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1. Introduction

Zadeh [30] introduced the basic idea of a fuzzy set as an extension of classical set theory. The basic
notions of fuzzy sets have been improved and applied in different directions. Along this direction,
we can refer to [16, 20, 22, 24–26]. The concept of soft set theory was initiated by Molodtsov [19]
in 1999 as a general mathematical tool for modeling uncertainties. Maji et al. [17] introduced the
concept of a fuzzy soft set, which combines fuzzy sets [30] and soft sets [19]. Soft set and fuzzy soft
set theories have a rich potential for applications in several directions. So far, lots of spectacular and
creative studies about the theories of soft sets and fuzzy soft sets have been considered by some scholars
(see [2–4, 6, 9, 11–13]). Also, Aygünoǧlu et al. [8] studied the topological structure of fuzzy soft sets
based on fuzzy topologies in the sense of Šostak [21]. The concept of fuzzy r-minimal structure was
introduced by Yoo et al. [29] as an extension of fuzzy topology introduced by Šostak [21]. Also, the
concepts of a fuzzy r-minimal space, fuzzy r-minimal continuity, and fuzzy r-minimal compactness
were introduced in [15, 29]. Later, Taha [23] introduced the concept of fuzzy soft r-minimal structure,
which is an extension of fuzzy soft topology introduced by Aygünoǧlu et al. [8]. Also, the concept of
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fuzzy soft r-minimal continuity and several types of fuzzy soft r-minimal compactness were introduced
in [23].

We lay out the remainder of this article as follows. Section 2 contains some basic definitions and
results that help in understanding the obtained results. In Section 3, we introduce and study a weaker
form of fuzzy soft r-minimal continuous mappings. Additionally, we show that fuzzy soft r-minimal
continuity [23]⇒ fuzzy soft almost r-minimal continuity⇒ fuzzy soft weakly r-minimal continuity,
but the converse need not be true. In Section 4, we introduce a concept of continuity in a very general
setting under the name “fuzzy soft r-minimal (A,B,C,D)-continuous mappings”. We prove that ifA
and B are operators on (X, M̃), and C, C∗ andD are operators on (Y, M̃∗), then φψ : (X, M̃) −→ (Y, M̃∗)
is fuzzy soft r-minimal (A,B,C ⊓ C∗,D)-continuous iff it is both fuzzy soft r-minimal
(A,B,C,D)-continuous and fuzzy soft r-minimal (A,B,C∗,D)-continuous. Finally, Section 5 gives
some conclusions and suggests some future works.

2. Preliminary assertions

In this section, we present the basic definitions which we need in the next sections. Throughout this
paper, X refers to an initial universe, E is the set of all parameters for X and A ⊆ E, the family of all
fuzzy sets in X is denoted by IX (where I◦ = (0, 1], I = [0, 1]), and for t ∈ I, t(x) = t, for all x ∈ X.

Definition 2.1. [1,8,17] A fuzzy soft set fA over X is a mapping from E to IX such that fA(e) is a fuzzy
set on X, for each e ∈ A and fA(e) = 0, if e < A, where 0 is zero function on X. The fuzzy set fA(e), for
each e ∈ E, is called an element of the fuzzy soft set fA. ˜(X, E) denotes the collection of all fuzzy soft
sets on X and is called a fuzzy soft universe.

Definition 2.2. [18, 28] A fuzzy soft point ext over X is a fuzzy soft set over X defined as follows:

ext(e
∗) =
{

xt, if e∗ = e,
0, if e∗ ∈ E − {e},

where xt is a fuzzy point in X. A fuzzy soft point ext is said to belong to a fuzzy soft set fA, denoted by
ext ∈̃ fA, if t ≤ fA(e)(x). The family of all fuzzy soft points in X is denoted by P̃t(X).

Definition 2.3. [8] A mapping τ : E −→ [0, 1](̃X,E) is called a fuzzy soft topology on X if it satisfies the
following conditions for each e ∈ E.

(i) τe(Φ) = τe(Ẽ) = 1.
(ii) τe( fA ⊓ gB) ≥ τe( fA) ∧ τe(gB), ∀ fA, gB ∈ ˜(X, E).
(iii) τe(

⊔
i∈∆( fA)i) ≥

∧
i∈∆ τe(( fA)i),∀( fA)i ∈ ˜(X, E), i ∈ ∆.

Then, the pair (X, τE) is called a fuzzy soft topological space (FSTS, for short).

Definition 2.4. [23] Let X be a nonempty set and r ∈ I◦. A fuzzy soft mapping M̃ : E −→ [0, 1](̃X,E)

on X is said to be a fuzzy soft r-minimal structure if the family M̃e,r = { fA ∈ ˜(X, E) | M̃e( fA) ≥ r} for
each e ∈ E contains Φ and Ẽ. Then (X, M̃) is called a fuzzy soft r-minimal space (simply, r-F̃MS ).
Every member of M̃e,r is called a fuzzy soft r-minimal open set.

Definition 2.5. [23] Let (X, M̃) be an r-F̃MS , e ∈ E and r ∈ I◦. The fuzzy soft r-minimal interior
and fuzzy soft r-minimal closure of fA, denoted by Im(e, fA, r) and Cm(e, fA, r), resp., are defined as
Im(e, fA, r) =

⊔
{gB ∈ ˜(X, E) : gB ⊑ fA, gB ∈ M̃e,r} and Cm(e, fA, r) = ⊓{gB ∈ ˜(X, E) : fA ⊑ gB, gc

B ∈

M̃e,r}.
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Definition 2.6. [23] Let (X, M̃) and (Y, M̃∗) be r-F̃MS s. Then, a fuzzy soft mapping φψ from ˜(X, E)
into (̃Y, F) is called fuzzy soft r-minimal continuous if φ−1

ψ (gB) ∈ M̃e,r for every gB ∈ M̃∗k,r, e ∈ E and
(ψ(e) = k) ∈ F.

Definition 2.7. [23] Let X be a nonempty set and M̃ : E −→ [0, 1](̃X,E). Then, M̃ is said to have
property (P) if

M̃e(⊔ j∈J( fA) j) ≥ ⊓ j∈J M̃e(( fA) j)

for ( fA) j ∈ ˜(X, E), j ∈ J and e ∈ E.

Definition 2.8. [23] Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, e ∈ E and r ∈ I◦. Then, φψ
is called fuzzy soft r-minimal open if φψ( fA) ∈ M̃∗k,r for every fA ∈ M̃e,r. Also, φψ is called fuzzy soft
r-minimal closed if (φψ( fA))c ∈ M̃∗k,r for every f c

A ∈ M̃e,r.

Definition 2.9. [23] Let (X, M̃) be an r-F̃MS , gB ∈ ˜(X, E), e ∈ E and r ∈ I◦. Then, gB is called
fuzzy soft r-minimal compact (resp. fuzzy soft r-minimal almost compact and fuzzy soft r-minimal
nearly compact) iff for every family {( fA)i ∈ ˜(X, E) | ( fA)i ∈ M̃e,r}i∈Γ such that gB ⊑

⊔
i∈Γ( fA)i, there

exists a finite subset Γ◦ of Γ such that gB ⊑
⊔

i∈Γ◦( fA)i (resp. gB ⊑
⊔

i∈Γ◦ Cm(e, ( fA)i, r) and gB ⊑⊔
i∈Γ◦ Im(e,Cm(e, ( fA)i, r), r)).

Main properties of fuzzy soft sets and soft topology are found in [1, 8, 10, 14, 17, 27].

3. Weaker forms of fuzzy soft r-minimal continuity

In this section, we introduce a weaker form of fuzzy soft r-minimal continuity called fuzzy soft
almost (resp. weakly) r-minimal continuous mappings and investigate some properties of these
mappings. Also, we show that fuzzy soft r-minimal continuity [23] ⇒ fuzzy soft almost r-minimal
continuity⇒ fuzzy soft weakly r-minimal continuity, but the converse need not be true.

Definition 3.1. A fuzzy soft mapping φψ : (X, M̃) −→ (Y, M̃∗) is called fuzzy soft almost (resp. weakly)
r-minimal continuous if, for fuzzy soft point ext over X and each gB ∈ M̃∗k,r containing φψ(ext), there is
fA ∈ M̃e,r containing ext such that φψ( fA) ⊑ Im∗(k,Cm∗(k, gB, r), r) (resp. φψ( fA) ⊑ Cm∗(k, gB, r)).

Theorem 3.1. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping. Suppose that one of the following
properties holds:

(i) φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r), if gB ∈ M̃∗k,r.
(ii) Cm(e, φ−1

ψ (Cm∗(k, Im∗(k, gB, r), r)), r) ⊑ φ−1
ψ (gB), if gc

B ∈ M̃∗k,r.
Then, φψ is fuzzy soft almost r-minimal continuous.

Proof. (i)⇒ (ii) Let gc
B ∈ M̃∗k,r. Then, from (i), it follows

φ−1
ψ (gc

B) ⊑ Im(e, φ−1
ψ (Im∗(k,Cm∗(k, gc

B, r), r)), r) = Im(e, φ−1
ψ ((Cm∗(k, Im∗(k, gB, r), r))c), r)

= Im(e, (φ−1
ψ (Cm∗(k, Im∗(k, gB, r), r)))c, r) = (Cm(e, φ−1

ψ (Cm∗(k, Im∗(k, gB, r), r)), r))c.

Hence, Cm(e, φ−1
ψ (Cm∗(k, Im∗(k, gB, r), r)), r) ⊑ φ−1

ψ (gB).
Similarly, we get (ii)⇒ (i).
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Suppose that (i) holds. Let ext ∈ P̃t(X), and gB ∈ M̃∗k,r containing φψ(ext). Then, by (i),

ext ∈̃Im(e, φ−1
ψ (Im∗(k,Cm∗(k, gB, r), r)), r),

and so there exists fA ∈ M̃e,r containing ext such that fA ⊑ φ
−1
ψ (Im∗(k,Cm∗(k, gB, r), r)). It follows that

φψ( fA) ⊑ Im∗(k,Cm∗(k, gB, r), r). Hence, φψ is fuzzy soft almost r-minimal continuous.
In a similar way, one can prove the following corollary.

Corollary 3.1. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and Y has the property (P).
Suppose that one of the following properties holds for gB ∈ (̃Y, F), e ∈ E and r ∈ I◦:

(i) φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r), if gB ∈ M̃∗k,r.
(ii) φ−1

ψ (Im∗(k, gB, r)) ⊑ Im(e, φ−1
ψ (Im∗(k,Cm∗(k, Im∗(k, gB, r), r), r)), r).

(iii) Cm(e, φ−1
ψ (Cm∗(k, Im∗(k,Cm∗(k, gB, r), r), r)), r) ⊑ φ−1

ψ (Cm∗(k, gB, r)).
Then, φψ is fuzzy soft almost r-minimal continuous.

Lemma 3.1. Every fuzzy soft r-minimal continuous mapping [23] is fuzzy soft almost r-minimal
continuous.

Proof. It follows from Theorem 3.1.
In general, the converse of Lemma 3.1 is not true, as shown by Example 3.1.

Example 3.1. Let X = {x, y} and E = {e1, e2} be the parameter set of X. Define fE and gE ∈ ˜(X, E)
as follows: fE = {(e1, {

x
0.2 ,

y
0.4 }), (e2, {

x
0.2 ,

y
0.4 })}, gE = {(e1, {

x
0.1 ,

y
0.5 }), (e2, {

x
0.1 ,

y
0.5 })}. Define fuzzy soft

r-minimal structures M̃E, W̃E : E −→ [0, 1](̃X,E) as follows: ∀ e ∈ E,

M̃e(hE) =


1
2 , if hE ∈ {Φ, Ẽ},
1
3 , if hE ∈ { fE, gE},

0, otherwise,

W̃e(hE) =


1
2 , if hE ∈ {Φ, Ẽ},
1
2 , if hE ∈ { fE, gE},
1
3 , if hE = fE ⊔ gE,

0, otherwise.

Then, the identity fuzzy soft mapping φψ : (X, M̃) −→ (X, W̃) is fuzzy soft almost 1
3 -minimal

continuous, but it is not fuzzy soft 1
3 -minimal continuous.

Definition 3.2. Let (X, M̃) be an r-F̃MS , fA ∈ ˜(X, E), e ∈ E and r ∈ I◦. Then,
(i) fA is fuzzy soft r-minimal semiopen if fA ⊑ Cm(e, Im(e, fA, r), r),
(ii) fA is fuzzy soft r-minimal preopen if fA ⊑ Im(e,Cm(e, fA, r), r),
(iii) fA is fuzzy soft r-minimal regularly open if fA = Im(e,Cm(e, fA, r), r),
(iv) fA is fuzzy soft r-minimal β-open if fA ⊑ Cm(e, Im(e,Cm(e, fA, r), r), r).

A fuzzy soft set fA is called a fuzzy soft r-minimal semiclosed (resp., fuzzy soft r-minimal
preclosed, fuzzy soft r-minimal regularly closed and fuzzy soft r-minimal β-closed) set if the
complement of fA is a fuzzy soft r-minimal semiopen (resp., fuzzy soft r-minimal preopen, fuzzy soft
r-minimal regularly open and fuzzy soft r-minimal β-open) set.
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Theorem 3.2. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and Y has the property (P).
Suppose that one of the following properties holds for gB ∈ (̃Y, F), e ∈ E and r ∈ I◦:

(i) φ−1
ψ (gB) = Cm(e, φ−1

ψ (gB), r), if gB is fuzzy soft r-minimal regularly closed.
(ii) φ−1

ψ (gB) = Im(e, φ−1
ψ (gB), r), if gB is fuzzy soft r-minimal regularly open.

Then, φψ is fuzzy soft almost r-minimal continuous.

Proof. (i)⇒ (ii) is obvious.
Suppose that (ii) holds. Let ext ∈ P̃t(X) and gB ∈ M̃∗k,r containing φψ(ext). Since Im∗(k,Cm∗(k, gB, r), r)

is fuzzy soft r-minimal regularly open, then by (ii),

φ−1
ψ (Im∗(k,Cm∗(k, gB, r), r)) = Im(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r),

there is fA ∈ M̃e,r containing ext such that fA ⊑ φ−1
ψ (Im∗(k,Cm∗(k, gB, r), r)). This implies φψ( fA) ⊑

Im∗(k,Cm∗(k, gB, r), r). Hence, φψ is fuzzy soft almost r-minimal continuous.
In a similar way, one can prove the following corollary.

Corollary 3.2. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P).
Suppose that one of the following properties holds for gB ∈ (̃Y, F), e ∈ E and r ∈ I◦:

(i) φ−1
ψ (gB) ∈ M̃e,r, if gB is fuzzy soft r-minimal regularly open.

(ii) (φ−1
ψ (gB))c ∈ M̃e,r, if gB is fuzzy soft r-minimal regularly closed.

Then, φψ is fuzzy soft almost r-minimal continuous.

Theorem 3.3. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P).
Suppose that one of the following properties holds for gB ∈ (̃Y, F), e ∈ E and r ∈ I◦:

(i) Cm(e, φ−1
ψ (gB), r) ⊑ φ−1

ψ (Cm∗(k, gB, r)), if gB is fuzzy soft r-minimal β-open.
(ii) Cm(e, φ−1

ψ (gB), r) ⊑ φ−1
ψ (Cm∗(k, gB, r)), if gB is fuzzy soft r-minimal semiopen.

(iii) φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r), if gB is fuzzy soft r-minimal preopen.
(iv) Cm(e, φ−1

ψ (Cm∗(k, Im∗(k,Cm∗(k, gB, r), r), r)), r) ⊑ φ−1
ψ (Cm∗(k, gB, r)), if gB is fuzzy soft r-minimal

preopen.
Then, φψ is fuzzy soft almost r-minimal continuous.

Proof. (i)⇒ (ii) Since every fuzzy soft r-minimal semiopen set is fuzzy soft r-minimal β-open, it is
obvious.

Suppose that (ii) holds. Let gB be a fuzzy soft r-minimal regular closed set. Then, gB is fuzzy soft
r-minimal semiopen, and so from (ii), we have

Cm(e, φ−1
ψ (gB), r) ⊑ φ−1

ψ (Cm∗(k, gB, r)) = φ−1
ψ (gB).

This implies φ−1
ψ (gB) = Cm(e, φ−1

ψ (gB), r), and hence from Theorem 3.2, φψ is fuzzy soft almost r-
minimal continuous.

Suppose that (iii) holds. Let gB be a fuzzy soft r-minimal regular open set. Then, gB is fuzzy soft
r-minimal preopen, and so from (iii), we have

φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r) = Im(e, φ−1
ψ (gB), r).

This implies φ−1
ψ (gB) = Im(e, φ−1

ψ (gB), r), and hence by Theorem 3.2, φψ is fuzzy soft almost r-minimal
continuous.
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Suppose that (iv) holds. Let gB be a fuzzy soft r-minimal regular closed set. Then, Im∗(k, gB, r) is
fuzzy soft r-minimal preopen. From hypothesis and gB = Cm∗(k, Im∗(k, gB, r), r), it follows that

φ−1
ψ (gB) = φ−1

ψ (Cm∗(k, Im∗(k, gB, r), r)) ⊒ Cm(e, φ−1
ψ (Cm∗(k, Im∗(k,Cm∗(k, Im∗(k, gB, r), r), r), r)), r)

= Cm(e, φ−1
ψ (Cm∗(k, Im∗(k, gB, r), r)), r) = Cm(e, φ−1

ψ (gB), r).

This implies φ−1
ψ (gB) = Cm(e, φ−1

ψ (gB), r). Hence, by Theorem 3.2, φψ is fuzzy soft almost r-minimal
continuous.

Theorem 3.4. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping. Suppose that one of the following
properties holds:

(i) φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Cm∗(k, gB, r)), r), if gB ∈ M̃∗k,r.
(ii) Cm(e, φ−1

ψ (Im∗(k, gB, r)), r) ⊑ φ−1
ψ (gB), if gc

B ∈ M̃∗k,r.
Then, φψ is fuzzy soft weakly r-minimal continuous.

Proof. (i)⇔ (ii) Let gc
B ∈ M̃∗k,r. Then, from (i), it follows that

φ−1
ψ (gc

B) ⊑ Im(e, φ−1
ψ (Cm∗(k, gc

B, r)), r) = Im(e, φ−1
ψ ((Im∗(k, gB, r))c), r)

= Im(e, (φ−1
ψ (Im∗(k, gB, r)))c, r) = (Cm(e, φ−1

ψ (Im∗(k, gB, r)), r))c.

Hence, Cm(e, φ−1
ψ (Im∗(k, gB, r)), r) ⊑ φ−1

ψ (gB). Similarly, we get (ii)⇒ (i).
Suppose that (i) holds. Let ext ∈ P̃t(X) and gB ∈ M̃∗k,r containing φψ(ext). Then, by (i),

ext ∈̃Im(e, φ−1
ψ (Cm∗(k, gB, r)), r),

and so there exists fA ∈ M̃e,r containing ext such that fA ⊑ φ−1
ψ (Cm∗(k, gB, r)). Thus,

φψ( fA) ⊑ Cm∗(k, gB, r). Hence, φψ is fuzzy soft weakly r-minimal continuous.
In a similar way, one can prove the following corollary.

Corollary 3.3. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and Y has the property (P).
Suppose that one of the following properties holds for gB ∈ (̃Y, F), e ∈ E and r ∈ I◦:

(i) Cm(e, φ−1
ψ (Im∗(k, gB, r)), r) ⊑ φ−1

ψ (gB), if gc
B ∈ M̃∗k,r.

(ii) Cm(e, φ−1
ψ (Im∗(k,Cm∗(k, gB, r), r)), r) ⊑ φ−1

ψ (Cm∗(k, gB, r)).
(iii) φ−1

ψ (Im∗(k, gB, r)) ⊑ Im(e, φ−1
ψ (Cm∗(k, Im∗(k, gB, r), r)), r).

Then, φψ is fuzzy soft weakly r-minimal continuous.

Lemma 3.2. Every fuzzy soft almost r-minimal continuous mapping is fuzzy soft weakly r-minimal
continuous.

Proof. It follows from Definition 3.1.
In general, the converse of Lemma 3.2 is not true, as shown by Example 3.2.

Example 3.2. Let X = {x, y} and E = {e1, e2} be the parameter set of X. Define fE and gE ∈ ˜(X, E)
as follows: fE = {(e1, {

x
0.5 ,

y
0.5 }), (e2, {

x
0.5 ,

y
0.5 })}, gE = {(e1, {

x
0.4 ,

y
0.2 }), (e2, {

x
0.4 ,

y
0.2 })}. Define fuzzy soft

r-minimal structures M̃E, W̃E : E −→ [0, 1](̃X,E) as follows: ∀ e ∈ E,

M̃e(hE) =


0.7, if hE ∈ {Φ, Ẽ},
0.5, if hE = fE,

0, otherwise,
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W̃e(hE) =


0.7, if hE ∈ {Φ, Ẽ},
0.5, if hE = gE,

0, otherwise.

Then, the identity fuzzy soft mapping φψ : (X, M̃) −→ (X, W̃) is fuzzy soft weakly 1
2 -minimal

continuous, but it is not fuzzy soft almost 1
2 -minimal continuous.

The following implications are obtained:

fuzzy soft r-minimal continuity

⇓

fuzzy soft almost r-minimal continuity

⇓

fuzzy soft weakly r-minimal continuity.

Theorem 3.5. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). Then,
φψ is fuzzy soft weakly r-minimal continuous if Cm(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r) ⊑ φ−1
ψ (Cm∗(k, gB, r))

for each gB ∈ (̃Y, F) that is a fuzzy soft r-minimal semiopen set, e ∈ E and r ∈ I◦.

Proof. Let gB ∈ M̃∗k,r. Then, gB is a fuzzy soft r-minimal semiopen set. From hypothesis and gB ⊑

Im∗(k,Cm∗(k, gB, r), r), it follows that

φ−1
ψ (Cm∗(k, gB, r)) ⊒ Cm(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r) ⊒ Cm(e, φ−1
ψ (gB), r).

Hence, by Theorem 3.3, φψ is fuzzy soft almost r-minimal continuous. This implies φψ is fuzzy soft
weakly r-minimal continuous.

4. Fuzzy soft r-minimal (A,B,C,D)-continuous mappings

In this section, we introduce a concept of continuity in a very general setting called fuzzy soft
r-minimal (A,B,C,D)-continuous mappings, and we investigate some properties of them.

First of all, let us introduce a concept of continuity in a very general setting. Let (X, M̃) and (Y, M̃∗)
be r-F̃MS s,A and B : E×˜(X, E)× I◦ → IX be operators on (X, M̃), and C andD : F × (̃Y, F)× I◦ → IY

be operators on (Y, M̃∗), respectively. The difference between two fuzzy soft sets fA and gB is a fuzzy
soft set, denoted by fA ⊓ gB, where

( fA ⊓ gB)(e) =
{

0, if fA(e) ≤ gB(e),
fA(e) ∧ (gB(e))c, otherwise,

for each e ∈ E.

Definition 4.1. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). Then,
φψ is called fuzzy soft r-minimal (A,B,C,D)-continuous if

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r] = Φ

for each gB ∈ M̃∗k,r, e ∈ E and (ψ(e) = k) ∈ F.
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In 2021, Taha [23] defined the concept of fuzzy soft r-minimal continuous mappings: φ−1
ψ (gB) ∈ M̃e,r

for each gB ∈ M̃∗k,r, e ∈ E and (ψ(e) = k) ∈ F. We can see that the above definition generalizes the
concepts of fuzzy soft r-minimal continuous mappings, when we choose A = identity operator, B =
interior operator, C = identity operator andD = identity operator.

Let us give a historical justification of the above definition:
I. In Section 3, we defined the concept of fuzzy soft almost r-minimal continuous mappings:
φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Im∗(k,Cm∗(k, gB, r), r)), r) for each gB ∈ M̃∗k,r. Here, A = identity operator, B =
interior operator, C = interior closure operator andD = identity operator.
II. In Section 3, we defined the concept of fuzzy soft weakly r-minimal continuous mappings:
φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Cm∗(k, gB, r)), r) for each gB ∈ M̃∗k,r. Here, A = identity operator, B = interior
operator, C = closure operator andD = identity operator.

Definition 4.2. A fuzzy soft mapping φψ : (X, M̃) −→ (Y, M̃∗) is called fuzzy soft r-minimal
Ⓢ-continuous iff φ−1

ψ (gB) ∈ M̃e,r ∀ gB ∈ M̃∗k,r satisfies propertyⓈ.

Let CⓈ : F × (̃Y, F) × I◦ → IY be an operator on (Y, M̃∗) defined as follows:

CⓈ(k, gB, r) =
{

gB, if gB ∈ M̃∗k,r and satisfies property Ⓢ,
Ẽ, otherwise.

Theorem 4.1. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). Then,
φψ is fuzzy soft r-minimalⓈ-continuous iff it is fuzzy soft r-minimal (id, Im,CⓈ, id)-continuous.

Proof. (⇒) Let φψ be a fuzzy soft r-minimalⓈ-continuous and gB ∈ M̃∗k,r.

Case 1. If gB satisfies propertyⓈ, CⓈ(k, gB, r) = gB, and φ−1
ψ (gB) ∈ M̃e,r. Thus, we obtain φ−1

ψ (gB) ⊑
Im(e, φ−1

ψ (gB), r) = Im(e, φ−1
ψ (CⓈ(k, gB, r)), r). Then, φ−1

ψ (gB) ⊓ Im(e, φ−1
ψ (CⓈ(k, gB, r)), r) = Φ. Hence,

φψ is fuzzy soft r-minimal (id, Im,CⓈ, id)-continuous.
Case 2. If gB does not satisfy property Ⓢ, CⓈ(k, gB, r) = Ẽ. Thus, we obtain

φ−1
ψ (gB) ⊑ Im(e, φ−1

ψ (Ẽ), r) = Im(e, φ−1
ψ (CⓈ(k, gB, r)), r). Then, φ−1

ψ (gB) ⊓ Im(e, φ−1
ψ (CⓈ(k, gB, r)), r) = Φ.

Hence, φψ is fuzzy soft r-minimal (id, Im,CⓈ, id)-continuous.
(⇐) Suppose that φ−1

ψ (gB) ⊓ Im(e, φ−1
ψ (CⓈ(k, gB, r)), r) = Φ for each gB ∈ M̃∗k,r. Then, φ−1

ψ (gB) ⊑
Im(e, φ−1

ψ (CⓈ(k, gB, r)), r). If gB ∈ M̃∗k,r satisfies property Ⓢ, CⓈ(k, gB, r) = gB, and hence φ−1
ψ (gB) ⊑

Im(e, φ−1
ψ (gB), r). Thus, φ−1

ψ (gB) ∈ M̃e,r. Then, φψ is fuzzy soft r-minimalⓈ-continuous.

Definition 4.3. If A and B are operators on (X, M̃), the intersection operator A ⊓ B is defined as
follows: (A ⊓ B)(e, fA, r) = A(e, fA, r) ⊓ B(e, fA, r), ∀ fA ∈ ˜(X, E) and e ∈ E. A and B are called
mutually dual ifA⊓B is the identity operator.

Theorem 4.2. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). Let
A and B be operators on (X, M̃), and C, C∗ and D be operators on (Y, M̃∗). Then, φψ is fuzzy soft
r-minimal (A,B,C ⊓ C∗,D)-continuous iff it is both fuzzy soft r-minimal (A,B,C,D)-continuous
and fuzzy soft r-minimal (A,B,C∗,D)-continuous.

Proof. If φψ is both fuzzy soft r-minimal (A,B,C,D)-continuous and fuzzy soft r-minimal
(A,B,C∗,D)-continuous, then for each gB ∈ M̃∗k,r we have

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r] = Φ,
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A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C∗(k, gB, r)), r] = Φ.

Hence,
[A[e, φ−1

ψ (D(k, gB, r)), r] ⊓ B[e, φ−1
ψ (C(k, gB, r)), r]]

⊔

[A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C∗(k, gB, r)), r]] = Φ.

However,

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ ((C ⊓ C∗)(k, gB, r)), r]

=A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r) ⊓ C∗(k, gB, r)), r]

=A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ (B[e, φ−1

ψ (C(k, gB, r)), r] ⊓ B[e, φ−1
ψ (C∗(k, gB, r)), r])

=[A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r]]

⊔ [A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C∗(k, gB, r)), r]].

Thus, A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ ((C ⊓ C∗)(k, gB, r)), r] = Φ. Then, φψ is fuzzy soft r-
minimal (A,B,C ⊓ C∗,D)-continuous.

Conversely, if φψ is fuzzy soft r-minimal (A,B,C ⊓ C∗,D)-continuous, and gB ∈ M̃∗k,r, then

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ ((C ⊓ C∗)(k, gB, r)), r] = Φ.

Now, by the above equalities, we get that

[A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r]]

⊔

[A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C∗(k, gB, r)), r]] = Φ.

Then, we have
A[e, φ−1

ψ (D(k, gB, r)), r] ⊓ B[e, φ−1
ψ (C(k, gB, r)), r] = Φ

and
A[e, φ−1

ψ (D(k, gB, r)), r] ⊓ B[e, φ−1
ψ (C∗(k, gB, r)), r] = Φ,

which means that φψ is both fuzzy soft r-minimal (A,B,C,D)-continuous and fuzzy soft r-minimal
(A,B,C∗,D)-continuous.

Corollary 4.1. Let φψ : (X, M̃) −→ (Y, M̃∗) be fuzzy soft almost r-minimal and fuzzy soft r-minimal
(id, Im,G, id)-continuous whereG and Im∗(Cm∗) are mutually dual operators on Y such thatG(k, gB, r) =
gB ⊔ (Im∗(k,Cm∗(k, gB, r), r))c for each gB ∈ M̃∗k,r and e ∈ E. Then, φψ is fuzzy soft r-minimal continuous
iff φψ is fuzzy soft almost r-minimal continuous, and φ−1

ψ (gB) ⊓ Im(e, φ−1
ψ (G(k, gB, r)), r) = Φ.

Proof. Fuzzy soft almost r-minimal continuous is equal to fuzzy soft r-minimal (id, Im, Im∗(Cm∗), id)-
continuous. Since G and Im∗(Cm∗) are mutually dual operators on Y , then the result follows from
Theorem 4.2.
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Definition 4.4. Let A and B be operators on (X, M̃). Then, A ⊑ B iff A(e, fA, , r)
⊑ B(e, fA, r), ∀ fA ∈ ˜(X, E) and e ∈ E.

Theorem 4.3. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). LetA
and B be operators on (X, M̃), and C, C∗ andD be operators on (Y, M̃∗) with C ⊑ C∗. If φψ is fuzzy soft
r-minimal (A,B,C,D)-continuous, then it is fuzzy soft r-minimal (A,B,C∗,D)-continuous.

Proof. If φψ is fuzzy soft r-minimal (A,B,C,D)-continuous, and gB ∈ M̃∗k,r, thus we obtain

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r] = Φ.

Now, we know C ⊑ C∗, for each gB ∈ M̃∗k,r, B[e, φ−1
ψ (C(k, gB, r)), r] ⊑ B[e, φ−1

ψ (C∗(k, gB, r)), r].
Therefore,

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C∗(k, gB, r)), r]

⊑

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r].

Then, A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C∗(k, gB, r)), r] = Φ. Hence, φψ is fuzzy soft r-minimal
(A,B,C∗,D)-continuous.

Definition 4.5. An operator B on (X, M̃) induces another operator Im(B) defined as follows:
Im(B)(e, fA, r) = Im(e,B(e, fA, r), r), ∀ fA ∈ ˜(X, E). Observe that Im(B) ⊑ B.

Definition 4.6. A fuzzy soft mapping φψ : (X, M̃) −→ (Y, M̃∗) satisfies the openness condition with
respect to the operator B on X if B[e, φ−1

ψ ( fA), r] ⊑ B[e, φ−1
ψ (Im∗(k, fA, r)), r], ∀ fA ∈ ˜(X, E).

Theorem 4.4. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). Let
A and B be operators on (X, M̃), and C and D be operators on (Y, M̃∗). If φψ is fuzzy soft r-minimal
(A,B,C,D)-continuous and satisfies the openness condition with respect to the operator B, then φψ is
fuzzy soft r-minimal (A,B, Im∗(C),D)-continuous.

Proof. If φψ is fuzzy soft r-minimal (A,B,C,D)-continuous, and gB ∈ M̃∗k,r, thus

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r] = Φ.

Since φψ satisfies the openness condition with respect to the operator B, then B[e, φ−1
ψ (C(k, gB, r)), r] ⊑

B[e, φ−1
ψ (Im∗(k,C(k, gB, r), r)), r], and it follows that

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (Im∗(k,C(k, gB, r), r)), r]

⊑

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (C(k, gB, r)), r].

Thus, we obtain

A[e, φ−1
ψ (D(k, gB, r)), r] ⊓ B[e, φ−1

ψ (Im∗(k,C(k, gB, r), r)), r] = Φ.

Then, φψ is fuzzy soft r-minimal (A,B, Im∗(C),D)-continuous.
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Corollary 4.2. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft mapping, and X has the property (P). Let
A and B be operators on (X, M̃), and C and D be operators on (Y, M̃∗). If φψ is fuzzy soft weakly
r-minimal continuous and satisfies the openness condition with respect to the operator B, then φψ is
fuzzy soft almost r-minimal continuous.

Proof. LetA = identity operator, B = interior operator, C = closure operator andD = identity operator.
Then, the result follows from Theorem 4.4.

Theorem 4.5. If φψ : (X, M̃) −→ (Y, M̃∗) is a fuzzy soft r-minimal (A, Im,C,D)-continuous mapping,
fA ⊑ A(e, fA, r), and gB ⊑ D(k, gB, r) ∀ fA ∈ ˜(X, E), gB ∈ (̃Y, F), then φψ( fA) is fuzzy soft r-minimal
C-compact if fA is fuzzy soft r-minimal compact.

Proof. Given {(gB)i ∈ (̃Y, F)| (gB)i ∈ M̃∗k,r}i∈Γ with φψ( fA) ⊑
⊔

i∈Γ(gB)i, then fA ⊑
⊔

i∈Γ φ
−1
ψ ((gB)i). Since

φψ is fuzzy soft r-minimal (A, Im,C,D)-continuous, then for each gB ∈ M̃∗k,r,

φ−1
ψ (gB) ⊑ A(e, φ−1

ψ (D(k, gB, r)), r) ⊑ Im(e, φ−1
ψ (C(k, gB, r)), r).

Then, fA ⊑
⊔

i∈Γ Im(e, φ−1
ψ (C(k, gB, r)i), r). Since fA is fuzzy soft r-minimal compact, there exists a finite

subset Γ◦ of Γ such that

fA ⊑
⊔
i∈Γ◦

Im(e, φ−1
ψ (C(k, (gB)i, r)), r) ⊑

⊔
i∈Γ◦

φ−1
ψ (C(k, (gB)i, r)).

Thus, φψ( fA) ⊑
⊔

i∈Γ◦ C(k, (gB)i, r). Hence, φψ( fA) is fuzzy soft r-minimal C-compact, as required.
The following corollaries are direct results.

Corollary 4.3. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft r-minimal continuous mapping. Then,
φψ( fA) is fuzzy soft r-minimal compact if fA ∈ ˜(X, E) is fuzzy soft r-minimal compact.

Proof. LetA = identity operator, B = interior operator, C = identity operator andD = identity operator.
Then, the result follows from Theorem 4.5.

Corollary 4.4. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft almost r-minimal continuous mapping.
Then, φψ( fA) is fuzzy soft r-minimal nearly compact if fA ∈ ˜(X, E) is fuzzy soft r-minimal compact.

Proof. LetA = identity operator, B = interior operator, C = interior closure operator andD = identity
operator. Then, the result follows from Theorem 4.5.

Corollary 4.5. Let φψ : (X, M̃) −→ (Y, M̃∗) be a fuzzy soft weakly r-minimal continuous mapping.
Then, φψ( fA) is fuzzy soft r-minimal almost compact if fA ∈ ˜(X, E) is fuzzy soft r-minimal compact.

Proof. LetA = identity operator, B = interior operator, C = closure operator andD = identity operator.
Then, the result follows from Theorem 4.5.

5. Conclusions

In this paper, we have defined weaker forms of fuzzy soft r-minimal continuity called fuzzy soft
almost r-minimal continuity and fuzzy soft weakly r-minimal continuity. We have investigated the
master properties of these continuous forms and provided some illustrative examples to show the
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relationships between them. Then, we have introduced the concept of fuzzy soft r-minimal
(A,B,C,D)-continuous mappings and given some characterizations of them. Moreover, we have
proved that if A and B are operators on (X, M̃), and C, C∗ and D are operators on (Y, M̃∗), then
φψ : (X, M̃) −→ (Y, M̃∗) is fuzzy soft r-minimal (A,B,C ⊓ C∗,D)-continuous iff it is both fuzzy soft
r-minimal (A,B,C,D)-continuous and fuzzy soft r-minimal (A,B,C∗,D)-continuous.

In the upcoming work, we will define some new separation axioms in fuzzy soft r-minimal spaces.
Also, we shall discuss the concepts given herein in the frames of infra soft topologies [5] and infra
fuzzy topologies [7]. We hope that this work will contribute to fuzzy soft r-minimal structure studies.

Conflict of interest

The author declares that there is no conflict of interest.

References

1. B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6.
https://doi.org/10.1155/2009/586507
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