

AIMS Mathematics, 7(7): 12689–12701. DOI:10.3934/math.2022702 Received: 05 January 2022 Revised: 07 April 2022 Accepted: 17 April 2022 Published: 29 April 2022

http://www.aimspress.com/journal/Math

Research article

On cubic semisymmetric bi-Cayley graphs on nonabelian simple groups

Jiangmin Pan*and Yingnan Zhang

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan, 650221, China

* Correspondence: Email: jmpan@ynu.edu.cn.

Abstract: In this paper, we classify cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, extending a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple groups.

Keywords: semisymmetric graph; bi-Cayley graph; nonabelian simple group **Mathematics Subject Classification:** 20B15, 20B30, 05C25

1. Introduction

Graphs considered in this paper are finite, simple and undirected. For a graph Γ , we denote by $V\Gamma$, $E\Gamma$ and $A\Gamma$ the vertex set, the edge set and the arc set of Γ respectively, and by Aut Γ the full automorphism group of Γ . If some $G \leq Aut\Gamma$ is transitive on $V\Gamma$, $E\Gamma$ or $A\Gamma$, then Γ is called *G-vertex-transitive*, *G-edge-transitive* or *G-arc-transitive*, respectively. An arc-transitive graph is also called *symmetric*. If *G* is transitive on $E\Gamma$ but intransitive on $V\Gamma$, then Γ is called *G-semisymmetric*, and Γ is simply called *semisymmetric* while Γ is Aut Γ -semisymmetric. It is easily known that connected *G*-semisymmetric graphs are bipartite.

Suppose *G* is a group acting on a set Ω . The *stabilizer* of *G* on a point $\alpha \in \Omega$ is the subgroup $G_{\alpha} = \{g \in G \mid \alpha^g = \alpha\}$. Then *G* is said to be *semiregular* on Ω if $G_{\alpha} = 1$ for each point α in Ω , and *regular* on Ω if *G* is semiregular and transitive on Ω . A graph Γ is said to be a *Cayley graph* on a group *G* if $G \leq \operatorname{Aut}\Gamma$ is regular on $V\Gamma$, and a *bi-Cayley graph* on a group *G* if $G \leq \operatorname{Aut}\Gamma$ is semiregular and has exactly two orbits (with the same length) on $V\Gamma$. In particular, Γ is called *normal* on *G* if *G* is normal in $\operatorname{Aut}\Gamma$, and *nonnormal* on *G* otherwise. Moreover, follow the notion in [5], a semisymmetric bi-Cayley graph Γ on a group *G* is called *almost-normal* if the normalizer $N_{\operatorname{Aut}\Gamma}(G)$ is semisymmetric on Γ .

Cayley graphs on nonabelian simple groups have received much attention in the literature, see [8, 10, 11, 16–20, 25–29] and references therein. Here a remarkable contribution is the complete classification

of connected cubic nonnormal symmetric Cayley graphs on nonabelian simple groups, which was first studied by Li [15] in 1996 and completed by Xu et al. [25, 26] in 2007. It finally turns out that such graphs are only two (A₄₈, 5)-arc-transitive Cayley graphs on A₄₇. Bi-Cayley graphs can be viewed as natural generalizations of Cayley graphs, and involve many interesting examples that are not Cayley graphs such as the Petersen graph, the Gray graph [2] (which is the smallest cubic semisymmetric graph and a bi-Cayley graph on the extraspecial metacyclic group \mathbb{Z}_9 : \mathbb{Z}_3 of order 27) and Bouwer graph [3]. Thus the above remarkable classification naturally motivates us to classify connected cubic (normal and nonnormal) semisymmetric bi-Cayley graphs on nonabelian simple groups.

Theorem 1.1. Let Γ be a connected cubic semisymmetric bi-Cayley graph on a nonabelian simple group T. Then either

- (1) Γ is normal on T, and Aut $\Gamma = T : \mathbb{Z}_3$ or $T : S_3$; or
- (2) Γ is nonnormal on T, and Aut $\Gamma = (R \times S).O$, where S > T, $(S, T) = (M_{24}, M_{23})$ or (A_n, A_{n-1}) with $n \in \{12, 24, 48, 96, 192, 384\}$, |R||O| divides 384/|S| : T| and $O \leq Out(S)$.

Applying Theorem 1.1, the connected cubic nonnormal semisymmetric bi-Cayley graphs on nonabelian simple groups may be determined by computation with Magma package [1], see Example 3.5 for a specific example with $T = M_{23}$.

Normal semisymmetric bi-Cayley graphs are definitely almost-normal, but the converse is not necessarily true. In fact, determining the normality of Cayley or bi-Cayley graphs is difficult in general for finding the full automorphism groups. However, Theorem 1.1 has the following interesting consequence which shows that, for connected cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, the normality and the almost-normality are equivalent.

Corollary 1.2. A connected cubic semisymmetric bi-Cayley graph on a nonabelian simple group T is normal on T if and only if it is almost-normal on T.

The importance of Corollary 1.2 is that it may lead to an explicit characterization of normal semisymmetric bi-Cayley graphs on nonabelian simple groups. To express the result, we first introduce a general construction of bi-Cayley graphs. Let G be a group, R and L be inverse-closed subsets (may empty) of $G \setminus \{1\}$, and let S be a nonempty subset of G. Define a graph $\Gamma = \text{BiCay}(G, R, L, S)$ with vertex set

$$\{g_0 \mid g \in G\} \cup \{g_1 \mid g \in G\},\$$

and edge set

$$\{\{g_0, h_0\} \mid hg^{-1} \in R\} \cup \{\{g_1, h_1\} \mid hg^{-1} \in L\} \cup \{\{g_0, h_1\} \mid hg^{-1} \in S\}.$$

It is easily known that Γ is a bi-Cayley graph on a group isomorphic to G, and each bi-Cayley graph can be constructed in this way (refer to [29]). Also, one may assume $1 \in S$ up to isomorphism.

Theorem 1.3. A graph Γ is a connected cubic normal semisymmetric bi-Cayley graph on a nonabelian simple group T if and only if that

$$\Gamma \cong \mathsf{BiCay}(T, \emptyset, \emptyset, \{1, s, ss^g\})$$

for some $s \in T$ and $g \in Aut(T)$ satisfying

$$o(g) = 3, ss^g s^{g^2} = 1, \langle s, s^g \rangle = T,$$

and there exists no element $h \in Aut(T)$ satisfying $\{s, ss^g\}^h = \{s^{-1}, (ss^g)^{-1}\}$.

AIMS Mathematics

Volume 7, Issue 7, 12689–12701.

Theorem 1.3 helps us finding many specific examples or proving the nonexistence of examples for certain nonabelian simple groups via searching in Magma [1]. For example, computation shows that there is no example for $T = A_5$ and A_6 , but exist examples for $T = A_7$ and A_8 , see Examples 4.1 and 4.2.

We remark that a result of Tutte [24, P.59] states that an edge-transitive graph of odd valency is either symmetric or semisymmetric, thus this paper together [9] and [21] completes the characterization of cubic edge-transitive bi-Cayley graphs on nonabelian simple groups.

After making some preparations in Section 2, we prove Theorem 1.1 and Corollary 1.2 in Section 3, and Theorem 1.3 in Section 4.

2. Preliminaries

2.1. Background results

Bi-coset graph is an important tool for understanding semi-symmetric graphs. Let *G* be a group and *L*, *R* be subgroups of *G* such that $L \cap R$ is core-free in *G* (namely $L \cap R$ does not contain any nontrivial normal subgroup of *G*). Define a *bi-coset graph* with vertex set $[G : L] \cup [G : R]$, and *Lx* is adjacent to *Ry* with *x*, *y* \in *G* if and only if *yx*⁻¹ \in *RL*. This bi-coset graph is denoted by Cos(G, L, R).

The following lemma is known, refer to [13, Section 3].

Lemma 2.1. Using notation as above, then Cos(G, L, R) is G-semisymmetric. Conversely, each G-semisymmetric graph is isomorphic to $Cos(G, G_{\alpha}, G_{\beta})$, where α and β are adjacent vertices.

In particular, $Cos(G, G_{\alpha}, G_{\beta})$ is connected cubic *G*-semisymmetric if and only if *G*, *G*_{*a*}, *G*_{*b*} satisfy the following conditions:

- $\langle G_{\alpha}, G_{\beta} \rangle = G,$
- $|G_{\alpha}: G_{\alpha} \cap G_{\beta}| = |G_{\beta}: G_{\alpha} \cap G_{\beta}| = 3$, and
- $G_{\alpha} \cap G_{\beta}$ is core-free in G.

In 1980, a landscape work of Goldschmidt [14] determined all the triples (G_{α} , G_{β} , $G_{\alpha\beta}$) satisfying the above conditions (refer to [22, Table 3]), which are called *Goldschmidt amalgams* after him.

Theorem 2.2 ([14]). Let Γ be a connected cubic *G*-semisymmetric graph. Then there are exactly fifteen possible amalgams ($G_{\alpha}, G_{\beta}, G_{\alpha\beta}$) with α, β adjacent vertices. In particular, $|G_{\alpha}| = |G_{\beta}| = 3 \cdot 2^{i}$ where $0 \le i \le 7$.

Investigating normal quotients of graphs has been very successful in studying various families of graphs. Let Γ be a *G*-edge-transitive graph and let *N* be an intransitive normal subgroup of *G*. The *normal quotient* Γ_N of Γ with respect to *N* is defined to be the graph with the set of *N*-orbits as its vertex set and two *N*-orbits B_1 , B_2 are adjacent if and only if some vertex in B_1 is adjacent in Γ to some vertex in B_2 . The original graph is said to be a *normal cover* of Γ_N if $|\Gamma(\alpha) \cap B_2| = 1$ for each edge $\{B_1, B_2\}$ in Γ_N and $\alpha \in B_1$.

Lemma 2.3. Let Γ be a connected cubic *G*-semisymmetric graph with bipartitions Δ_1 and Δ_2 . Let $N \triangleleft G$ and $\alpha \in V\Gamma$. Then either

(1) N acts transitively on at least one of Δ_1 and Δ_2 ; or

(2) N is semiregular and intransitive on both Δ_1 and Δ_2 , and the following statements are true:

- (i) Γ is a normal cove of Γ_N .
- (ii) $G^{V\Gamma_N} = G/N$, $(G/N)_{\alpha^N} = G_{\alpha}N/N$ and Γ_N is a connected cubic G/N-semisymmetric graph.

Proof. We only need to prove that $(G/N)_{\alpha^N} = G_{\alpha}N/N$ because the other statements are known, see [13, Lemma 5.1] or [19, Lemma 2.3]. For $Ng \in G/N$, one has the following equivalences:

$$Ng \in (G/N)_{\alpha^{N}} \iff (\alpha^{g})^{N} = (a^{N})^{Ng} = \alpha^{N}$$
$$\iff \alpha^{g} = \alpha^{n} \text{ for some } n \in N$$
$$\iff g \in NG_{\alpha}$$
$$\iff Ng \in NG_{\alpha}/N.$$

Therefore $(G/N)_{\alpha^N} = G_{\alpha}N/N$. In particular, if $N_{\alpha} = 1$, then $(G/N)_{\alpha^N} \cong G_{\alpha}/(N \cap G_{\alpha}) = G_{\alpha}/N_{\alpha} = G_{\alpha}$.

For a bi-Cayley graph $BiCay(T, \emptyset, \emptyset, S)$ and $\tau \in Aut(T)$, with bipartitions $T_0 := \{t_0 \mid t \in T\}$ and $T_1 := \{t_1 \mid t \in T\}$. Define

$$\sigma_{\tau,s}: t_0 \to (t^{\tau})_0, t_1 \to (st^{\tau})_1, \text{ for each } t \in T.$$

From [29, Theorem 1.1], we have the following assertion which is important for characterizing normal bi-Cayley graphs.

Lemma 2.4. Let $\Gamma = \text{BiCay}(T, \emptyset, \emptyset, S)$ be a normal bi-Cayley graph on a group T. Then

$$A_{1_0} = \langle \sigma_{\tau,s} \mid \tau \in \operatorname{Aut}(T), s \in S, S^{\tau} = s^{-1}S \rangle.$$

The next lemma is similar to [13, Lemma 6.2], we include a proof here for the convenience of the readers.

Lemma 2.5. Let Γ be a connected cubic *G*-semisymmetric graph with bipartitions Δ_1 and Δ_2 , where *G* is faithful on both Δ_1 and Δ_2 . Suppose further that $K \triangleleft G$ is transitive on Δ_1 and Δ_2 , and $K_{\alpha} \neq 1$ for a vertex α of Γ . Then $K_{\nu}^{\Gamma(\nu)} \geq \mathbb{Z}_3$ is transitive for each vertex ν of Γ .

Proof. Assume $\alpha \in \Delta_i$ with $i \in \{1, 2\}$. Since *G* is faithful on Δ_{3-i} , there exists $\beta \in \Delta_{3-i}$ such that K_{α} does not fix β . By the connectivity of Γ , there exists a path $(\alpha_0, \alpha_1, \dots, \alpha_t)$ with $\alpha_0 = \alpha$ such that K_{α} fixes $\alpha_0, \dots, \alpha_{t-1}$ but moves α_t . It follows that

$$1 \neq K_{\alpha_{t-1}}^{\Gamma(\alpha_{t-1})} \triangleleft G_{\alpha_{t-1}}^{\Gamma(\alpha_{t-1})}.$$

Since Γ is a *G*-semisymmetric cubic graph, $G_{\alpha_{t-1}}^{\Gamma(\alpha_{t-1})}$ is primitive, hence $K_{\alpha_{t-1}}^{\Gamma(\alpha_{t-1})}$ is transitive.

Without loss of generality, we may assume $\alpha_{t-1} \in \Delta_1$ and $\alpha_t \in \Delta_2$. Let $\{\beta_1, \beta_2\}$ be an edge of Γ with $\beta_1 \in \Delta_1$ and $\beta_2 \in \Delta_2$. Since *K* is transitive on Δ_1 , there is $x \in K$ such that $\beta_1^x = \alpha_{t-1}$, hence $\{\beta_1, \beta_2\}^x = \{\alpha_{t-1}, \beta_2^x\}$ is an edge of Γ . Now both α_t and β_2^x are in $\Gamma(\alpha_{t-1})$, the transitivity of $K_{\alpha_{t-1}}^{\Gamma(\alpha_{t-1})}$ implies that there is $y \in K_{\alpha_{t-1}}$ such that $(\beta_2^x)^y = \alpha_t$. It follows that $y^{-1}x^{-1} \in K$ such

$$\{\alpha_{t-1}, \alpha_t\}^{y^{-1}x^{-1}} = \{\beta_1, \beta_2\},\$$

namely Γ is *K*-edge-transitive. Thereby $K_v^{\Gamma(v)} \ge \mathbb{Z}_3$ is transitive for each vertex $v \in V\Gamma$.

AIMS Mathematics

Volume 7, Issue 7, 12689–12701.

Let G = N.H be a group extension. If N is contained in Z(G), the center of G, then the extension is called a *central extension*, and if further G is perfect, that is, the commutator subgroup G' equals to G, we call G a *covering group* of H. Schur [23] proved that every nonabelian simple group T admits a unique maximal covering group M such that each covering group of T is a homomorphic image of M; the center Z(M) is called the *Schur multiplier* of T, denoted by Mult(T). The next result states that each central extension N.T with T nonabelian simple can derive a covering group of T, refer to [20, Lemma 2.11].

Lemma 2.6. Let G = N.T be a central extension with T a nonabelian simple group. Then G = NG' and G' = Z(G').T is a covering group of T, where $Z(G') = N \cap G'$ is a quotient of Mult(T).

The next lemma can be read out from [11, Lemma 3.3].

Lemma 2.7. Let T < S be nonabelian simple groups. If |S : T| | 384, then either

(1) $(S,T) = (A_n, A_{n-1})$ with $n \ge 6$ dividing 384; or

(2) $(S, T) = (M_{11}, PSL_2(11)), (M_{12}, M_{11}) \text{ or } (M_{24}, M_{23}).$

With similar arguments as in [8, P. 143], the following lemma is easy to prove by checking the nonabelian simple groups contained in GL(e, 2) for $3 \le e \le 7$.

Lemma 2.8. Let L = R: T be a split extension, where |R| | 384 and T is a nonabelian simple group. Then either

(a) $L = R \times T$; or (b) $L \neq R \times T$, $T \leq GL(e, 2)$ with $2^e | |R|$, and e and T satisfy one of the following: (b.1) e = 3 and $T = PSL_3(2)$. (b.2) e = 4 and $T \in \{PSL_3(2), PSL_4(2), A_5, A_6, A_7\}$. (b.3) e = 5 and $T \in \{PSL_3(2), PSL_4(2), PSL_5(2), A_5, A_6, A_7\}$. (b.4) e = 6 and $T \in \{PSL_k(2) \ (3 \leq k \leq 6), PSL_2(8), A_5, A_6, A_7, PSU_3(3), PSU_4(2), PSp_6(2)\}$. (b.5) e = 7 and $T \in \{PSL_k(2) \ (3 \leq k \leq 7), PSL_2(8), A_5, A_6, A_7, PSU_3(3), PSU_4(2), PSp_6(2)\}$.

2.2. Preparatory lemmas

The solvable radical of a group is its largest solvable normal subgroup.

Lemma 2.9. Let T be a nonabelian simple group, and let Γ be a connected cubic semisymmetric bi-Cayley graph on T. Suppose R is the solvable radical of Aut Γ and $3 \mid |R|$. Then $RT = R \times T$.

Proof. Write L = RT, $A = \operatorname{Aut}\Gamma$ and let $\alpha \in V\Gamma$. As $R \cap T$ is solvable and normal in T, we have $R \cap T = 1$ and L = R : T is a split extension. Since Γ is a semisymmetric bi-Cayley graph on T, we obtain $|L : L_{\alpha}| = |V\Gamma|/2 = |T|$, so $|L_{\alpha}| = |R|$ is divisible by 3. By Theorem 2.2, $|R| = |L_{\alpha}|$ divides $3 \cdot 2^7 = 384$, and the kernel of A_{α} acting on $\Gamma(\alpha)$ is a 2-group, we deduce $3 ||L_{\alpha}^{\Gamma(\alpha)}|$, and Γ is L-semisymmetric. If $2^3 \nmid |R|$, Lemma 2.8 leads to $L = R \times T$, as required. Thus assume in the following that $2^3 ||R|$. Then 24 ||R| as 3 ||R|.

Let R_2 be a Sylow 2-subgroup of R and let $S = \{R_2^r \mid r \in R\}$, the set of the conjugate subgroups of R_2 in R. Since |R| divides 384, $|S| = |R : N_R(R_2)|$ divides 3, then the nonabelian simplicity of T implies that T acts trivially on S by conjugation, that is, T normalizes R_2 . Thereby $P := R_2T = R_2 : T \leq L$,

 $|P: P_{\alpha}| = |T|$ and |L: P| = 3. Let *K* be the kernel of *L* acting on [L: P] by right multiplication. Then *K* is the largest normal subgroup of *L* contained in *P* ([7, Example 1.3.4]) and $\mathbb{Z}_3 \le L/K \le S_3$, implying $K \ge T$. Since $|P| = |R_2||T| = |T||P_{\alpha}|$, $K_{\alpha} \le P_{\alpha}$ is a 2-groups.

If A acts unfaithfully on the bipartitions of Γ , by [13, Lemma 5.2], $\Gamma = K_{3,3}$ is arc-transitive, a contradiction. Hence A acts faithfully on the bipartitions of Γ . If $K_{\alpha} \neq 1$, then Lemma 2.5 implies that $K_{\alpha}^{\Gamma(\alpha)} \geq \mathbb{Z}_3$, contradicting that K_{α} is a 2-group. Thus $K_{\alpha} = 1$. Consequently, $T = K \triangleleft L$, and so $L = R \times T$.

Denote by soc(G) the socle of a group G, that is, the product of all minimal normal subgroups of G.

Lemma 2.10. Let Γ be a connected cubic *G*-semisymmetric graph, and let *G* have a nonabelian simple subgroup *T* which has two orbits of the same length on V Γ . Suppose further *G* has a trivial solvable radical. Then *G* is almost simple, and either

- (*a*) soc(G) = T; or
- (b) $\operatorname{soc}(G) > T$, $\operatorname{soc}(G)_{\alpha} \ge \mathbb{Z}_3$ for $\alpha \in V\Gamma$, and Γ is $\operatorname{soc}(G)$ -semisymmetric. Further, one of the following is true:
 - (*b*.1) $(soc(G), T) = (A_n, A_{n-1})$ with n = 6 or $n \ge 12$ dividing 384.
 - (b.2) $(\operatorname{soc}(G), T) = (\mathsf{M}_{24}, \mathsf{M}_{23}).$

Proof. By Theorem 2.2, $|G_{\alpha}| | 384$. Since $|G : G_{\alpha}| = |V\Gamma|/2 = |T : T_{\alpha}|$, it follows that |G| divides 384|T|.

Let *N* be a minimal normal subgroup of *G*. Since *G* has a trivial solvable radical, $N = S_1 \times S_2 \cdots \times S_d = S^d$, where each $S_i \cong S$ is nonabelian simple and $d \ge 1$. Since *T* is nonabelian simple, either $T \cap N = 1$ or $N \ge T$. For the former, |N||T| divides 384|T|, so |N| divides 384, hence *N* is a {2, 3}-group and thus solvable, a contradiction. Therefore $N \ge T$. As distinct minimal normal subgroups of *G* intersect trivially, by the arbitrariness of *T*, we obtain that *N* is the unique minimal normal subgroup of *G*, namely $\operatorname{soc}(G) = N$. If T = N, then $\operatorname{soc}(G) = T$, as in Lemma 2.10(a).

Now suppose T < N. Then $|N : N_{\alpha}| = |T : T_{\alpha}|$, hence $|N| = |T||N_{\alpha} : T_{\alpha}|$ divides 384|T|. Assume $d \ge 2$. Since $S_1 \triangleleft N$ and T < N, we have $S_1 \cap T \triangleleft T$, so $S_1 \cap T = 1$ or T. For the former, then $|S_1T| = |S_1||T|$ divides |N|, and so divides 384|T|. It follows that S_1 is a $\{2, 3\}$ -group and solvable, a contradiction. If the latter occurs, then $T \le S_1$ and $|S|^d = |N|$ divides 384|S|, implying $|S|^{d-1} \mid 384$, also a contradiction.

The above contradiction shows that d = 1, namely soc(G) = S > T. Since $|S : T| = |S_{\alpha} : T_{\alpha}|$ divides 384, the pair (S, T) satisfies Lemma 2.7. In particular $Out(S) \le \mathbb{Z}_{2}^{2}$. Notice that $G_{\alpha} \ge \mathbb{Z}_{3}$ and

$$G_{\alpha}/S_{\alpha} = G_{\alpha}/(S \cap G_{\alpha}) \cong SG_{\alpha}/S = G/S \leq \operatorname{Out}(S) \leq \mathbb{Z}_{2}^{2},$$

we conclude that $S_{\alpha} \geq \mathbb{Z}_3$ is transitive on $\Gamma(\alpha)$, thus Γ is *S*-semisymmetric. Now to complete the proof, we only need to prove $(S, T) \neq (A_8, A_7)$, $(M_{11}, PSL_2(11))$ and (M_{12}, M_{11}) .

If $(S, T) = (M_{11}, PSL_2(11))$, by Frattini argument, $S = TS_{\alpha}$. Notice that $|S_{\alpha}| | 384$, by [12, Theorem 1.1], no such factorization exists, a contradiction.

Let α, β be adjacent vertices of Γ . Then $|S_{\alpha}| = |S_{\beta}|, |T_{\alpha}| = |T_{\beta}|, |S_{\alpha} : S_{\alpha} \cap S_{\beta}| = 3$, and $\langle S_{\alpha}, S_{\beta} \rangle = S$. Recall $|S_{\alpha}| = |S : T||T_{\alpha}|$ divides 384. Set $k = |T_{\alpha}|$, and define

$$S_{k} = \{H \mid H \leq S, |H| = k|S : T|\}, \quad \mathcal{T} = \{H \mid H \leq S, H \cong T\},$$
$$\mathcal{P}_{k} = \{(H_{1}, H_{2}) \mid H_{1}, H_{2} \in S_{k}, |H_{1} : H_{1} \cap H_{2}| = 3, \langle H_{1}, H_{2} \rangle = S\},$$
$$Q_{k} = \{(|H_{1} \cap T|, |H_{2} \cap T|) \mid T \in \mathcal{T}, (H_{1}, H_{2}) \in \mathcal{P}_{k}\}.$$

Then $(S_{\alpha}, S_{\beta}) \in \mathcal{P}_k$ and $(|T_{\alpha}|, |T_{\beta}|) \in Q_k$.

Assume $(S, T) = (A_8, A_7)$. By [6], A_8 has no subgroup with order 384, so $|S_{\alpha}| \neq 384$. Then since $3 \mid |S_{\alpha}|$ and $|S_{\alpha}| = |S : T||T_{\alpha}| = 8k$ divides 384, we conclude $k \in \{3, 6, 12, 24\}$. But searching in Magma [1] shows $|\mathcal{P}_k| = 0$ for each $k \in \{3, 6, 12, 24\}$, a contradiction.

Now assume $(S, T) = (M_{12}, M_{11})$. Then $|S_{\alpha}| \neq 384$ as M_{12} has no subgroup with order 384 by [6]. Since $|S_{\alpha}| = |S : T||T_{\alpha}| = 12k$ divides 384, we deduce $k \in \{1, 2, 4, 8, 16\}$. However, computation with Magma [1] shows $|\mathcal{P}_4| = |\mathcal{P}_8| = 0$, so $k \neq 4$ and 8. For k = 1, 2, 16, computation shows $Q_1 = \{(1, 3), (3, 1)\}, Q_2 = \{(2, 6), (2, 3), (3, 2), (6, 2)\}$ and $Q_{16} = \{(24, 16), (48, 16), (16, 24), (16, 48)\}$, contradicting $|T_{\alpha}| = |T_{\beta}|$.

3. Proof of Theorem 1.1

For convenience, we make the following hypothesis in this section.

Hypothesis 3.1. Let T be a nonabelian simple group, and let Γ be a connected cubic semisymmetric bi-Cayley graph on T. Denote by Δ_1 and Δ_2 the bipartitions of Γ . Set $A = Aut\Gamma$ and $\alpha \in V\Gamma$.

Lemma 3.2. Under Hypothesis 3.1, then $T \neq A_5$.

Proof. If $T = A_5$, then Γ is of order 120. Checking the census of connected semisymmetric cubic graphs on up to 768 vertices ([4]), there is no such graph of order 120 admitting a semiregular automorphism group A_5 , a contradiction.

Lemma 3.3. Under Hypothesis 3.1, and suppose that A has a trivial solvable radical, and T is not normal in A. Then part (2) of Theorem 1.1 is true with R = 1.

Proof. Set S = soc(A). By Lemma 3.2, $T \neq A_5$. Then we see from Lemma 2.10 that S > T is a simple group, $S_{\alpha} \geq \mathbb{Z}_3$ and either $(S, T) = (M_{24}, M_{23})$ or (A_n, A_{n-1}) with $n \geq 12$ a divisor of 384. If the latter case occurs, by Frattini argument, $S = TS_{\alpha}$, then the semiregularity of T derives that $n = |S : T| = |S_{\alpha}|$ is divisible by 3. This together with that $n \geq 12$ divides 384 implies n = 12, 24, 48, 96, 192 or 384, as required.

Lemma 3.4. Under Hypothesis 3.1, and suppose that A has a nontrivial solvable radical R, and T is not normal in A. Then part (2) of Theorem 1.1 is true with $R \neq 1$ and $n \neq 384$.

Proof. If A acts unfaithfully on Δ_1 or Δ_2 , by [13, Lemma 5.2], $\Gamma = K_{3,3}$ is arc-transitive, a contradiction. Thus A acts faithfully on Δ_1 and Δ_2 . Write L = RT. As $R \cap T$ is solvable and normal in T, we obtain that $R \cap T = 1$ and $|L_{\alpha}| = |R| \neq 1$. By Theorem 2.2, $|A| = |T||A_{\alpha}|$ divides 384|T|, so |L| divides 384|T|. Hence $|R| \mid 384$. If R is transitive on Δ_1 or Δ_2 , then |T| divides |R|, thus T is a {2, 3}-group and solvable, a contradiction. Therefore R is not transitive on both Δ_1 and Δ_2 . It then follows from Lemma 2.3 that

R is semiregular on both Δ_1 and Δ_2 , $A/R \leq \text{Aut}(\Gamma_R)$, and the quotient Γ_R is a connected cubic A/Rsemisymmetric graph. Moreover, notice that A/R has a trivial solvable radical, and $L/R \cong T$ has two orbits with equal length on $V\Gamma_R$, hence the triple $(\Gamma_R, G/R, L/R)$ (as (Γ, G, T) there) satisfies Lemma 3.3. Consequently (note $T \neq A_5$ by Lemma 3.2), A/R is almost simple, and either

- (a) soc(A/R) = L/R; or
- (b) $\operatorname{soc}(A/R) > L/R \cong T$, $\operatorname{soc}(A/R)_{\alpha} \ge \mathbb{Z}_3$ and Γ_R is $\operatorname{soc}(A/R)$ -semisymmetric. Further, one of the following is true:
 - (b.1) $(\text{soc}(A/R), L/R) = (A_n, A_{n-1})$ where $n \ge 12$ divides 384.
 - (b.2) $(\operatorname{soc}(A/R), L/R) = (M_{24}, M_{23}).$

Assume (a) occurs. Then $L \triangleleft A$. Since A acts faithfully on \varDelta_1 and \varDelta_2 , and $|L_{\alpha}| = |R| \neq 1$, by Lemma 2.5, $L_{\alpha}^{\Gamma(\alpha)} \ge \mathbb{Z}_3$, so $3 \mid |R|$. It then follows from Lemma 2.9 that $L = R \times T$, hence $T \triangleleft A$, a contradiction.

Assume (b) occurs. If $L \neq R \times T$, as |R| | 384, *T* satisfies part (b) of Lemma 2.8, which violates that $T \cong L/R$ satisfies (b.1) or (b.2) above, a contradiction. Thus $L = R \times T$. Suppose $S = M/R = \operatorname{soc}(A/R)$ and $C = C_M(R)$. Then $T \leq C \triangleleft M$ and $C \cap R = Z(R) \leq Z(C)$. Observe $1 \neq C/(C \cap R) \cong CR/R \triangleleft M/R = S$, we derive that M = CR, $C \cap R = Z(C)$ and $C = (C \cap R).S$ is a central extension. Now Lemma 2.6 implies that $C' = (C' \cap Z(C)).S$ is a covering group of *S*, and $C' \cap Z(C) = Z(C')$ is a quotient of Mult(*S*). Notice that Mult(M_{24}) = 1 and Mult(A_n) $\cong \mathbb{Z}_2$ for $n \geq 12$.

Suppose Z(C') > 1. Then $Z(C') = \text{Mult}(S) = \mathbb{Z}_2$, $C' \cong \mathbb{Z}_2$. A_n and $(S, T) = (A_n, A_{n-1})$ with $n \ge 12$ dividing 384. Since $Z(C') \triangleleft M$, M/R = S and $RT = R \times T$, we deduce that $Z(C') \le R$ and C' has a subgroup $TZ(C') = T \times Z(C') \cong T \times \mathbb{Z}_2$. However, by [8, Proposition 2.6], the covering group $C' = \mathbb{Z}_2$. A_n with $n \ge 8$ has no subgroup isomorphic to $\mathbb{Z}_2 \times A_{n-1}$, a contradiction.

Therefore Z(C') = 1, and $C' \cong S$ is normal in M, so $C' \cap R = 1$ and $M = R \times C'$ as M/R = S. It follows $A = (R \times C').O$ with $O \leq Out(S)$. Since $|A : A_{\alpha}| = |M : M_{\alpha}| = |T|$, we deduce $|R||O| = |A_{\alpha}|/|S : T|$ divides 384/|S : T|. Finally, for the case $(S, T) = (A_n, A_{n-1})$ with $n \geq 12$ dividing 384, as |R| > 1, $n \neq 384$. Since $C' \triangleleft A$, by Lemma 2.5, $C'_{\alpha} \geq \mathbb{Z}_3$, then the semiregularity of T implies that $n = |S : T| = |C' : T| = |C'_{\alpha}|$ is divisible by 3. Now since $n \geq 12$ divides 384, we derive that $n \in \{12, 24, 28, 96, 192\}$, as in part (2) of Theorem 1.1.

Now we are ready to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let *T* be a nonabelian simple group, and let Γ be a connected cubic semisymmetric bi-Cayley graph on *T*. Set A = Aut Γ . If Γ is nonnormal on *T*, by Lemmas 3.3 and 3.4, part (2) of Theorem 1.1 holds.

Assume Γ is normal on T. Since Γ is semisymmetric, Γ is bipartite, and so we may suppose that $\Gamma = \text{BiCay}(T, \emptyset, \emptyset, S)$, with bipartitions $T_0 := \{t_0 \mid t \in T\}$ and $T_1 := \{t_1 \mid t \in T\}$, and $S = \{1, a, b\}$. By Lemma 2.4,

$$A_{1_0} = \langle \sigma_{\tau,s} \mid \tau \in \operatorname{Aut}(T), s \in S, S^{\tau} = s^{-1}S \rangle,$$

which is transitive on $\Gamma(1_0) = \{1_1, a_1, b_1\}$ by the semisymmetry of Γ . If $\sigma_{\tau,s}$ fixes each vertex in $\Gamma(1_0)$, then

$$1_1 = (1_1)^{\sigma_{\tau,s}} = (s1^{\tau})_1 = s_1, a_1 = (a_1)^{\sigma_{\tau,s}} = (sa^{\tau})_1, b_1 = (b_1)^{\sigma_{\tau,s}} = (sb^{\tau})_1.$$

It follows s = 1, $a^{\tau} = a$ and $b^{\tau} = b$. Since Γ is connected, $\langle a, b \rangle = \langle S \rangle = T$, hence $\tau = 1$ and $\sigma_{\tau,s} = \sigma_{1,1}$ is the identity automorphism of Γ , namely A_{1_0} acts faithfully on $\Gamma(1_0)$. Consequently $\mathbb{Z}_3 \leq A_{1_0} \leq S_3$. Now by Frattini argument, we deduce $A = T : A_{1_0} = T : \mathbb{Z}_3$ or $T : S_3$, part (1) of Theorem 1.1 holds.

Proof of Corollary 1.2. We only need to prove the sufficiency.

Suppose on the contrary that T is a nonabelian simple group, and there is a connected cubic semisymmetric bi-Cayley graph Γ on T such that Γ is almost-normal but not normal on T. Set $A = \operatorname{Aut}\Gamma$ and $G = N_A(T)$. Then Γ is G-semisymmetric, and with the same reason (view G as A there) as in the previous paragraph, we derive that $G = T : \mathbb{Z}_3$ or $T : S_3$. Since, by assumption, T is not normal in A, we see from Theorem 1.1(2) that

$$\mathbf{A} = (\mathbf{R} \times \mathbf{S}).\mathbf{O},$$

where S > T, $(S,T) = (M_{24}, M_{23})$ or (A_n, A_{n-1}) with $n \in \{12, 24, 48, 96, 192, 384\}$, |R||O| divides 384/|S : T| and $O \le Aut(S) \le \mathbb{Z}_2$. If R = 1, as T is maximal in S, we obtain $G \le T.\mathbb{Z}_2$, which is impossible as Γ is G-semisymmetric. Thus $R \ne 1$. Since R centralizes T, $R \le N_A(T) = G$ and so $R \times T \triangleleft G$. This together with $T : \mathbb{Z}_3 \le G \le T : S_3$ implies that $R \ge \mathbb{Z}_3$. Notice that $3 \mid |S : T|$, we derive that $|A_{\alpha}| = |A : T|$ is divisible by 3^2 , which is a contradiction by Theorem 2.2.

We end this section with a specific example of cubic nonnormal semisymmetric bi-Cayley graph on M_{23} .

Example 3.5. Let

- $$\begin{split} G = &\langle (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24), (2,16,9,6,8) \\ &\quad (3,12,13,18,4)(7,17,10,11,22)(14,19,21,20,15), (1,22)(2,11)(3,15)(4,17)(5,9) \\ &\quad (6,19)(7,13)(8,20)(10,16)(12,21)(14,18)(23,24) \rangle, \end{split}$$
- $L = \langle (1, 6, 17, 11)(2, 15, 8, 4)(3, 23, 22, 5)(7, 16, 9, 21)(10, 13, 18, 24)(12, 19, 14, 20), \rangle$
 - (1, 2)(3, 19)(4, 6)(5, 14)(7, 24)(8, 17)(9, 13)(10, 21)(11, 15)(12, 23)(16, 18)(20, 22),
 - (1, 17)(2, 8)(3, 22)(4, 15)(5, 23)(6, 11)(7, 9)(10, 18)(12, 14)(13, 24)(16, 21)(19, 20),
 - (1, 10, 5, 17, 18, 23)(2, 21, 14, 8, 16, 12)(3, 13, 6, 22, 24, 11)(4, 20, 7, 15, 19, 9)
- $R = \langle (1,2)(2,3)(4,6)(21,10)(16,18)(8,17)(7,24)(12,23)(13,9)(20,22)(5,23)(11,15),$
 - (1, 6, 24)(19, 11, 14)(4, 2, 7)(21, 13, 20)(16, 12, 17)(8, 23, 18)(22, 9, 10)(5, 15, 3),
 - (1,17)(19,20)(4,15)(21,16)(6,11)(8,2)(18,10)(7,9)(12,14)(13,24)(22,3)(5,23),
 - $(1, 19)(4, 18)(21, 6)(16, 11)(8, 3)(7, 5)(12, 24)(17, 20)(13, 14)(22, 2)(9, 23)(10, 15)\rangle.$

Let $\Gamma = Cos(G, L, R)$. Then Γ is a connected cubic M_{24} -semisymmetric bi-Cayley graph on M_{23} .

Proof. A direct computation with Magma [1] shows that $L \cong \mathbb{Z}_3 : D_8$, $R \cong S_4$, $\langle L, R \rangle = G \cong M_{24}$ and $|L : L \cap R| = 3$. By Lemma 2.1, Γ is a connected cubic M_{24} -semisymmetric graph. Notice that both L and R are transitive on the set $\{1, 2, ..., 24\}$ and |L| = |R| = 24, they are regular on $\{1, 2, ..., 24\}$. Let $T = G_1$, the stabilizer of G on the point 1. Then $T \cong M_{23}$, G = TL = TR and |G| = |T||L| = |T||R|. It follows that T is regular on the bipartitions of Γ , namely Γ is a bi-Cayley graph on M_{23} . Further, by [9, Lemma 7.1], Γ is not arc-transitive, hence Γ is semisymmetric. Finally as $|G| = 24|M_{23}|$, by Theorem 1.1, Γ is nonnormal on M_{23} .

4. Proof of Theorem 1.3

For a nonabelian simple group T, we may view T as a normal subgroup of Aut(T) up to isomorphism, and then each element in Aut(T) may acts on T by conjugate action.

Proof of Theorem 1.3. (Necessity) By assumption, we may assume $\Gamma = \text{BiCay}(T, \emptyset, \emptyset, S)$ with bipartitions $T_0 := \{t_0 \mid t \in T\}$ and $T_1 := \{t_1 \mid t \in T\}$, and $1 \in S$. Then $S_1 = \Gamma(1_0)$ and |S| = 3. By [29, Theorem 1.1],

$$A_{1_0} = \langle \sigma_{\theta,s} \mid \theta \in \mathsf{Aut}(T), s \in S, S^{\theta} = s^{-1}S \rangle$$

acts faithfully on $\Gamma(1_0) = S_1$, and A_{1_0} contains an element $\sigma_{g,s}$ with order 3 which cyclically permutes all the elements of S_1 , where $g \in Aut(T)$ and $s \in S$. It follows $S_1 = 1_1^{\langle \sigma_{g,s} \rangle} = \{1_1, s_1, (ss^g)_1\}$ and $S = \{1, s, ss^g\}$. The connectivity of Γ forces $\langle s, s^g \rangle = \langle S \rangle = T$. Since $o(\sigma_{g,s}) = 3$, for each $t \in T$, $t_0 = (t_0)^{\sigma_{g,s}^3} = (t^{g^3})_0$ and $t_1 = (t_1)^{\sigma_{g,s}^3} = (ss^g s^{g^2} t^{g^3})_1$, or equivalently $g^3 = 1$ and $ss^g s^{g^2} = 1$. If g = 1, then $\langle S \rangle = \langle 1, s, s^2 \rangle = \langle s \rangle \neq T$, contradicting the connectivity of Γ . Hence o(g) = 3. Moreover, since Γ is not vertex-transitive, by [5, Proposition 3.3(a)], there is no $h \in Aut(T)$ such that $S^h = S^{-1}$, namely $\{s, ss^g\}^h = \{s^{-1}, (ss^g)^{-1}\}$.

(Sufficiency) Suppose $\Gamma = \text{BiCay}(T, \emptyset, \emptyset, \{1, s, ss^g\})$, where $s \in T$ and $g \in \text{Aut}(T)$ satisfy the condition in Theorem 1.3. Clearly Γ is a cubic bi-Cayley graph on T. Set $P = \{1, s, ss^g\}$ and $G = \langle T, \sigma_{g,s} \rangle$. By [29, Theorem 1.1], $G = T : \langle \sigma_{g,s} \rangle \leq N_{\text{Aut}\Gamma}(T)$. Since $\langle P \rangle = T$, Γ is connected. Since $P = (1_1)^{\langle \sigma_{g,s} \rangle}$, Γ is *G*-semisymmetric.

We claim that Γ is semisymmetric (note that a *G*-semisymmetric graph is not necessarily semisymmetric in general). If not, as Γ is of valency 3, Γ is symmetric and $G < \operatorname{Aut}\Gamma$. If $T \triangleleft \operatorname{Aut}\Gamma$, by [5, Proposition 3.3(a)], there is an element $h \in \operatorname{Aut}(T)$ such that $\{1, s, ss^{g}\}^{h} = S^{h} = S^{-1} =$ $\{1, s^{-1}, (ss^{g})^{-1}\}$, which is not possible by the assumption. If *T* is not normal in $\operatorname{Aut}\Gamma$, by [21, Theorem 1.1(2)], we would have that $T = \operatorname{A}_{n-1}$ and $\operatorname{Aut}\Gamma = (R \times \operatorname{A}_{n}).O$, where $n \in \{24, 48, 96\}$ and $|R||O| \mid \frac{96}{n}$. Notice that A_{n-1} is maximal in A_{n} and $\frac{96}{n} \mid 4$, we deduce that $|N_{\operatorname{Aut}\Gamma}(T) : T|$ divides 4, which is also not possible as $T : \mathbb{Z}_{3} \leq G \leq N_{\operatorname{Aut}\Gamma}(T)$.

Therefore, Γ is semisymmetric. Hence Γ is almost-normal as $G \leq N_{Aut\Gamma}(T)$. Now Corollary 1.2 implies that Γ is normal on T.

We finally address two examples of normal cubic semisymmetric bi-Cayley graphs on A_7 and A_8 , respectively.

Example 4.1. Let s = (1, 6, 2, 5, 4, 3, 7), g = (1, 5, 4) and $\Gamma = BiCay(A_7, \emptyset, \emptyset, \{1, s, ss^g\})$. Then Γ is a connected cubic semisymmetric normal bi-Cayley graph on A_7 and $Aut\Gamma = (\mathbb{Z}_3 \times A_7) : \mathbb{Z}_2$.

Proof. Obviously $val(\Gamma) = |\{1, s, ss^g\}| = 3$. With Magma [1], one may check that $\langle s, s^g \rangle = A_7$, $ss^g s^{g^2} = 1$, $Aut\Gamma = (\mathbb{Z}_3 \times A_7) : \mathbb{Z}_2$ and there is no element $h \in S_7$ such that $\{s, ss^g\}^h = \{s^{-1}, (ss^g)^{-1}\}$. By Theorem 1.3, Γ is a connected cubic semisymmetric normal bi-Cayley graph on A_7 .

Example 4.2. Let s = (1, 6, 8)(2, 7, 3, 5, 4), g = (1, 7, 8)(4, 6, 5) and $\Gamma = BiCay(A_8, \emptyset, \emptyset, \{1, s, ss^g\})$. Then Γ is a connected cubic semisymmetric normal bi-Cayley graph on A_8 and $Aut\Gamma = (\mathbb{Z}_3 \times A_8) : \mathbb{Z}_2$.

Proof. Clearly $val(\Gamma) = |\{1, s, ss^g\}| = 3$. A computation with Magma [1] shows that $\langle s, s^g \rangle = A_8$, $ss^g s^{g^2} = 1$, $Aut\Gamma = (\mathbb{Z}_3 \times A_8) : \mathbb{Z}_2$ and there is no element $h \in S_8$ such that $\{s, ss^g\}^h = \{s^{-1}, (ss^g)^{-1}\}$. By Theorem 1.3, Γ is a connected cubic semisymmetric normal bi-Cayley graph on A_8 .

5. Conclusions

This paper classifies cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, which extends a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple groups, and together with former known results, completes the characterization of cubic edge-transitive bi-Cayley graphs on nonabelian simple groups.

Acknowledgments

The authors are very grateful to the referees for the helpful comments. This paper was supported by the National Natural Science Foundation of China (11961076).

Conflict of interest

The authors declare no conflicts of interest.

References

- 1. W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: The user language, *J. Symbolic Comput.*, **24** (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125
- 2. I. Z. Bouwer, An edge but not vertex transitive cubic graph, *Bull. Can. Math. Soc.*, **11** (1968), 533–535. https://doi.org/10.4153/CMB-1968-063-0
- 3. I. Z. Bouwer, Vertex and edge transitive but not 1-transitive graph, *Bull. Can. Math. Soc.*, **13** (1970), 231–237. https://doi.org/10.4153/CMB-1970-047-8
- M. Conder, A. Malnič, D. Marušič, P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin., 23 (2006), 255–294. https://doi.org/10.1007/s10801-006-7397-3
- 5. M. Conder, J.-X. Zhou, Y.-Q. Feng, M.-M. Zhang, Edge-transitive bi-Cayley graphs, *J. Combin. Theory Ser. B*, **145** (2020), 264–306. https://doi.org/10.1016/j.jctb.2020.05.006
- 6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, *Atlas of Finite Groups*, Lonon/New York: Oxford Univ. Press, 1985.
- 7. J. D. Dixon, B. Mortimer, *Permutation Groups*, New York: Springer, 1996. https://doi.org/10.1007/978-1-4612-0731-3
- 8. J. L. Du, Y.-Q. Feng, J.-X. Zhou, Pentavalent symmetric graphs admitting a vertextransitive non-abelian simple groups, *Europ. J. Combin.*, **73** (2017), 134–145. https://doi.org/10.1016/j.ejc.2017.03.007
- 9. J. L. Du, M. Conder, Y,-Q. Feng, Cubic core-free symmetric *m*-Cayley graphs, J. Algebraic Combin., **50** (2019), 143–163. https://doi.org/10.1007/s10801-018-0847-x
- 10. S. F. Du, M. Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. Algebra, 28 (2000), 2685–2715.

- 11. X. G. Fang, X. S. Ma, J. Wang, On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, **118** (2011), 1039–1051. https://doi.org/10.1016/j.jcta.2010.10.008
- 12. M. Giudici, Factorisations of sporadic simple groups, J. Algebra, **304** (2006), 311–323. https://doi.org/10.1016/j.jalgebra.2006.04.019
- 13. M. Giudici, C. H. Li, C. E. Praeger, Analysing finite locally *s*-arc-transitive graphs, *Trans. Amer. Math. Soc.*, **350** (2003), 291–317.
- 14. D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. Math., 111 (1980), 377–406. https://doi.org/10.2307/1971203
- 15. C. H. Li, *Isomorphisms of finite Cayley graphs (Ph.D. thesis)*, The University of Weastern Australia, 1996.
- 16. B. Ling, A two-transitive pentavalent nonnormal Cayley graph on the alternating group A₁₁₉ (in Chinese), *Acta Sci. Natur. Univ. Sunyatseni*, **57** (2018), 85–88.
- 17. B. Ling, A note on tetravalent s-arc-regular Cayley graphs of finite simple groups, *Ars Combin.*, **144** (2019), 49–54. https://doi.org/10.1097/01.BMSAS.0000554724.29762.5b
- B. Ling, B. G. Lou, On arc-transitive pentavalent Cayley graphs on finite nonabelian simple groups, *Graph Combin.*, 33 (2017), 1297–1306. https://doi.org/10.1007/s00373-017-1845-9
- 19. G. X. Liu, Z. P. Lu, On edge-transitive cubic graphs of square-free order, *Europ. J. Combin.*, **45** (2015), 41–46.
- 20. J. M. Pan, Y. Liu, Z. H. Huang, C. L. Liu, Tetravalent edge-transitive graphs of order p²q, Sci. China Math. Ser. A, 57 (2014), 293–302. https://doi.org/10.1007/s11425-013-4708-8
- 21. J. M. Pan, Y. N. Zhang, An explicit characterization of cubic symmetric bi-Cayley graphs on nonabelian simple groups, *Discrete Math.*, in press.
- 22. C. W. Parker, Semisymmetric cubic graphs of twice odd order, *Europ. J. Combin.*, **28** (2007), 572–591. https://doi.org/10.1016/j.ejc.2005.06.007
- 23. I. Schur, Untersuchen über die Darstellung der endlichen Gruppen durch gebrochenen linearen Substitutionen, J. Reine Angew. Math., 132 (1907), 85–137. https://doi.org/10.1515/crll.1907.132.85
- 24. W. T. Tutte, *Connectivity in graphs*, Toronto: Toronto Univ. Press, 1966. https://doi.org/10.3138/9781487584863
- 25. S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, On cubic *s*-arc-transitive Cayley graphs on finite simple groups, *Europ. J. Combin.*, **26** (2005), 133–143. https://doi.org/10.1016/j.ejc.2003.10.015
- 26. S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, 5-arc-transitive cubic graphs on finite simple groups, *Europ. J. Combin.*, 28 (2007), 1023–1036. https://doi.org/10.1016/j.ejc.2005.07.020
- 27. F. G. Yin, Y. Q. Feng, Symmetric graphs of valency 4 having a quasi-semiregular automorphism, *Applied Math. Comput.*, **399** (2021), 126014. https://doi.org/10.1016/j.amc.2021.126014
- 28. F. G. Yin, Y. Q. Feng, J. X. Zhou, S. S. Chen, Arc-transitive Cayley graphs on nonabelian simple groups with prime valency, J. Combin. Theory Ser. A, 177 (2021), 105303. https://doi.org/10.1016/j.jcta.2020.105303

29. J. X. Zhou, Y. Q. Feng, The automorphisms of bi-Cayley graphs, J. Combin. Theory Ser. B, 116 (2016), 504–532.

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)