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1. Introduction

For a, b, c ∈ R with c , 0,−1,−2, · · · , the Gaussian hypergeometric function is defined by [1, 3, 4,
25]

F(a, b; c; x) = 2F1(a, b; c; x) =

∞∑
n=0

(a, n)(b, n)
(c, n)

xn

n!
, x ∈ (−1, 1), (1.1)

where (a, n) denotes the shifted factorial function (a, n) ≡ a(a + 1) · · · (a + n − 1) for n ∈ N, and
(a, 0) = 1 for a , 0. It is well known that F(a, b; c; x) is widely applied in geometric function theory,
theory of mean values as well as in many other fields of mathematics and some other disciplines. Many
elementary functions and special functions in mathematical physics are particular or limiting cases of
the Gaussian hypergeometric function. F(a, b; c; x) is said to be zero-balanced if c = a + b. For the
known properties of F(a, b; c; x), the readers are referred to [1, 3, 4, 7, 8, 13, 15, 18, 20, 21, 23, 26].

As the special cases of the Gaussian hypergeometric function, for r ∈ (0, 1), a ∈ (0, 1), the
generalized elliptic integrals of the first and the second kinds are defined by [5, 6, 24].

Ka(r) =
π

2
F

(
a, 1 − a; 1; r2

)
, (1.2)
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Ea(r) =
π

2
F

(
a − 1, 1 − a; 1; r2

)
, (1.3)

Ka(0) =
π

2
, Ka(1−) = ∞, Ea(0) =

π

2
, Ea(1−) =

sin(πa)
2(1 − a)

.

Set K ′
a (r) = Ka(r′), E ′a (r) = Ea(r′). Here and hereafter we always let r′ =

√
1 − r2 for r ∈ [0, 1]. Note

that, when a = 1/2, the functions Ka(r) and Ea(r) reduce to the classical complete elliptic integrals
K (r) and E (r) of the first and second kind [3, 4].

K (r) =
π

2
F

(
1/2, 1/2; 1; r2

)
for r ∈ (0, 1), K (0) =

π

2
, K (1−) = ∞, (1.4)

E (r) =
π

2
F

(
−1/2, 1/2; 1; r2

)
for r ∈ (0, 1), E (0) =

π

2
, E (1−) = 1. (1.5)

Set K ′(r) = K (r′), E ′(r) = E (r′).
Let γ = lim

n→∞

(
1 + 1

2 + 1
3 + · · · + 1

n − log n
)

= 0.577156649 · · · be the Euler-Mascheroni constant. For
a > 0, b > 0, the Gamma, Psi and Beta functions are defined respectively by [1, 3, 4]

Γ(a) =

∫ ∞

0
ta−1e−tdt, ψ(a) =

Γ′(a)
Γ(a)

, B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

.

The so-called Ramanujan R-function R(a) is defined by [11, 13]

R(a) = −2γ − ψ(a) − ψ(1 − a), a ∈ (0, 1), (1.6)

which is the special case of the following function of two parameters a and b.

R(a, b) = −2γ − ψ(a) − ψ(b), for a, b ∈ (0,+∞),

which is sometimes called the Ramanujan constant although it is a function of a and b ( [11]).
For a ∈ (0, 1), we set [5, 12]

B(a) = B(a, 1 − a) = Γ(a)Γ(1 − a) =
π

sin(πa)
. (1.7)

By the symmetry, we can sometimes assume that a ∈ (0, 1/2] in (1.6) and (1.7).
In the past few years, the complete elliptic integrals [5], the generalized elliptic integrals [11, 12]

and the p-elliptic integrals [14,27] have been studied by many authors. The recent interest is motivated
by applications to geometric function theory.

In 2000, Anderson, Qiu, Vamanamurthy, and Vuorinen obtained some results in [6] as follows.

Theorem 1.1 (See [6]). Let a ∈ (0, 1/2] be given, and let b = 1−a, c = (sin(πa))/b. Then the functions
(1)

f̂1(r) ≡ r′2Ka(r)/Ea(r)

is decreasing from (0, 1) onto (0, 1).
(2)

f̂2(r) ≡ [(π/2)2 − (r′Ka(r))2]/[Ea(r) − r′2Ka(r)]

is increasing from (0, 1) onto (π(a2 + b2)/(2a), π2/(2c)).
(3)

f̂3(r) ≡ (Ea(r) − r′2Ka(r))/r2

is increasing and convex from (0, 1) onto (πa/2, c/2).

AIMS Mathematics Volume 7, Issue 7, 12471–12482.



12473

In order to estimate the Robin capacity, Anderson, Qiu, and Vamanamurthy in [5] dealt with the
convexity properties of the functions (E ′− r2K ′)/(r′)2 and [(E − r′2K )/r2]/[(E ′− r2K ′)/(r′)2]. They
proved the following theorem.

Theorem 1.2 (See [5]). For r ∈ (0, 1), there exists r0 ∈ (0, 1) such that the function

F1(r) ≡
E ′ − r2K ′

r′2
,

is concave on (0, r0) and convex on (r0, 1).

Theorem 1.3 (See [5]). For r ∈ (0, 1), the function

F2(r) ≡
[E − r′2K ]/r2

[E ′ − r2K ′]/(r′)2

is strictly increasing and convex from (0, 1) onto (π/4, 4/π). In particular, for r ∈ (0, 1)

π

4
< F2(r) <

π

4
+

(
4
π
−
π

4

)
r.

The corresponding properties of the additive counterpart (E − r′2K )/r2 − (E ′ − r2K ′)/(r′)2 are
obtained by Alzer and Richard in [2]. They proved the following theorem.

Theorem 1.4 (See [2]). For r ∈ (0, 1), the function

F3(r) ≡
E − r′2K

r2 −
E ′ − r2K ′

r′2
,

is strictly increasing and convex from (0, 1) onto (π/4 − 1, 1 − π/4). Moreover, for all r ∈ (0, 1), the
double inequality

π

4
− 1 + αr < F3(r) <

π

4
− 1 + βr,

holds for all r ∈ (0, 1) with the best constants

α = 0, and β = 2 − π/2 = 0.42920 · · · .

In 2019, Wang et al. [22] generalized Theorem 1.2 to the generalized elliptic integrals and obtained
analogous properties. In 2017, Huang et al. [12] generalized Theorem 1.3 and Theorem 1.4 to the
generalized elliptic integrals. So it is natural to ask that how to extend these results to zero-balanced
Gaussian hypergeometric function F(a, b; a+b; x) ? The purpose of this paper is to solve this question.

For the purpose, we require some more properties of the zero-balanced Gaussian hypergeometric
function, so we will give some lemmas in Section 2. In the last section, we will present our main results
and their proofs.
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2. Preliminaries

In this section, we give a definition and some lemmas needed in the proofs of our main results in
Section 3. Firstly, we recall some formulas below. By [1, 3, 15], the hypergeometric function has the
following simple differentiation formula

d
dx

F(a, b; c; x) =
ab
c

F(a + 1, b + 1; c + 1; x)

and it is well known that

F(a, b; c; x) = (1 − x)c−a−bF(c − a, c − b; c; x), (2.1)

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, c > a + b, (2.2)

B(a, b)F(a, b; a + b; x) + log(1 − x) = R(a, b) + O((1 − x) log(1 − x)), x→ 1. (2.3)

Definition 2.1. A function f is said to be strictly completely monotonic on an interval I ⊂ R if
(−1)n f (n)(x) > 0 for all x ∈ I and n = 0, 1, 2, 3 · · · . If (−1)n f (n)(x) ≥ 0 for all x ∈ I and
n = 0, 1, 2, 3 · · · , then f is called completely monotonic on I.

Completely monotonic functions play a dominant role in areas such as numerical analysis [19],
probability theory [10], special function theory [1] and physics [9].

The following lemmas will be frequently applied in the sequel.

Lemma 2.1. (See [15, Lemma 2.1]) Let −∞ < a < b < ∞, f , g : [a, b] → R be continuous on [a, b]
and differentiable on (a, b), and g′(x) , 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on (a, b),
then so are the functions

f (x) − f (a)
g(x) − g(a)

,
f (x) − f (b)
g(x) − g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2. (See [16, Lemma 2.4]) Suppose that r ∈ (0,∞) is the common radius of convergence of

the real power series A(x) =
∞∑

n=0
anxn and B(x) =

∞∑
n=0

bnxn with bn > 0, and {an/bn} is a non-constant

sequence. Let ϕ(x) = A(x)/B(x).
(1) If there is an n0 ∈ N such that the sequence {an/bn} is increasing (decreasing) for 0 ≤ n ≤ n0, and

decreasing (increasing) for n ≥ n0, then ϕ is increasing (decreasing) on (0, r) if and only if ϕ′(r−) ≥ 0
(ϕ′(r−) ≤ 0, respectively).

(2) If there is an n0 ∈ N such that the sequence {an/bn} is increasing (decreasing) for 0 ≤ n ≤ n0, and
decreasing (increasing) for n ≥ n0, and if ϕ′(r−) < 0 (ϕ′(r−) > 0), then there exists a number x0 ∈ (0, r)
such that ϕ is strictly increasing (decreasing) on (0, x0] and decreasing (increasing, respectively) on
[x0, r).

Lemma 2.3. (See [17, Lemma 1.1]) Suppose that the power series f (x) =
∞∑

n=0
anxn and g(x) =

∞∑
n=0

bnxn

have the radius of convergence r > 0 and that bn > 0 for all n ∈ {0, 1, 2, · · · }. Let h(x) = f (x)/g(x). If
the sequence {an/bn} is (strictly) increasing (decreasing), then h(x) is also (strictly) increasing
(decreasing) on (0, r).
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Lemma 2.4. For a > 0, b > 0, x ∈ (0, 1) and a , 1, we define the function

H(x) ≡
F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

x
,

then we get
H(x) =

a
a + b

F(a, b; a + b + 1; x),

and H is strictly increasing and convex from (0, 1) onto
(

a
a+b ,

1
bB(a,b)

)
.

Proof. By the definition of the Gaussian hypergeometric function in (1.1), we have

H(x) =
F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

x

=
1
x

 ∞∑
n=0

(a − 1, n)(b, n)
(a + b, n)

xn

n!
− (1 − x)

∞∑
n=0

(a, n)(b, n)
(a + b, n)

xn

n!


=

∞∑
n=0

(a, n)(b, n)
(a + b, n + 1)(n + 1)!

· a(n + 1)xn

=
a

a + b

∞∑
n=0

(a, n)(b, n)
(a + b + 1, n)n!

xn

=
a

a + b
F(a, b; a + b + 1; x).

It is clear that H(0+) = a
a+b . By (2.2), H(1−) = 1

bB(a,b) . The remainings conclusion is clear. �

Remark 2.5. Let a ∈ (0, 1/2], b = 1 − a, x = r2, r ∈ (0, 1). From Lemma 2.4, we can obtain the
properties of the function f̂3(r) in Theorem 1.1 which is proved by Anderson et al. in [6].

3. Main results and proofs

Theorem 3.1. For a > 0, b > 0, x ∈ (0, 1) and a , 1, the function

f1(x) ≡
(1 − x)F(a, b; a + b; x)

F(a − 1, b; a + b; x)

is strictly decreasing from (0, 1) onto (0, 1).

Proof. We can write f1(x) as

f1(x) = 1 −
F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

F(a − 1, b; a + b; x)
. (3.1)

Clearly, f1(0+) = 1 and by (2.3), f1(1−) = 0. By (1.1),

F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

=

∞∑
n=0

a − 1
n + a − 1

anxn −

 ∞∑
n=0

anxn −

∞∑
n=1

an−1xn
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=

∞∑
n=1

(
−n

n + a − 1
an + an−1

)
xn

=

∞∑
n=1

a
n + a + b − 1

an−1xn, (3.2)

where an = [(a, n)(b, n)]/[(a + b, n)n!]. By (3.2), F(a−1, b; a + b; x)− (1− x)F(a, b; a + b; x) is positive
and strictly increasing on (0, 1). It is easy to see that F(a − 1, b; a + b; x) is positive for a > 0 and
is strictly decreasing (increasing) for a ∈ (0, 1)(a ∈ (1,∞), respectively). Hence, for a ∈ (0, 1), f1 is
strictly decreasing on (0, 1).

Next, we will study the monotonicity of f1 for a ∈ (1,∞). By (1.1),

f1(x) =
(1 − x)F(a, b; a + b; x)

F(a − 1, b; a + b; x)
=

∑∞
n=0 anxn −

∑∞
n=1 an−1xn∑∞

n=0
a−1

n+a−1anxn
=

∑∞
n=0 bnxn∑∞
n=0 cnxn ,

where b0 = 1, bn = an − an−1, n ≥ 1 and cn = a−1
n+a−1an. Since

b0

c0
−

b1

c1
= 1 −

a1 − a0
a−1

a a1
= 1 −

ab − (a + b)
(a − 1)b

=
a

(a − 1)b
> 0, (3.3)

so by (3.3), b0
c0
> b1

c1
. For n ≥ 1,

bn

cn
=

an − an−1
a−1

n+a−1an
=

n + a − 1
a − 1

(
1 −

an−1

an

)
=

n + a − 1
a − 1

[
1 −

(a + b + n − 1)n
(a + n − 1)(b + n − 1)

]
=

n + a − 1
a − 1

·
ab − a − b − n + 1

(a + n − 1)(b + n − 1)

=
1

a − 1

[
a(b − 1)
b + n − 1

− 1
]
, (3.4)

bn+1

cn+1
−

bn

cn
=

a(b − 1)
a − 1

(
1

b + n
−

1
b + n − 1

)
. (3.5)

Therefore, for a > 1, b > 1, by (3.3) and (3.5), {bn/cn} is strictly decreasing for n = 1, 2, 3, · · · . By
Lemma 2.3, the function f1 is strictly decreasing.

Then, we study the monotonicity of g1 for a ∈ (1,∞), b ∈ (0, 1].
Differentiation of f1(x) gives

f ′1(x) = −
F(a, b; a + b; x)

F(a − 1, b; a + b; x)
+

ab
a + b

F(a, b; a + b + 1; x)
F(a − 1, b; a + b; x)

−
(a − 1)b

a + b
(1 − x)F(a, b; a + b; x)F(a, b + 1; a + b + 1; x)

(F(a − 1, b; a + b; x))2 .

For a > 1, b > 0, x ∈ (0, 1), we have

(1 − x)F(a, b; a + b; x)F(a, b + 1; a + b + 1; x)
(F(a − 1, b; a + b; x))2 > 0
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and

lim
x→1−
−

F(a, b; a + b; x)
F(a − 1, b; a + b; x)

= −∞,

lim
x→1−

ab
a + b

F(a, b; a + b + 1; x)
F(a − 1, b; a + b; x)

= b.

Hence f ′1(1−) = −∞. By (3.5), for b ∈ (0, 1], {bn/cn} is strictly increasing for n = 1, 2, 3, · · · , and since
{bn/cn} is strictly decreasing on 0 ≤ n ≤ 1, and f ′1(1−) = −∞ < 0. Hence by Lemma 2.2(1), f1 is
strictly decreasing on (0, 1). �

Theorem 3.2. For a > 0, b > 0, x ∈ (0, 1) and a , 1, the function

f2(x) ≡
1 −

[√
1 − xF(a, b; a + b; x)

]2

F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

is strictly increasing on (0, 1) if 0 < a + b − 2ab < 1.

Proof. Let h1(x) = 1−[
√

1 − xF(a, b; a+b; x)]2 and h2(x) = F(a−1, b; a+b; x)−(1− x)F(a, b; a+b; x),
since h1(0+) = h2(0+) = 0, then

h′1(x)
h′2(x)

= −2[
√

1 − xF(a, b; a + b; x)]

×

[
− 1

2
√

1−x
F(a, b; a + b; x) +

√
1 − x ab

a+b (1 − x)−1F(a, b; a + b + 1; x)
]

(a−1)b
a+b F(a, b + 1; a + b + 1; x) + F(a, b; a + b; x) − ab

a+b F(a, b; a + b + 1; x)

= F(a, b; a + b; x)

∑∞
n=0

(
1 − 2ab

a+b+n

)
anxn∑∞

n=0
a(n+1)
a+b+n anxn

= F(a, b; a + b; x)G(x) (3.6)

where an = [(a, n)(b, n)]/[(a + b, n)n!] and

G(x) =

∑∞
n=0

(
1 − 2ab

a+b+n

)
anxn∑∞

n=0
a(n+1)
a+b+n anxn

. (3.7)

Let An =
(
1 − 2ab

a+b+n

)
an, Bn =

a(n+1)
a+b+n an, then, An/Bn = [a + b − 2ab + n]/a(n + 1). Simple computations

give
An+1

Bn+1
−

An

Bn
=

2ab − a − b + 1
a(n + 1)(n + 2)

.

Since 0 < a+b−2ab < 1, we can get G(x) > 0 and An+1/Bn+1−An/Bn ≥ 0, hence {An/Bn} is increasing,
then G(x) is increasing on (0, 1) by Lemma 2.3. Therefore h′1(x)/h′2(x) is a product of two positive and
increasing functions, the monotonicity of f2 follows from Lemma 2.1. �

Remark 3.3. Let a ∈ (0, 1/2], b = 1 − a, x = r2, r ∈ (0, 1).
(1) The properties of the function f̂1(r) in Theorem 1.1 follow from Theorem 3.1.
(2) Since a + b − 2ab = 2

(
a − 1

2

)2
+ 1

2 ∈ (0, 1), we can obtain the properties of the function f̂2(r) in
Theorem 1.1 by Theorem 3.2.
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Theorem 3.4. For a > 0, b > 0, x ∈ (0, 1) and a , 1, the function

f3(x) ≡
F(a − 1, b; a + b; 1 − x) − xF(a, b; a + b; 1 − x)

1 − x

is completely monotonic on (0, 1). In particular, for a > 0, b > 0 and a , 1, f3 is decreasing and
convex on (0, 1).

Proof. By Lemma 2.4, f3(x) can be written as

f3(x) =
a

a + b
F(a, b; a + b + 1; 1 − x),

differentiation gives

f (n)
3 (x) = (−1)n a(a, n)(b, n)

(a + b)(a + b + 1, n)
F(a + n, b + n; a + b + n + 1; 1 − x), (3.8)

for a > 0, b > 0, x ∈ (0, 1), it is easy to obtain (−1)n f (n)
3 (x) > 0. By Definition 2.1, f3 is completely

monotonic on (0, 1). Let n = 1 and n = 2, so f ′3(x) < 0, f ′′3 (x) > 0, then the monotonicity and convexity
of f3 follow. �

Remark 3.5. (1) Let a = b = 1/2, x = r2, r ∈ (0, 1). From Theorem 3.4, we can obtain the properties
of the function (E ′ − r2K ′)/(r′)2 which is proved by Anderson, Qiu, and Vamanamurthy in [5].

(2) Let a ∈ (0, 1/2], b = 1 − a, x = r2, r ∈ (0, 1). From Theorem 3.4, we can obtain the properties of
the function (E ′a − r2K ′

a )/(r′)2 which is proved by Wang, Zhang, and Chu in [22].

Theorem 3.6. Let a > 0, b > 0, x ∈ (0, 1) and a , 1, we define the function

f4(x) ≡
F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

x

−
F(a − 1, b; a + b; 1 − x) − xF(a, b; a + b; 1 − x)

1 − x
,

then f (2n−1)
4 is decreasing(increasing) on (0, 1/2] ([1/2, 1), respectively) and f (2n)

4 is strictly increasing
from (0, 1) onto (−∞,+∞) for n = 1, 2, · · · , n ∈ N.

Proof. By Lemma 2.4, f4(x) can be written as

f4(x) =
a

a + b
[F(a, b; a + b + 1; x) − F(a, b; a + b + 1; 1 − x)] . (3.9)

For n = 1, 2, · · · , n ∈ N, differentiation of (3.9) gives

f (2n)
4 (x) =

a
a + b

·
(a, 2n)(b, 2n)

(a + b + 1, 2n)

×
[
F(a + 2n, b + 2n; a + b + 2n + 1; x)

− F(a + 2n, b + 2n; a + b + 2n + 1; 1 − x)
]

=
a

a + b
·

(a, 2n)(b, 2n)
(a + b + 1, 2n)
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×

∞∑
n=0

(a + 2n, n)(b + 2n, n)
(a + b + 2n + 1, n)n!

[
xn − (1 − x)n

]
, (3.10)

f (2n−1)
4 (x) =

a
a + b

·
(a, 2n − 1)(b, 2n − 1)

(a + b + 1, 2n − 1)

×
[
F(a + 2n − 1, b + 2n − 1; a + b + 2n; x)

+ F(a + 2n − 1, b + 2n − 1; a + b + 2n; 1 − x)
]
. (3.11)

By (3.10) and (3.11), for a > 0, b > 0 and a , 1, f (2n−1)
4 (x) > 0 on (0, 1), and f (2n)

4 (x) < 0 on (0, 1/2),
f (2n)
4 (x) > 0 on (1/2, 1). Therefore, f (2n)

4 is strictly increasing on (0, 1), and f (2n−1)
4 is strictly decreasing

on (0, 1/2) and increasing on (1/2, 1) for n = 1, 2, · · · . Clearly, f (2n)
4 (0+) = −∞, f (2n)

4 (1−) = +∞. �

The following Corollary is obtained by Theorem 3.6.

Corollary 3.7. Let a > 0, b > 0, x ∈ (0, 1) and a , 1, the function f4 is strictly increasing from (0, 1)
onto

(
a

a+b −
1
b

1
B(a,b) ,

1
b

1
B(a,b) −

a
a+b

)
and f4 is concave on (0, 1/2] and convex on [1/2, 1). Moreover, for all

x ∈ (0, 1), the double inequality

a
a + b

−
1
b

1
B(a, b)

+ α1x < f4(x) <
a

a + b
−

1
b

1
B(a, b)

+ β1x,

holds for all x ∈ (0, 1) with the best possible constants

α1 = 0, and β1 =
2

bB(a, b)
−

2a
a + b

.

Proof. Let n = 1 in (3.10),

f ′4(x) =
a2b

(a + b)(a + b + 1)
× [F(a + 1, b + 1; a + b + 2; x) + F(a + 1, b + 1; a + b + 2; 1 − x)], (3.12)

for a > 0, b > 0, x ∈ (0, 1) and a , 1, f ′4(x) > 0, hence the monotonicity of f4 follows. By Theorem 3.6,
since f (2n−1)

4 is decreasing(increasing) on (0, 1/2]
(
[1/2, 1), respectively

)
, hence f ′′4 (x) < 0 on (0, 1/2)

and f ′′4 (x) > 0 on (1/2, 1), so the concavity and convexity of f4 are obtained. The limiting values are
easy to know f4(0+) = a

a+b −
1
b

1
B(a,b) , f4(1−) = 1

b
1

B(a,b) −
a

a+b by (2.2) and (3.9), and thereby the double
inequality in Corollary 3.7 follows. �

Remark 3.8. (1) Let a = b = 1/2, x = r2, r ∈ (0, 1). From Theorem 3.6, we can obtain the properties
of the function (E − r′2K )/r2 − (E ′ − r2K ′)/(r′)2 which is proved by Alzer and Richard in [2].

(2) Let a ∈ (0, 1/2], b = 1 − a, x = r2, r ∈ (0, 1). From Theorem 3.6, we can obtain the properties of
the function [Ea − r′2Ka]/r2 − [E ′a − r2K ′

a ]/(r′)2 which is proved by Huang, Tan, and Zhang in [12].

Theorem 3.9. Let a > 0, b > 0, x ∈ (0, 1) and a , 1, the function

f5(x) ≡
F(a − 1, b; a + b; x) − (1 − x)F(a, b; a + b; x)

x

×
1 − x

F(a − 1, b; a + b; 1 − x) − xF(a, b; a + b; 1 − x)
,
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is strictly increasing from (0, 1) onto
(

abB(a,b)
a+b , a+b

abB(a,b)

)
. Moreover, for all x ∈ (0, 1), the double inequality

ab
a + b

B(a, b) < f5(x) <
a + b

abB(a, b)
,

holds for all x ∈ (0, 1) .

Proof. By Lemma 2.4, f5(x) can be written as

f5(x) =
F(a, b; a + b + 1; x)

F(a, b; a + b + 1; 1 − x)
. (3.13)

Since F(a, b; a+b+1; x) is positive and strictly increasing on (0, 1) and F(a, b; a+b+1; 1−x) is positive
and strictly decreasing on (0, 1). Hence f5(x) is a product of two positive and increasing functions, then
f5 is strictly increasing on (0, 1). The limit values are easy to know f5(0+) = abB(a, b)/(a + b), f5(1−) =

(a+b)/[abB(a, b)] from (2.2) and (3.13), and thereby the double inequality in Theorem 3.9 follows. �

Remark 3.10. (1) Let a = b = 1/2, x = r2, r ∈ (0, 1). From Theorem 3.9, we can obtain the properties
of the function [(E −r′2K )/r2]/[(E ′−r2K ′)/(r′)2] are obtained by Anderson, Qiu, and Vamanamurthy
in [5].

(2) Let a ∈ (0, 1/2], b = 1 − a, x = r2, r ∈ (0, 1). From Theorem 3.9, we can obtain the properties of
the function [(Ea − r′2Ka)/r2]/[(E ′a − r2K ′

a )/(r′)2] which is proved by Huang, Tan, and Zhang in [12].

4. Conclusions

Many properties of generalized elliptic integrals currently have been published in the literature.
Results from zero-balanced Gaussian hypergeometric function F(a, b; a + b; x) are presented in this
paper. Firstly we propose some primary properties of the zero-balanced Gaussian hypergeometric
function which required in the proofs of main results. Then we generalized the monotonicity and
convexity properties of elliptic integrals to the zero-balanced Gaussian hypergeometric function. We
obtain some new properties and give sharp inequalities for the zero-balanced Gaussian hypergeometric
function F(a; b; a + b; x). These studies will validly improve the theory of special functions and their
applications in the natural sciences and engineering.
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