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1. Introduction

A century ago, the first metric fixed-point theorem was published by Banach [1]. In fact, before
Banach, some famous mathematicians such as Picard and Liouville had used the fixed point approach
to solve certain differential equations, more precisely, initial value problems. Inspired by their results,
Banach considered it as a separated and independent result in the framework of the nonlinear functional
analysis and point-set topology. The statement and the proof of an outstanding work of Banach, also
known as contraction mapping principle, can be considered as an art piece: Each contraction, in the
setting of a complete metric space, possesses a unique fixed point. Metric fixed point theory has
been appreciated and investigated by several researchers. These researchers have different reasons and
motivations to study this theory. The most important reason why the researchers find worthful to work
and investigate metric fixed point theory is the natural and strong connection of the theoretical result
in nonlinear functional analysis with applied sciences. If we look at it with the chronological aspect,
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we note that the fixed point theory was born as a tool to solve certain differential equations. Banach
liberated the theory from being a tool in applied mathematics to an independent work of nonlinear
functional analysis. On Picard and Liouville’s side, it is a tool to solve the initial value problem. On
the other side, from Banach’s point of view, the fixed point theory is an independent research topic that
has enormous application potential on almost all qualitative sciences, including applied mathematics.
Secondly, Banach fixed point theorem not only guarantee the solution (the existence of a fixed point)
but also indicate how we reach the mentioned solution (how to find the fixed point). Finally, we need
to underline that almost all real world problems can be transferred to a fixed point problem, easily.

With this motivation, several generalizations and extensions of Banach’s fixed point theory have
been released by introducing new contractions or by changing the structure of the studied abstract
space. Among, we shall mention only a few of them that set up the skeleton of the contraction
dealt with it. Historically, the first contraction we shall focus on it is the Meir-Keeler contraction [2].
Roughly speaking, the Meir-Keeler contraction can be considered as a uniform contraction. The second
contraction that we dealt with is Jaggi contraction [3]. The interesting part of Jaggi’s contraction is the
following: Jaggi’s contraction is one of the first of its kind that involves some rational expression. The
last one is called as an interpolative contraction [4]. In the interpolative contraction the terms are used
exponentially instead of standard usage of them.

In this paper, we shall introduce a new contraction, hybrid Jaggi-Meir-Keeler type contraction,
as a unification and generalization of the Meir-Keeler’s contraction, the Jaggi’s contraction and
interpolative contraction in the setting of a complete metric space. We propose certain assumptions
to guarantee the existence of a fixed point for such mappings. In addition, we express some example
to indicate the validity of the derived results.

Before going into details, we would like to reach a consensus by explaining the concepts and
notations: Throughout the paper, we presume the sets, we deal with, are non-empty. The letter N
presents the set of positive integers. Further, we assume that the pair (X, d) is a complete metric space.
This notation is required in each of the following theorems, definitions, lemma and so on. We shall use
the pair (X, d) everywhere without repeating that it is a complete metric space.

In what follows we recall the notion of the uniform contraction which is also known as Meir-Keeler
contraction:

Definition 1.1. [2] A mapping f : (X, d) → (X, d) is said to be a Meir-Keeler contraction on X, if for
every E > 0, there exists δ > 0 such that

E ≤ d(x , y) < E + δ implies d(fx , fy) < E, (1.1)

for every x , y ∈ X.

Theorem 1.1. [2] Any Meir-Keeler contraction f : (X, d)→ (X, d) possesses a unique fixed point.

Very recently, Bisht and Rakočević [5] suggested the following extension of the uniform
contraction:

Theorem 1.2. [5] Suppose a mapping f : (X, d)→ (X, d) fulfills the following statements:

(1) for a given E > 0 there exists a δ(E) > 0 such that

E < M(x , y) < E + δ(E) implies d(fx , fy) ≤ E;
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(2) d(fx , fy) < M(x , y), whenever M(x , y) > 0;

for any x , y ∈ X, where

M(x , y) = max
{
d(x , y), αd(x , fx ) + (1 − α)d(y , fy),

(1 − α)d(x , fx ) + αd(y , fy), β[d(x ,fy)+d(y ,fx )]
2

}
,

with 0 < α < 1, 0 ≤ β < 1. Then, f has a unique fixed point u ∈ X and fnx → u for each x ∈ X.

On the other hand, in 2018, the idea of interpolative contraction was consider to revisit the well-
known Kannan’s fixed point theorem [6]:

Definition 1.2. [4] A mapping f : (X, d)→ (X, d) is said to be an interpolative Kannan type contraction
on X if there exist κ ∈ [0, 1) and γ ∈ (0, 1) such that

d(fx , fy) ≤ κ[d(x , fx )]γ[d(y , fy)]1−γ, (1.2)

for every x , y ∈ X\Fix(f), where Fix(f) = {x ∈ X|fx = x } .

Theorem 1.3. [4] Any interpolative Kannan-contraction mapping f : (X, d)→ (X, d) possesses a fixed
point.

For more interpolative contractions results, we refer to [7–11] and related references therein.

Definition 1.3. A mapping f : (X, d)→ (X, d) is called a Jaggi type hybrid contraction if there is ψ ∈ Ψ

so that
d(fx , fy) ≤ ψ

(
J s

f (x , y)
)
, (1.3)

for all distinct x , y ∈ X where p ≥ 0 and σi ≥ 0, i = 1, 2, 3, 4, such that σ1 + σ2 = 1 and

J s
f (x , y) =


[σ1

(d(x ,fx )·d(y ,fy)
d(x ,y)

)s
+ σ2(d(x , y))s]1/p, if

p > 0,
x , y ∈ X, x , y

(d(x , fx ))σ1(d(y , fy))σ2 , if
p = 0,

x , y ∈ X\Ff(X),

(1.4)

where Ff(X) = {z ∈ X : fz = z}.

Theorem 1.4. A continuous mapping f : (X, d) → (X, d) possesses a fixed point x if it forms a Jaggi-
type hybrid contraction. In particular, for any x0 ∈ X, the sequence {fnx0} converges to x .

Definition 1.4. [12] Let α : X×X→ [0,+∞) be a mapping, where X , ∅. A self-mapping f : (X, d)→
(X, d) is called triangular α-orbital admissible and denote as f ∈ T α

X if

α(x , fx ) ≥ 1 implies α(fx , f2x ) ≥ 1,

and
α(x , y) ≥ 1, and α(y , fy) ≥ 1, implies α(x , fy) ≥ 1

for all x , y ∈ X.
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This concept, was used by many authors, in order to prove variant fixed point results (see, for
instance [13–19] and the corresponding references therein).

Lemma 1.1. [12] Assume that f ∈ T α
X . If there exists x0 ∈ X such that α(x0, fx0) ≥ 1, then α(xm, xk) ≥ 1,

for all m, n ∈ N, where the sequence {xk} is defined by xk+1 = xk.

The following condition is frequently considered to avoid the continuity of the mappings involved.

(R) if the sequence {xn} in X is such that for each n ∈ N,

α(xn, xn+1) ≥ 1 and lim
n→+∞

xn = x ∈ x ,

then there exists a subsequence
{
xn( j)

}
of {xn} such that

α(xn( j), x ) ≥ 1, for each j ∈ N.

2. Main results

We start this section by introducing the new contraction, namely, hybrid Jaggi-Meir-Keeler type
contraction.

Consider the mapping f : (X, d) → (X, d) and the set of fixed point, Ff(X) = {z ∈ X : fz = z}. We
define the crucial expression Rs

f as follows:

Rs
f (x , y) =



[
β1

(d(x ,fx )·d(y ,fy)
d(x ,y)

)s
+ β2(d(x , y))s + β3

(d(x ,fy)+d(y ,fx )
4

)s]1/s
,

for s > 0, x , y ∈ X, x , y

(d(x , fx ))β1(d(y , fy))β2
(d(x ,fy)+d(y ,fx )

4

)β3
,

for s = 0, x , y ∈ X,

(2.1)

where p ≥ 1 and βi ≥ 0, i = 1, 2, 3 are such that β1 + β2 + β3 = 1.

Definition 2.1. Assume that f ∈ T α
X . We say that f : (X, d) → (X, d) is an α-hybrid Jaggi-Meir-Keeler

type contraction on X, if for all distinct x , y ∈ X we have:

(a1) for given E > 0, there exists δ > 0 such that

E < max
{
d(x , y),Rs

f (x , y)
}
< E + δ =⇒ α(x , y)d(fx , fy) ≤ E; (2.2)

(a2)
α(x , y)d(fx , fy) < max

{
d(x , y),Rs

f (x , y)
}
. (2.3)

Theorem 2.1. Any continuous α-hybrid Jaggi-Meir-Keeler type contraction f : (X, d)→ (X, d) provide
a fixed point if there exists x0 ∈ X, such that α(x0, fx0) ≥ 1 and α(x0, f2x0) ≥ 1.

Proof. Let x0 ∈ X be an arbitrary, but fixed point. We form the sequence {xm}, as follows:

xm = fxm−1 = fmx0,
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for all m ∈ N and assume that d(xm, xm+1) > 0, for all n ∈ N ∪ {0}. Indeed, if for some l0 ∈ N ∪ {0} we
have d(xl0 , xl0+1) = 0, it follows that xl0 = xl0+1 = fxl0 . Therefore, xl0 is a fixed point of the mapping f
and the proof is closed.

Since, by assumption, the mapping f is triangular α-orbital admissible, it follows that

α(x0, fx0) ≥ 1 ⇒ α(x1, x2) = α(fx0, f2x0) ≥ 1 ⇒ ...⇒

α(xn, xn+1) ≥ 1, (2.4)

for every n ∈ N.
We shall study two cases; these are s > 0 and s = 0.

Case (A). For the case s > 0, letting x = xn−1 and y = xn = fxn−1 in (a2), we get

d(xn, xn+1) ≤ α(xn−1, xn)d(fxn−1, fxn) < max
{
d(xn−1, xn),Rs

f (xn−1, xn)
}
, (2.5)

where
Rs

f (xn−1, xn) = [β1

(
d(xn−1,fxn−1)·d(xn,fxn)

d(xn−1,xn)

)s
+ β2(d(xn−1, xn))s+

+β3

(
d(xn−1,fxn)+d(xn,fxn−1)

4

)s
]1/s

= [β1

(
d(xn−1,xn)·d(xn,xn+1)

d(xn−1,xn)

)s
+ β2(d(xn−1, xn))s+

+β3

(
d(xn−1,xn+1)+d(xn,xn)

4

)s
]1/s

≤ [β1(d(xn, xn+1))s + β2(d(xn−1, xn))s+

+β3

(
d(xn−1,xn)+d(xn,xn+1)

4

)s
]1/s.

If we can find n0 ∈ N such that d(xn0 , xn0+1) ≥ d(xn0−1, xn0), we have

Rs
f (xn0−1, xn0) ≤ [β1(d(xn0 , xn0+1))s + β2(d(xn0 , xn0+1))s+

+β3(d(xn0 , xn0+1))s]1/s

= d(xn0 , xn0+1)(β1 + β2 + β3)1/s

= d(xn0 , xn0+1).

Then, max
{
d(xn0 , xn0+1),Rs

f (xn0−1, xn0)
}

= d(xn0 , xn0+1), and using (2.4), respectively (2.5) we get

d(xn0 , xn0+1) ≤ α(xn0−1, xn0)d(fxn+0−1, fxn0)

< max
{
d(xn0 , xn0+1),Rs

f (xn0−1, xn0)
}
≤ d(xn0 , xn0+1),

which is a contradiction. Therefore, d(xn, xn+1) < d(xn−1, xn) for all n ∈ N and (2.5) becomes

d(xn, xn+1) < d(xn−1, xn),

for all n ∈ N. Consequently, there exists b ≥ 0 such that lim
n→+∞

d(xn−1, xn) = b. If b > 0, we have

d(xm, xm+1) ≥ b > 0,
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for any m ∈ N. On the one hand, since (2.2) holds for every given E > 0, it is possible to
choose E = b and let δ > 0 be such that (2.2) is satisfied. On the other hand, since, also,
lim

n→+∞
max

{
d(xn−1, xn),Rs

f (xn−1, xn)
}

= b, there exists m0 ∈ N such that

b < max
{
d(xm0−1, xm0),R

s
f (xm0−1, xm0)

}
< b + δ.

Thus, by (2.2), together with (2.4) we obtain

d(xm0 , xm0+1) ≤ α(xm0 , xm0+1)d(fxm0−1, fxm0) < b,

which is a contradiction. Therefore,

lim
n→+∞

d(xn, xn+1) = b = 0. (2.6)

We claim now that {xn} is a Cauchy sequence. Let E > 0 be fixed and we can choose that δ′ =

min {δ(E),E, 1}. Thus, from (2.6) it follows that there exists j0 ∈ N such that

d(xn, xn+1) <
δ′

2
, (2.7)

for all n ≥ j0. Now, we consider the set

A =

{
xl | l ≥ j0, d(xl, x j0) < E +

δ′

2

}
. (2.8)

We claim that fy ∈ A whenever y = xl ∈ A. Indeed, in case of l = j0, we have fxl = fx j0 = x j0+1, and
taking (2.7) into account, we get

d(x j0 , x j0+1) <
δ′

2
< E +

δ′

2
. (2.9)

Thus, we will assume that l > j0, and we distinguish two cases, namely:

Case 1. Suppose that

E < d(xl, x j0) < E +
δ′

2
. (2.10)
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We have

Rs
f (xl, x j0) =

[
β1

(
d(xl,fxl)d(x j0 ,fx j0 )

d(xl,x j0 )

)s
+ β2

(
d(xl, x j0)

)s
+ β3

(
d(xl,fx j0 )+d(x j0 ,fxl)

4

)s]1/s

=

[
β1

(
d(xl,xl+1)d(x j0 ,x j0+1)

d(xl,x j0 )

)s
+ β2

(
d(xl, x j0)

)s
+

+β3

(d(xl,x j0+1)+d(x j0 ,xl+1)
4

)s]1/s

≤

[
β1

(
d(xl,xl+1)d(x j0 ,x j0+1)

d(xl,x j0 )

)s
+ β2

(
d(xl, x j0)

)s
+

+β3

(d(xl,x j0 )+d(x j0 ,x j0+1)+d(xl,x j0 )+d(xl,xl+1)
4

)s]1/s

<
[
β1 (d(xl, xl+1))s + β2

(
d(xl, x j0)

)s
+ β3

( 2d(xl,x j0 )+d(x j0 ,x j0+1)+d(xl,xl+1)
4

)s]1/s

<
[
β1

(
δ′

2

)s
+ β2

(
E + δ′

2

)s
+ β3

(
E
2 + δ′

4 + δ′

4

)s]1/s

≤ (β1 + β2 + β3)1/s
(
E + δ′

2

)
≤ E + δ′.

In this case,

E < d(xl, x j0) ≤ max
{
d(xl, x j0),R

s
f (xl, x j0)

}
< max

{(
E +

δ′

2

)
,
(
E + δ′

)}
=

(
E + δ′

)
,

which implies by (a1) that
α(xl, x j0)d(fxl, fx j0) ≤ E. (2.11)

But, taking into account that the mapping f is triangular α-orbital admissible, together with (2.4) we
have

α(xn, xn+1) ≥ 1 and α(xn+1, fxn+1) ≥ 1 implies α(xn, xn+2) ≥ 1,

and recursively we get that
α(xn, xl) ≥ 1, (2.12)

for all n, l ∈ N. Therefore, from (2.11) and (2.12), we have

d(xl+1, x j0+1) = d(fxl, fx j0) ≤ E. (2.13)

Now, by the triangle inequality together with (2.7)and (2.13) we get

d(xl+1, x j0) ≤ d(xl+1, x j0+1) + d(x j0+1, x j0) <
(
E +

δ′

2

)
,

which means that, indeed fxl = xl+1 ∈ A.
Case 2. Suppose that

d(xl, x j0) ≤ E. (2.14)
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Thus,
d(fxl, x j0) ≤ d(fxl, fx j0) + d(fx j0 , x j0)

≤ α(xl, x j0)d(fxl, fx j0) + d(x j0+1, x j0)

< max
{
d(xl, x j0),R

s
f (xl, x j0)

}
+ d(x j0+1, x j0),

(2.15)

where
Rs

f (xl, x j0) =

[
β1

(
d(xl,xl+1)d(x j0 ,x j0+1)

d(xl,x j0 )

)s
+ β2

(
d(xl, x j0)

)s
+

+β3

(d(xl,x j0 )+d(x j0 ,x j0+1)+d(xl,x j0 )+d(xl,xl+1)
4

)s]1/s
.

We must consider two subcases

(2a). d(xl, x j0) ≥ d(x j0 , x j0+1). Then,

Rs
f (xl, x j0) ≤

[
β1 (d(xl, xl+1))s + β2

(
d(xl, x j0)

)s
+

+β3

( 2d(xl,x j0 )+d(x j0 ,x j0+1)+d(xl,xl+1)
4

)s]1/s

<
[
β1

(
δ′

2

)s
+ β2 (E))s + β3

(
2E+2 δ′

2
4 )

)s]1/s

<
[
β1 + β2 + β3

]1/s
(
E
2 + δ′

4

)
.

But, since δ′ = min {δ,E, 1}, we get

Rs
f (xl, x j0) <

3E
4
,

and then
d(fxl, x j0) < max

{
d(xl, x j0),R

s
f (xl, x j0)

}
+ d(x j0+1, x j0)

< max
{
E, 3E

4

}
+ δ′

2

= (E + δ′

2 ),

which shows that fxl ∈ A.
(2b). d(xl, x j0) < d(x j0 , x j0+1). Then,

d(fxl, x j0) ≤ xl+1, xl) + d(xl, x j0) <
δ′

2
+
δ′

2
< E +

δ′

2
.

Consequently, choosing some m, n ∈ N such that m > n > j0, we can write

d(xm, xn) ≤ d(xm, x j0) + d(x j0 , xn) < 2(E +
δ′

2
) < 4E,

which leads us to
lim

m,n→+∞
d(xm, xn) = 0.
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Therefore, {xm} is a Cauchy sequence in a complete metric space. Thus, we can find a point u ∈ X such
that limm→+∞ xm = u. Moreover, since the mapping f is continuous we have

u = lim
m→+∞

fm+1x0 = lim
m→+∞

f(fmx0) = f( lim
m→+∞

fmx0) = fu,

that is, u is a fixed point of f.
Case (B). For the case s = 0, letting x = xn−1 and y = xn = fxn−1 in (2.2), we get

d(xn, xn+1) ≤ α(xn−1, xn)d(fxn−1, fxn) < max {d(xn−1, xn),Rf(xn−1, xn)} , (2.16)

where
Rf(xn−1, xn) = [d(xn−1, fxn−1)]β1 [d(xn, fxn)]β2

[
d(xn−1,fxn)+d(xn,fxn−1

4

]β3

= [d(xn−1, xn)]β1 [d(xn, xn+1)]β2
[

d(xn−1,xn+1)+d(xn,xn
4

]β3

= [d(xn−1, xn)]β1 [d(xn, xn+1)]β2
[

d(xn−1,xn+1)+d(xn,xn
4

]β3

≤ [d(xn−1, xn)]β1 [d(xn, xn+1)]β2
[

d(xn−1,xn)+d(xn,xn+1)
4

]β3

= [d(xn−1, xn)]β1 [d(xn, xn+1)]β2
[

d(xn−1,xn)+d(xn,xn+1)
4

]β3

Thus, by (2.3) and taking (2.4) into account we have

d(xn, xn+1) ≤ α(xn−1, xn)d(fxn−1, fxn) < max {d(xn−1, xn),Rf(xn−1, xn)} .

Now, if there exists n0 ∈ N such that d(xn0 , xn0+1) ≥ d(xn0−1, xn0), we get

d(xn0 , xn0+1) < max
{
d(xn0−1, xn0),Rf(xn0−1, xn0)

}
≤ max

{
d(xn0−1, xn0), d(xn0 , xn0+1)

}
< d(xn0 , xn0+1),

which is a contradiction. Therefore, d(xn, xn+1) < d(xn−1, xn) for all n ∈ N, that is, the sequence {xn}

decreasing and moreover, converges to some b ≥ 0. Moreover, since

Rf(xn−1, xn) = [d(xn−1, xn)]β1 [d(xn, xn+1)]β2

[
d(xn−1, xn+1)

4

]β3

,

we get that
lim

n→+∞
max {d(xn−1, xn),Rf(xn−1, xn)} = b.

If we suppose that b > 0, then, 0 < b < d(xn−1, xn) and we can find δ > 0 such that

b < max {d(xn−1, xn),Rf(xn−1, xn)} < b + δ.

In this way, taking E = b, we get

b = E < max {d(xn−1, xn),Rf(xn−1, xn)} < E + δ,
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which implies (by (a1)) that

d(xn−1, xn) ≤ α(xn−1, xn)d(fxn−1, fxn)) ≤ E = b,

which is a contradiction. We thus proved that

lim
m→

d(xn−1, xn) = 0. (2.17)

We claim now, that the sequence {xn} is Cauchy. Firstly, we remark that, since d(xn−1, xn) = 0, there
exists j0 ∈ N, such that

d(xn−1, xn) <
δ′

2
, (2.18)

for any n ≥ j0, where δ′ = min {δ,E, 1}. Reasoning by induction, we will prove that the following
relation

d(x j0 , x j0+m) < E +
δ′

2
(2.19)

holds, for any m ∈ N. Indeed, in case of m = 1,

d(x j0 , x j0+1) <
δ′

2
< E +

δ′

2
,

so, (2.19) is true. Now, supposing that (2.19) holds for some l, we shall show that it holds for l + 1. We
have

Rf(x j0 , x j0+l) =
(
d(x j0 , fx j0)

)β1
(
x j0+l, fx j0+l

)s
(

d(x j0 ,fx j0+l)+d(x j0+l,fx j0 )
4

)β3

=
(
d(x j0 , x j0+1)

)β1
(
x j0+l, x j0+l+1

)s (d(x j0 ,x j0+l+1)+d(x j0+l,x j0+1)
4

)β3

≤
(
d(x j0 , x j0+1)

)β1
(
d(x j0+l, x j0+l+1)

)s

(d(x j0 ,x j0+l)+d(x j0+l,x j0+l+1)+d(x j0+l,x j0 )+d(x j0 ,x j0+1)
4

)β3

<
(
δ′

2

)β1+β2
(
(E2 + δ′

4 ) + δ′

4

)β3

≤ (E + δ′

2 ).

(2.20)

As in the Case (A), if d(x j0 , x j0+l) > E, by (a2), and keeping in mind the above inequalities, we get

E < d(x j0 , x j0+l) ≤ max
{
d(x j0 , x j0+l),Rf(x j0 , x j0+l)

}
< max

{
δ′

2 , (E + δ′

2 )
}

= E + δ′

implies α(x j0 , x j0+l)d(fx j0 , fx j0+l) ≤ E.

But, since using (2.12), it follows that

d(x j0+1, x j0+l+1) = d(fx j0 , fx j0+l) ≤ E,

and then, by (b3) we get

d(x j0 , x j0+l+1) ≤ d(x j0 , x j0+1) + d(x j0+1, x j0+l+1) <
δ′

2
+ E < E +

δ′

2
.
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Therefore, (2.19) holds for (l + 1). In the opposite situation, if d(x j0 , x j0+l) ≤ E, again by the triangle
inequality, we obtain

d(x j0 , x j0+l+1) ≤ d(x j0 , x j0+1) + d(x j0+1, x j0+l+1)

≤ d(x j0 , x j0+1) + α(x j0 , x j0+l)d(fx j0 , fx j0+l)

< δ′

2 + max
{
d(x j0 , x j0+l),Rf(x j0 , xl)

}
< δ′

2 + max
{
E, E2 + δ′

4

}
= δ′

2 + E.

Consequently, the induction is completed. Therefore, {xm} is a Cauchy sequence in a complete metric
space. Thus, there exists u ∈ X such that fu = u. �

In the above Theorem, the continuity condition of the mapping f can be replace by the continuity
of f2.

Theorem 2.2. Suppose that f : (X, d) → (X, d) forms an α-hybrid Jaggi-Meir-Keeler type contraction
such that f2 is continuous. Then, f has a fixed point, provided that there exists x0 ∈ X, such that
α(x0, fx0) ≥ 1.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1 and the sequence {xn}, where xn = fxn−1, for any n ∈ N. Thus,
from Theorem 2.3 we know that this is a convergent sequence. Letting u = lim

n→+∞
xn, we claim that

u = fu.
Since the mapping f2 is supposed to be continuous,

f2u = lim
n→+∞

f2xn = u.

Assuming on the contrary, that u , fu, we have

Rs
f (u, fu) =



[
β1

(
d(u,fu)·d(fu,f2u)

d(u,fu)

)s
+ β2(d(u, fu))s + β3

(
d(u,f2u)+d(fu,fu)

4

)s]1/s
,

for s > 0

(d(u, fu))β1(d(fu, f2u))β2
(

d(u,f2u)+d(fu,fu)
4

)β3
,

for s = 0

=



[
β1

(
d(u,fu)·d(fu,u)

d(u,fu)

)s
+ β2(d(u, fu))s + β3

(
d(u,u)+d(fu,fu)

4

)s]1/s
,

for s > 0

(d(u, fu))β1(d(fu, u))β2
(

d(u,u)+d(fu,fu)
4

)β3
,

for s = 0

=


[
β1 (d(fu, u))s + β2(d(u, fu))s]1/s , for s > 0

0, for s = 0

=


[
β1 + β2

]1/s d(u, fu)), for s > 0

0, for s = 0
�
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Example 2.1. Let X = [0,+∞), d : X × X → [0,+∞), d(x , y) =
∣∣∣x − y

∣∣∣, and the mapping f : X → X,
where

f =


1
2 , if x ∈ [0, 1]

1
6 , if x > 1

.

We can easily observe that f is discontinuous at the point x = 1, but f2 is a continuous mapping. Let
also the function α : X × X→ [0,+∞),

α(x , y) =


x 2 + y2 + 1, if x , y ∈ [0, 1]

ln(x + y) + 1, if x , y ∈ (1,+∞)
1, if x = 5

6 , y = 7
6

0, otherwise

,

and we choose β1 = 1
4 , β2 = 1

2 , β1 = 1
4 and s = 2. The mapping f is triangular α-orbital admissible and

satisfies (a2) in Definition 2.1 for any x , y ∈ [0, 1], respectively for x , y ∈ (1,+∞). Taking into account
the definition of the function α, we have more to check the case x = 5

6 , y = 7
6 . We have

Rf(5
6 ,

7
6 ) =

[
1
4

(
d( 5

6 ,f
5
6 )d( 7

6 ,f
7
6 )

d( 5
6 ,

7
6 )

)2
+ 1

2 (d( 5
6 ,

7
6 ))2 + 1

4

(
d( 5

6 ,f
7
6 )+d( 7

6 ,f
5
6 )

4

)2
]1/2

=

√
1
4 + 1

2 ·
1
9 + 1

9 · =

√
1
3 .

Therefore,

α(
5
6
,

7
6

)d(f
5
6
, f

7
6

) = d(f
5
6
, f

7
6

) = d(
1
2
,

1
6

) =
1
3
<

1
√

3
= max

{
d(

5
6
,

7
6

),Rf(
5
6
,

7
6

)
}
.

Moreover, since the mapping f satisfies condition (a1) for

δ(E) =

{
1 − E, for E < 1

1, for E ≥ 1,

it follows that the assumptions of Theorem 2.3 are satisfied, and u = 1
2 ia a fixed point of the mapping f.

Theorem 2.3. If to the hypotheses of Theorem we add the following assumption

α(u, v) ≥ 1 for any u, v ∈ Ff(X),

then the mapping f admits an unique fixed point.

Proof. Let u ∈ X be a fixed point of f. Supposing on the contrary, that we can find v ∈ X such that
fu = u , v = fv, we have

(i) For s > 0,
Rs

f =
[
β1

(
d(u,fu)d(v,fv)

d(u,v)

)s
+ β2 (d(u, v))s + β3

(
d(u,fv)+d(v,fu)

4

)s]1/s

=
[
β2 (d(u, v))s + β3

(
d(u,v)

2

)s]1/s

≤ (β2 + β3)1/sd(u, v) ≤ d(u, v).
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Thus, taking x = u and y = v in (2.3) we get

d(u, v) ≤ α(u, v)d(fu, fv) < max {d(u, v),Rf(u, v)} = d(u, v),

which is a contradiction.
(ii) For s = 0,

d(u, v) ≤ α(u, v)d(fu, fv) < max {d(u, v),Rf(u, v)}

= max
{
d(u, v), (d(u, fu))β1(d(v, fv))β2

(
d(u,fv)+d(v,fu)

4

)β3
}

= d(u, v),

which is a contradiction.

Consequently, if there exists a fixed point of the mapping f, under the assumptions of the theorem,
this is unique. �

Example 2.2. Let the set X = [−1,+∞), d : X × X → [0,+∞), d(x , y) =
∣∣∣x − y

∣∣∣, and the mapping
f : X→ X, where

fx =


x
2 + 1, if x ∈ [−1, 0)

1, if x ∈ [0, 1]
1
x , if x > 1

.

Let also α : X × X→ [0,+∞) defined as follows

α(x , y) =


3
4 , if x , y ∈ [−1, 0)

x 2 + y2 + 1, if x , y ∈ [0, 1]
1, if x ∈ [−1, 0), y ∈ [0, 1]
0, otherwise

.

It is easy to check that, with these chooses, f is a continuous triangular α-orbital admissible mapping
and also, it follows that the mapping f satisfies the conditions (a2) from Definition (2.1). Moreover, f
satisfies the condition (a1), considering δ(E) = 1 − E in case of E < 1 and δ(E) = 1 for E ≥ 1.
Consequently, f satisfies the conditions of Theorem 2.3 and has a unique fixed point, u = 0.

In particular, for the case s = 0, the continuity assumption of the mapping f can be replace by the
condition (R).

Theorem 2.4. We presume that f : (X, d)→ (X, d) ∈ T α
X and fulfills

(ai) for given E > 0, there exists δ > 0 such that

E < O(x , y) < E + δ implies α(x , y)d(fx , fy) ≤ E, (2.21)

with

O(x , y) = max

d(x , y), (d(x , fx ))β1
(
d(y , fy)

)β2

(
d(x , fy) + d(y , fx )

4

)β3
 ,

for all x , y ∈ X, where βi ≥ 0, i = 1, 2, 3 so that β1 + β2 + β3 = 1;
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(aii)
α(x , y)d(fx , fy) < O(x , y). (2.22)

The mapping f has a unique fixed point provided that:

(α1) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;
(α3) α(u, v) ≥ 1 for any u, v ∈ Ff(X);
(α2) if the sequence {xn} in X is such that for each n ∈ N

α(xn, xn+1) ≥ 1 and lim
n→+∞

xn = x ∈ X,

then there exists a subsequence
{
xn( j)

}
of {xn} such that

α(xn( j), x ) ≥ 1, for each j ∈ N.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1. Then, we know (following the proof of Theorem 2.3) that
the sequence {xn}, with xn = fnx0 is convergent; let u = lim

n→+∞
xn. On the other hand, from (α2), we can

find a subsequence
{
xn( j)

}
of {xn} such that

α(xn( j), u) ≥ 1, for each j ∈ N.

Since we can suppose that d(xn( j)+1, fu) > 0, from (aii) we have

d((xn( j)+1, fu)) ≤ α(xn( j), u)d(fxn( j), fu) < O(x , y)

= max
{
d(xn( j), u),

(
d(xn( j), fxn( j))

)β1
(d(u, fu))β2

(d(xn( j),fu)+d(u,fxn( j))
4

)β3
}

= max
{
d(xn( j), u),

(
d(xn( j), xn( j)+1)

)β1
(d(u, fu))β2

(d(xn( j),fu)+d(u,xn( j)+1)
4

)β3
}
.

Letting n→ +∞ in the above inequality, we get d(u, fu) = 0. Thus, fu = u.
To proof the uniqueness, we consider that we can find another fixed point of f. From (aii), we have

d(u, v) = d(fu, fv) ≤ α(u, v)d(fu, fv) < O(u, v) = d(u, v) < d(u, v),

which is a contradiction. Therefore, u = v. �

Considering α(x , y) = 1 in the above theorems, we can easily obtain the following result.

Definition 2.2. A mapping f : (X, d)→ (X, d) is called hybrid Jaggi-Meir-Keeler type contraction on X
if for all distinct x , y ∈ X we have:

(a1) for given E > 0, there exists δ > 0 such that

E < max
{
d(x , y),Rs

f (x , y)
}
< E + δ =⇒ d(fx , fy) ≤ E; (2.23)

(a2) whenever Rf(x , y) > 0,
d(fx , fy) < max

{
d(x , y),Rs

f (x , y)
}
. (2.24)

Corollary 2.1. Any hybrid Jaggi-Meir-Keeler type contraction f : (X, d) → (X, d) possesses a unique
fixed point provided that f is continuous or f2 is continuous.
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