nγ(x) [18]. Namely, the MW-adjacency is equivalent to the
4-adjacency of Z2 as in (2.2).
(4) When digitizing a set X in the 2-dimensional real space with respect to the MW-topological
structure, we can use some local rule in [21] to obtain its digitized set Dγ(X) ⊂ Z2 and finally use it in
the fields of mathematical morphology, rough set theory, digital geometry [21], and so on.

3. Techniques of discriminating between a semi-open and a semi-closed set

This section first recalls the notions of a semi-open and a semi-closed set. Namely, a subset A
of a topological space (X,T ) is said to be semi-open if there is an open set O in (X,T ) such that
O ⊂ A ⊂ Cl(O). Besides, we say that a subset B of a topological space (X,T ) is semi-closed if the
complement of B in X (or Bc) is semi-open in (X,T ). Then it turns out that a subset A of (X,T ) is
semi-open if and only if A ⊂ Cl(Int(A)) [29] and a subset B of (X,T ) is semi-closed if and only if
Int(Cl(B)) ⊂ B) [8]. Hence it is clear that an empty set both semi-open and semi-closed. Besides,
“open” (resp. “closed”) is stronger than “semi-open” (resp. “semi-closed”). The notions of semi-
openness and semi-closedness enable us to get the following [11, 29, 35]:
(?1) Given two semi-open sets, the intersection of them need not be semi-open.
(?2) Given two semi-closed sets, the union of them need not be semi-closed.
(?3) Given two semi-open sets, the union of them is semi-open.
(?4) Given two semi-closed sets, the intersection of them is semi-closed.

Remark 3.1. In (Z2, γ), we obtain the following:
(1) The singleton {p} is both semi-closed and semi-open, where p is an odd point. Namely, Z2 \ {p} is
both semi-closed and semi-open, where p is an odd point.
(2) The singleton {q} is not semi-open but semi-closed, where q is a double even or even point. Namely,
Z2 \ {q} is semi-open, where q is a double even or even point.
(3) For distinct elements a, b ∈ Z, the Cartesian product [a, b]Z × {c}, where c ∈ Z, e.g., [a, b]Z × {0}, is
both semi-closed and semi-open.
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Proof. The proofs of (1) and (2) are straightforward.
(3) Regardless of the choice of a, b, and c in Z, any set X := [a, b]Z × {c} can be assumed as a finite
sequence such as X := (x1, x2, · · · , xn) in (Z2, γ) such that {xi} is an open set and {xi+1} is a closed set
(or {xi} is a closed set and {xi+1} is an open set) in (Z2, γ), i ∈ [1, n1]Z. Hence X is obviously semi-open.
Besides, Z2 \ X is also semi-open so that X is also semi-closed in (Z2, γ). �

Unlike the property of (?2) above, we obtain the following property of the union of two semi-closed
sets in (Z2, γ).

Theorem 3.2. In a topological space (X,T ), assume two semi-closed sets Bi, i ∈ {1, 2}, such that
Cl(B1) ∩Cl(B2) = ∅. Then the union of them is semi-closed.

Proof. It is clear that the following properties hold [33]Int(Cl(B1 ∪ B2)) = Int(Cl(B1) ∪Cl(B2)) and
Int(Cl(B1)) ∪ Int(Cl(B2)) ⊂ Int(Cl(B1) ∪Cl(B2)),

 (3.1)

Int(Cl(B1) ∪Cl(B2)) need not be a subset of Int(Cl(B1)) ∪ Int(Cl(B2)).

However, with the hypothesis, we now prove the identity

Int(Cl(B1) ∪Cl(B2)) = Int(Cl(B1)) ∪ Int(Cl(B2)). (3.2)

Namely, in case Cl(B1) ∩Cl(B2) = ∅, in view of (3.1), we only need to prove the following:

Int(Cl(B1) ∪Cl(B2)) ⊂ Int(Cl(B1)) ∪ Int(Cl(B2)). (3.3)

To be precise, if x ∈ Int(Cl(B1) ∪Cl(B2)), then there is an open set U in (X,T ) such that

p ∈ U ⊂ Cl(B1) ∪Cl(B2). (3.4)

Owing to the given hypothesis, i.e.,
Cl(B1) ∩Cl(B2) = ∅, (3.5)

we have
U ⊂ Cl(B1) or U ⊂ Cl(B2). (3.6)

The former implies that p ∈ U ⊂ Int(Cl(B1)) and the latter supports p ∈ U ⊂ Int(Cl(B2)). Thus we
have

p ∈ Int(Cl(B1)) ∪ Int(Cl(B2)).

By (3.1) and (3.3), we have the identity of (3.2) so that we have

Int(Cl(B1 ∪ B2)) = Int(Cl(B1)) ∪ Int(Cl(B2)) ⊂ B2 ∪ B2,

which leads to the semi-closedness of B1 ∪ B2. �

Example 3.1. (1) Let us consider the two sets B1 and B2 in (Z2, γ), whereB1 := {b0 = (−2, 0), b1 = (−1, 0), b2 = (0,−1)}, and

B2 := {d0 = (2, 0), d1 = (1, 0), d2 = (0, 1)}.

 (3.7)

Note that each Bi, i ∈ {1, 2}, are not MW-paths. Even though each Bi, i ∈ {1, 2}, are semi-closed in
(Z2, γ), the union B1 ∪ B2 is not semi-closed in (Z2, γ) since the point p := (0, 0) has S Nγ(p) such that
S Nγ(p) ⊂ Cl(B1) ∪Cl(B2) (see Figure 1(a) and (b)) so that Int(Cl(B1 ∪ B2)) * B1 ∪ B2.
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Figure 1. Configuration of the non-semi-closedness of the set B1 ∪ B2 in (a) because the
point p := (0, 0)(< B1 ∪ B2) has the set S Nγ(p) ⊂ Cl(B1 ∪ B2) (see (b)). This means
Int(Cl(B1 ∪ B2)) * B1 ∪ B2, i.e., B1 ∪ B2 is not semi-closed in (Z2, γ).

Theorem 3.3. In (Z2, γ), assume a non-empty set B ⊂ Z2. B is semi-closed in (Z2, γ) if and only if
there are at least q ∈ N4(p) \ {p} such that q < B whenever p < B, where p is a double even or even
point.

Proof. (⇒) Let B(⊂ Z2) be semi-closed in (Z2, γ) and p < B, where p is a double even or even point.
By contrary, suppose that each q ∈ N4(p) \ {p} belong to B. Then there is S Nγ(p) in (Z2, γ) such that

S Nγ(p) = N4(p) ⊂ Int(Cl(B)),

because S Nγ(p) ⊂ Cl(B). Hence we have Int(Cl(B)) * B, since p < B (see Figure 2(a), (b)). Thus B is
not semi-closed, which invokes a contradiction to the hypothesis of the semi-closedness of B.
(⇐) In case Int(Cl(B)) = ∅, the proof is straightforward. Thus we may assume Int(Cl(B)) , ∅. To
prove Int(Cl(B)) ⊂ B, take an arbitrary element x ∈ Int(Cl(B)). Since there is S Nγ(x) such that
S Nγ(x) ⊂ Cl(B), we need to consider the following two cases:
(Case 1) Assume that x is an odd point. Owing to the inclusion S Nγ(x) ⊂ Cl(B), since we obtain

x ∈ Cl(B) and S Nγ(x) = {x} so that S Nγ(x) ∩ B = {x} ∩ B , ∅.

Hence it is clear that x ∈ B.
(Case 2) Assume that x is a double even or even point. Owing to the MW-topological structure and the
given hypothesis, based on the property

x ∈ Int(Cl(B))⇒ S Nγ(x) ⊂ Cl(B) (see above),

we now prove
S Nγ(x) ⊂ Cl(B)⇒ S Nγ(x) ⊂ B. (3.8)

Indeed, without the given condition, i.e.,there are at least q ∈ N4(p) \ {p} such that q < B,

whenever p < B,where p is a double even or even point,

 (3.9)
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note that the property of (3.8) does not hold. For instance, for a double even point p := (0, 0) in (Z2, γ),
assume B := {y | y ∈ N4(p) \ {p}}. Then it is obvious that while S Nγ(p) ⊂ Cl(B), S Nγ(p) * B because
p < B (see Figure 2(a), (b)).

However, using both the condition S Nγ(p) ⊂ Cl(B) and the given condition of (3.9), let us prove
the property of (3.8) with two cases according to the point x ∈ S Nγ(p). More precisely, depending on
the situation of the point x ∈ S Nγ(p), i.e., x is an odd point or double even or even point, we prove the
property of (3.8). For our purposes, we will equivalently represent the statement of (3.9) by using the
contraposition of it, as follows (see Figure 2(a), (b)):for all q ∈ N4(p) \ {p} we have q ∈ B, then p ∈ B,

where p is a double even or even point.

 (3.10)

This statement of (3.10) will be essentially used in the proof of (Case 2-2) below.
(Case 2-1) Consider the case in which p ∈ S Nγ(x) ⊂ Cl(B), where p is an odd point, i.e., p , x. Since
x is a double even or even point, we get

{p} = S Nγ(p) ⊂ S Nγ(x) ⊂ Cl(B). (3.11)

Using a method similar to the proof of the (Case 1) above, we clearly obtain p ∈ B.
(Case 2-2) Consider the case in which p ∈ S Nγ(x) ⊂ Cl(B), where p is a double even or even point,
i.e., p = x. Owing to the statement of (3.9) (or in particular (3.10)) and the proof of (Case 2-1) above,
since all of the odd points q ∈ S Nγ(p) \ {p} = N4(p) \ {p} belong to B, by (3.10), we have p ∈ B.
Based on the proofs of (Case 2-1) and (Case 2-2), we complete the proof of (3.8). �

(b)(a

(-1, 0)

(2, 2)

(0, -1)

(1, 0)

(0, 1)

(0, -1)

(-1, 0) (1, 0)

(0, 1)

p

Figure 2. Given the set B = {(−1, 0), (0,−1), (1, 0), (0, 1)} as in (Case 2) of the proof of
Theorem 3.3 (see (a)), we obtain S Nγ(p) ⊂ Int(Cl(B)) (see (b)) which leads Int(Cl(B)) * B
without the condition of (3.9). However, as in (Case 2-2), with the given condition of (3.9),
we obtain Int(Cl(B)) ⊂ B.

Let us further establish some techniques to examine if a given set in (Z2, γ) is semi-open or semi-
closed. In (Z2, γ), for a set B ⊂ Z2, we will take the following notation.

Bop := {x | x is an odd point in B}. (3.12)

Besides, owing to the topological structure of (Z2, γ), we obviously have the following:

AIMS Mathematics Volume 7, Issue 7, 12742–12759.



12750

Remark 3.4. In (Z2, γ), we have the following:
(1) For x, y ∈ Z2, x ∈ S Nγ(y) if and only if y ∈ Cl(x), i.e., y ∈ Clγ(x)(see the properties of (2.4)
and (2.5) in the present paper).
(2) If B is an open set in (Z2, γ), then there is an odd point x ∈ B (see the property of (2.3)).
(3) The set Bop of (3.12) is an open set in (Z2, γ).

Proof. (1) The proof is straightforward.
(2) Due to the topology (Z2, γ) (see (2.4)), the proof is completed.
(3) Based on the topological structure of (Z2, γ), the singleton {x} consisting of the odd point x ∈ Z2 is
equal to S Nγ(x). Hence the set Bop =

⋃
x∈Bop

{x} is an open set in (Z2, γ). �

Given a set X in (Z2, γ), to further examine if the set X is semi-open or semi-closed in (Z2, γ),
we now introduce the following two theorems that will be strongly used in discriminating between
semi-openness and semi-closedness of subsets of the MW-topological space.

Theorem 3.5. In (Z2, γ), a non-empty set B(⊂ Z2) is semi-open if and only if each x ∈ B, S Nγ(x)∩Bop ,

∅.

Before proving the assertion, if B = ∅, then the proof is straightforward.
Proof. (⇒) According to the choice of a point x ∈ B, we can consider the following two cases.
(Case 1) Assume that x(∈ B) is an odd point. From the hypothesis, we have x ∈ B ⊂ Cl(Int(B)) so that
we obtain

S Nγ(x) ∩ Int(B) , ∅. (3.13)

Since S Nγ(x) = {x}, we obtain x ∈ Int(B) and further, x ∈ Bop. Hence, owing to (3.13), we have
S Nγ(x) ∩ Bop , ∅.
(Case 2) Assume that x ∈ B is a double even or even point. Owing to the hypothesis, we obtain
x ∈ Cl(Int(B)) that leads to the following property as mentioned in (3.13).

S Nγ(x) ∩ Int(B) , ∅.

Since S Nγ(x)∩ Int(B) is a non-empty open set in (Z2, γ), by Remark 3.4(2), we now take an odd point
z in (Z2, γ) such that

z ∈ S Nγ(x) ∩ Int(B). (3.14)

By the properties of (3.14), since z ∈ Int(B) ⊂ B, we have z ∈ Bop (see Remark 3.4(2)) so that
z ∈ S Nγ(x) ∩ Bop , ∅. In addition, it is clear that the point z is indeed MW-adjacent to x.

(⇐) According to the choice of a point x ∈ B, we can consider the following two cases.
(Case 1) For an arbitrary point x ∈ B, assume that x is an odd point in (Z2, γ). Since {x} = S Nγ(x),
owing to the hypothesis of S Nγ(x)∩ Bop , ∅, we have x ∈ Bop, i.e., {x} ∩ Bop , ∅. Furthermore, owing
to the identity S Nγ(x) = {x}, by Remark 3.4(3), it is clear that

x ∈ Bop ⇒ {x} ⊂ Int(B)⇒ x ∈ Cl(Int(B)). (3.15)

(Case 2) For an arbitrary point x ∈ B, assume that x is a double even or even point in (Z2, γ). Owing
to the hypothesis, since S Nγ(x) ∩ Bop , ∅, by Remark 3.4(2) and (3), there is an odd point z in (Z2, γ)
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such that z ∈ S Nγ(x) ∩ Bop because S Nγ(x) ∩ Bop is an open set in (Z2, γ). Hence we get z ∈ S Nγ(x),
by Remark 3.4(1), we have

x ∈ Cl({z}) ⊂ Cl(Int(B))⇒ x ∈ Cl(Int(B)). (3.16)

Owing to both (3.15) and (3.16), we obtain B ⊂ Cl(Int(B)) which completes the proof. �
Owing to the notion of semi-closedness, using Theorem 3.5, we obtain the following:

Theorem 3.6. In (Z2, γ), B(⊂ Z2) is semi-closed if and only if each x ∈ Z2 \B, S Nγ(x)∩ (Z2 \B)op , ∅.

As examples for Theorems 3.5 and 3.6, see the cases referred to in Remark 3.1(1)–(3).
As special cases of a semi-open and a semi-closed set, we have the following concepts [11].

Definition 3.7. [40] In a topological space (X,T ), a subset A is said to be regular open (resp. regular
closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A)).

Theorem 3.8. In (Z2, γ), for any point p ∈ Z2, S Nγ(p) is not a regular closed set but a regular open
set, i.e., it is semi-closed.

Proof. We prove that each point p(∈ Z2) has the following property Int(Cl(S Nγ(p))) = S Nγ(p).
(Case 1) Assume that the point p is a double even or even point. Then we obtain that
Int(Cl(S Nγ(p))) = S Nγ(p) (see Figure 3(a) and (b)).
(Case 2) Assume that the point p is an odd point. For an arbitrary element x ∈ Int(Cl(S Nγ(p))), we
have S Nγ(x) in (Z2, γ) such that S Nγ(x) ⊂ Cl(S Nγ(p)), which implies that x ∈ S Nγ(p). Indeed, x = p
because S Nγ(p) = {p}. �

(b)(a)

p p

(c)

p

Figure 3. The process of explaining the regular openness of S Nγ(p) referred to in
Theorem 3.7, where p is a double even or even point. From the given S Nγ(p) (see (a) and
(Case 1) of the proof of Theorem 3.7), we obtain Cl(S Nγ(p))(see (b)) so that we can confirm
Int(Cl(S Nγ(p))) = S Nγ(p) (see (c)).

4. Some properties of semi-open and semi-closed sets of MW-paths

This section studies various properties of the semi-topological features of simple MW-paths, which
will play an important role in studying the semi-T3-separation axiom of the MW-topological space in
Section 6. Hereinafter, an MW-path is assumed to be a non-empty set.
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Lemma 4.1. Assume a simple MW-path P in (Z2, γ).
(1) P is semi-closed whenever | P | ≤ 6.
(2) P may not be semi-closed whenever | P | ≥ 7.

Proof. (1) According to the length of a simple MW-path, using Theorem 3.6, the proof is completed.
More precisely, assume a simple MW-path P with | P | ≤ 6. Then, for each x ∈ Z2 \ P, we have the
property S Nγ(x) ∩ (Z2 \ P)op , ∅, which implies the semi-closedness of P.
(2) In case of | P | = 7, based on Theorems 3.3 and 3.6, we can consider the following case (see
Figure 4(a)). Let us consider the simple MW-path P as in Figure 4(a), i.e., P := {ci | i ∈ [0, 6]Z} with
c0 = (0, 1), c1 = (−1, 1), c2 = (−1, 0), c3 = (−1,−1), c4 = (0,−1), c5 = (1,−1), c6 = (1, 0). Then, by
Theorem 3.6, we see that this P cannot be semi-closed because the point point c := (0, 0) ∈ Z2 \ P
does not satisfy the condition of Theorem 3.6. Indeed, we obtain Int(Cl(P)) * P owing to the point
c = (0, 0) ∈ Z2 \ P having S Nγ(c) such that S Nγ(c) ⊂ Cl(P) so that Int(Cl(P)) * P (see the set S Nγ(c)
in Figure 4(b)).

Meanwhile, consider another simple MW-path P with | P | = 7 as in Figure 4(c). Then this is semi-
closed (see Theorem 3.6).
(3) Assume a simple MW-path P with | P | ≥ 7 such that P := (d0, d1, · · · , dl−1) in (Z2, γ) and P has
the subsequence X1 := (d′1, d

′
2, d

′
3, d

′
4) of P whose each elements is odd point (e.g., in Figure 4(a) we

may consider X1 = (c0, c2, c4, c6)) and X1 ⊂ N4(c), c ∈ Z2 \ P. For our purpose, as an example for the
subsequence X1 of P, consider the set (c0, c2, c4, c6) in Figure 4(a). Then this P cannot be semi-closed.
Indeed, the point c is a double even or even point (see the point c in Figure 4(b)). �

(a)

(0, -1)

(0, 1)

(-1, 0)

c4

c2

c0
c1

c6

c3 c5

(b)

(0, -1)

(0, 1)

(-1, 0)

c
4

c2

c0
c1

c6

c3 c5

c

(c)

d0

d4

d1

d2

d3 d5

d6

Figure 4. The objects of (a)–(c) are related to the proof of the semi-closedness of a simple
MW-path in (Z2, γ) stated in Lemma 4.1.

Motivated by Lemma 4.1(2), let us investigate some conditions for a simple MW-path to be semi-
closed, as follows:

Theorem 4.2. Assume a simple MW-path P = (c0, c1, · · · , cl−1) in (Z2, γ) with | P | ≥ 7 such that P does
not have the subsequence Y1 := (c′1, c

′
2, c
′
3, c
′
4) whose each element is an odd point and Y1 ⊂ N4(c), c ∈

Z2 \ P. Then P is semi-closed.

Before proving the assertion, we strongly need to recall the given hypothesis. Without the
hypothesis, as mentioned in Lemma 4.1, the given path P with | P | ≥ 7 may not be semi-closed. For
instance, in Figure 4(a), the subsequence Y1 = (c0, c2, c4, c6) makes the given MW-path P := (ci)i∈[0,6]Z
non-semi-closed.
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Proof. Assume a simple MW-path with l elements, l ≥ 7, say P = (c0, c1, · · · , cl−1). Then, note that P
consists of only double even or even points, or odd points. Owing to Lemma 4.1, using induction, we
will prove the assertion.
(Case 1) Assume | P | = 7 (see the object in Figure 4(c) as an example). Then, by Theorem 3.6 and the
hypothesis, it is clear that P is semi-closed in (Z2, γ). Here, we note that the MW-path in Figure 4(a)
does not satisfy the hypothesis.
(Case 2) Assume | P | ≥ 7. For any l, 6 ≤ l ∈ N, assume P = (c0, c1, · · · , cl−2) is semi-closed in (Z2, γ).
Then we now prove that P = (c0, c1, · · · , cl−2, cl−1) is semi-closed. Owing to the properties of (2.3)
and (2.4), we first examine the semi-closedness of the subset of P consisting of the consecutive two
elements cl−2 and cl−1 in P according to the topological properties of the points cl−2 and cl−1. Let us
now investigate only two cases. Namely, take the set {cl−2, cl−1} ⊂ P according to the two cases
depending on the situation of P, as follows:
(Case 2-1) Assume the case that cl−2 is an odd point and cl−1 is a double even or even point. Then we
obtain

Int(Cl({cl−2, cl−1})) = {cl−2} ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = N4(cl−2) in (Z2, γ). Thus we see that the set {cl−2, cl−1} is semi-closed. Based
on this approach, denote the set (c0, c1, · · · , cl−2) by B. Then, for P = B ∪ {cl−1}, we haveInt(Cl(P)) = Int(Cl(B ∪ {cl−1}))

= Int(Cl(B) ∪Cl({cl−1})) = Int(Cl(B)) ⊂ B ⊂ P,


which implies the property Int(Cl(P)) ⊂ P.
(Case 2-2) Assume the case that cl−2 is a double even or even point and cl−1 is an odd point (this case
is associated with the given hypothesis. Then we obtain

Int(Cl({cl−2, cl−1})) = {cl−1} ⊂ {cl−2, cl−1},

because Cl({cl−2, cl−1}) = N4(cl−1) in (Z2, γ). Thus we see that the set {cl−2, cl−1} is semi-closed. Based
on this approach, denote the set (c0, c1, · · · , cl−2) by B. Then, for P = B ∪ {cl−1}, owing to the given
hypothesis, we have Int(Cl(B ∪ {cl−1}))

= Int(Cl(B) ∪Cl({cl−1})) = Int(Cl(P)) ⊂ P,

 (4.1)

which implies the property Int(Cl(P)) ⊂ P.
Note that without the hypothesis, the property of (4.1) does not hold. Based on these two cases above,
with the hypothesis, the simple MW-path P is proved to be semi-closed in (Z2, γ). �

Unlike Theorem 4.2, we have the following:

Remark 4.3. A simple MW-path need not be semi-open because the path P := {c0} is not semi-open
(see Theorem 3.5), where c0 is a double even or even point.

In view of Theorem 3.5 and Remark 4.3, we obtain the following:

Proposition 4.4. Any simple MW-path P with | P | ≥ 2 is semi-open.

Proof. For any x ∈ P, we have S Nγ(x) ∩ Pop , ∅. Thus, by Theorem 3.5, the proof is completed. �
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5. The semi-T3-separation axiom of the MW-topological space

This section studies various properties relating to the semi-T3-separation axiom of (Z2, γ). Based on
the above properties, let us now investigate some topological properties of (Z2, γ) with respect to the
s-T3-separation axiom and the semi-T3-separation axiom (see Definition 5.3 below), and so on. The
papers [31, 32] defined the notion of s-regular as follows: The paper [32] said that that a topological
space (X,T ) is s-regular if for each closed subset F of X and point x ∈ Fc, there are U,V ∈ S O(X,T )
such that F ⊂ U and x ∈ V and U ∩ V = ∅, where S O(X,T ) := {U ⊂ X |U is semi-open in (X,T )}.
The paper [36] proved that this s-regularity has the finite product property. Unlike the above definition
of s-regularity, the present paper will take the following approach.

Definition 5.1. [11] A topological space (X,T ) is semi-regular if for each semi-closed set C and each
x < C there exist disjoint semi-open sets U and V in (X,T ) such that x ∈ U, C ⊂ V and U ∩ V = ∅.

Definition 5.2. [31] A topological space (X,T ) is said to be a semi-T1-space if any distinct points
p, q ∈ X have their own semi-open sets S O(p) and S O(q) in (X,T ) such that q < S O(p) and p < S O(q),
where S O(x) means a semi-open set containing the given point x.

Besides, it turns out that a topological space (X,T ) is a semi-T1-space if and only if every singleton
is semi-closed [31].

After comparing between s-regularity and semi-regularity, while the s-regularity implies the semi-
regularity, the converse does not hold. Based on the notions of s-regularity or semi-regularity above,
we now define the following:

Definition 5.3. (1) We say that a topological space (X,T ) is an s-T3-space if it is both a semi-T1-space
and an s-regular space.
(2) We call a topological space (X,T ) is a semi-T3-space if it is both a semi-T1-space and a semi-
regular space.

Lemma 5.4. In (Z2, γ), if A is semi-closed, then Int(Cl(A)) = Int(A).

Proof. Since Int(A) ⊂ Int(Cl(A)), with the hypothesis we need to prove that Int(Cl(A)) ⊂ Int(A) with
the following two cases.
(Case 1) Assume Int(Cl(A)) = ∅. Then the proof is straightforward.
(Case 2) Assume Int(Cl(A)) , ∅. Take an arbitrary element x ∈ Int(Cl(A)). Then we obtain S Nγ(x) ⊂
Cl(A). Using methods similar to the proofs of (Case 1) and (Case 2) of Theorem 3.3 (see also the
property of (3.10)), since S Nγ(x) is semi-closed, we have

S Nγ(x) ⊂ Cl(A)⇒ S Nγ(x) ⊂ A⇒ x ∈ Int(A). �

Theorem 5.5. The MW-topological space, (Z2, γ), is a semi-T3-space.

Proof. Since (Z2, γ) is a semi-T1-space [20], it suffice to prove the semi-regularity of (Z2, γ). In (Z2, γ),
let C(, ∅) be semi-closed and x < C. According to the choice of the point x, we can consider the
following two cases.
(Case 1) Assume x is an odd point. Since S Nγ(x) = {x}, we have the two sets U := Z2 \ {x} and
V := {x}, then we find out that U,V ∈ S O(Z2, γ) (see Remark 3.1(1)) and C ⊂ U, x ∈ V,U ∩ V = ∅
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because U is a closed set in (Z2, γ). Hence (Z2, γ) is semi-regular.
(Case 2) Assume x is a double even or even point. Since x < C and Cc is semi-open, by Theorem 3.5,
for each x ∈ Cc, we obtain the following identity

S Nγ(x) ∩ (Cc)op , ∅. (5.1)

Namely, we may take p ∈ S Nγ(x) ∩ (Cc)op so that there is a simple MW-path {x, p} because p ∈
S Nγ(x). Besides, by Theorems 3.5 and 3.6, the set {x, p} is both semi-open and semi-closed (see
also Lemma 4.1). Then consider the set Z2 \ {x, p} which is semi-open because {x, p} is semi-closed
and C ⊂ Z2 \ {x, p} (see Figure 5). Hence, after putting U := Z2 \ {x, p},V := {x, p}, we have
U,V ∈ S O(Z2, γ) such that C ⊂ U, x ∈ V and U ∩ V = ∅.

In view of the above two cases, we now complete that (Z2, γ) is a semi-regular space, which
completes the proof. �

C

c1

x

p

c3

c2

c5c4
c6

c7

c8

c9

Figure 5. Configuration of an existence of S O(C) and S O(x) = {x, p} such that S O(C) ∩
S O(x) = ∅ related to the (Case 2) of the proof of Theorem 5.5.

6. Semi-homeomorphic property of the semi-T3-separation axiom

This section first refers to two kinds of semi-homeomorphisms from the literature. Next, we prove
the semi-homeomorphic property of the semi-T3-separation axiom.

Definition 6.1. Given two topological spaces (X,T1) and (Y,T2), we now recall two types of semi-
homeomorphisms.
(1) [9] A bijection h : (X,T1) → (Y,T2) is said to be a semi-homeomorphism if h(U) ∈ S O(Y,T2)
for each U ∈ S O(X,T1) (or pre-semi-open) and h−1(V) ∈ S O(X,T1) for each V ∈ S O(Y,T2) (or
irresolute or semi-open). This semi-homeomorphism is often called a semi-homeomorphism in the
sense of “Crosseley and Hildebrand” (or semi-homeomorphism of C.H, for brevity).
(2) [3] A bijection h : (X,T1) → (Y,T2) is said to be a semi-homeomorphism if h is continuous and
h−1(V) ∈ S O(X,T1) for each V ∈ S O(Y,T2) (or irresolute or semi-open). This semi-homeomorphism
is often called a semi-homeomorphism in the sense of “Biswas” (or semi-homeomorphism of B, for
short).

Hereinafter, a property of topological spaces preserved by semi-homeomorphisms is called a semi-
topological property [9] (see Definition 6.1(1)).
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Definition 6.2. Given a topological space (X,T ), let S C(X,T ) := {C ⊂ X |C is semi-closed in (X,T )}.
We say that a map f : (X,T1) → (Y,T2) is a semi-closed map if f (C) ∈ S C(Y,T2) for each C ∈
S C(X,T1).

The paper [34] has shown that there are semi-homeomorphisms of Definition 6.1(1) that are not
semi-homeomorphisms of Definition 6.1(2) in general topology. Let us now investigate some
properties of a semi-closed map with respect to a semi-homoeomorphism, as follows:

In view of Definition 6.1 and the notions of semi-openness and semi-closedness, after replacing the
term “semi-open” by “semi-closed”, we can define the semi-homeomorphism. Hereinafter, we will
follow the semi-homeomorphism of C.H (see Definition 6.1(1)).

Theorem 6.3. The semi-T3-separation axiom is a semi-homeomorphic property.

Proof. (Step 1) It is clear that the semi-T1-separation axiom is a semi-homeomorphic property.
(Step 2) Let us prove that the semi-regularity is a semi-homeomorphic property. Assume two
semi-homeomorphic spaces (X,T1) and (Y,T2), i.e., consider a semi-homeomorphism of C.H. (see
Definition 6.1(1)) h : (X,T1) → (Y,T2). Further assume that (X,T1) satisfies the semi-regularity. Then
take any semi-closed subset C2 in (Y,T2) and the point q ∈ (C2)c = Y \ C2 that is semi-open. Then,
owing to the semi-homeomorphism of h, we have h−1(Y \C2) = X \ h−1(C2) is semi-open in (X,T1) so
that it turns out that C1 := h−1(C2) is semi-closed and further, it is clear that
p := h−1(q) < h−1(C2) = C1.

Owing to the assumption that (X,T1) satisfies the semi-regularity, there areS O(C1), S O(p) in (X,T1) such that
S O(C1) ∩ S O(p) = ∅.


Then, owing to the pre-semi-open mapping of h, we haveS O(C2) := h(S O(C1)), S O(q) := h(S O(p)) and

S O(C2) ∩ S O(q) = ∅,


which implies that (Y,T2) has the semi-regularity.
In view of Steps 1 and 2, the proof is completed. �

7. Conclusions

We have proposed several techniques making a distinction between semi-open and semi-closed sets
in (Z2, γ). Owing to this approach, we have investigated more efficiently semi-topological features of
some subsets of the MW-topological space. Finally, we have proved that (Z2, γ) is a semi-T3-space and
further, the semi-T3-separation axiom is a semi-topological property. This finding can facilitate many
studies in the fields of digital topology and digital geometry. As a further work, we need to intensively
study some semi-topological features of the infinite MW-sphere.
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