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Abstract: A new class of skewed distributions, with a matrix skewness parameter, called extended
mean mixtures of multivariate normal (EMMN) distributions, is constructed. The family of EMMN
distributions includes the SN and MMN distributions as special cases. Some basic properties of
this family, such as characteristic function, moment generating function, affine transformation and
canonical forms of the distributions are derived. An EM-type algorithm is developed to carry out
the maximum likelihood estimation of the parameters. Two special cases of this family are studied
in detail. A simulation is carried out to examine the performance of the estimation method, and the
flexibility is illustrated by fitting a special case of this family to a real data. Finally, the theoretical
formula of the multivariate tail conditional expectation of the EMMN distribution is derived.
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1. Introduction

The multivariate normal distribution has long occupied a central position in statistical theoretical
research and has a wide range of applications in practice. One reason is that the approximate
distribution of many variables is normal distribution, as known from the central limit theorem, and the
other is that a significant feature of normal distribution is its symmetry, which makes the study of
related problem mathematically tractable. However, in the fields of physics, biomedicine, finance and
insurance, real data often exhibit heavy-tailed and skewed characteristics. For example, the
distribution of life expectancy, long-tailed insurance claims, etc. Hence, many researchers search for
more flexible distributions for modeling skewed data.

One of the well-known classes of distributions is the class of Normal Mean-Variance Mixtures
(NMVM) distributions introduced by Barndorff-Nielsen et al. [11]. According to that, a
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p-dimensional random vector Y is said to have a multivariate NMVM distributions if it has the
stochastic representation

Y d
= ξ + δU +

√
UZ, (1.1)

where d
= stands for equality in distribution, Z ∼ Np(0,Σ), independently of U. And U is a positive

random variable with cumulative distribution function (CDF) H(·; v), indexed by parameter v.
Specifically, NMVM distributions have the following hierarchial representation:

Y|(U = u) ∼ Np(ξ + δu, uΣ). (1.2)

There is a large literature of studies based on the above stochastic representations (1.1). For example,
the variance-mean mixture of kotz-type distributions were studied by Arslan [4], and the
variance-mean mixture of the multivariate skew normal distributions were studied by Arslan [5].
Jamalizadeh and Balakrishnan [15] explored the the conditional distribution of a multivariate normal
mean-variance mixtures (MNMVM) distributions. Naderi et al. [21] introduced a new asymmetric
distribution-multivariate normal mean-variance mixture distribution based on Lindley distribution.
Pourmousa et al. [24] introduced the multivariate normal mean-variance mixture distribution based on
Birnbaum-Saunders (NMVMBS) distribution.

Besides the NMVM distributions, another important class of distributions is the skewed
distributions. Azzalini [6] formulated the univariate skew normal (SN) distribution, and Azzalini and
Valle [10] extended to the multivariate case. The statistical applications of the multivariate normal
distribution were explored by Azzalini and Capitanio [8]. Azzalini and Capitanio [9] introduced a
comprehensive survey of this skewed distribution classes including the skew-t (ST) distribution and
the skew-elliptical distributions. To establish notation, the probability density function (PDF) and the
CDF of the p-dimensional normal distribution, with mean µ and covariance matrix Σ, will be denoted
by φp(·;µ,Σ) and Φp(·;µ,Σ), respectively. Specially, denote Φp(·) as the CDF of the multivariate
standard normal distribution, and denote φ(·), Φ(·) as the PDF and CDF of the univariate standard
normal distribution, respectively. We denote the doubly truncated p-dimensional normal vector
X|(a < X ≤ b) by X ∼ T Np(a, b;µ,Σ), and denote

Pr(a < X ≤ b) = Pr(a1 < X1 ≤ b1, . . . , ap < Xp ≤ bp)

by Φ̄p(a, b;µ,Σ), for any a < b (a, b ∈ Rp).
From [9, 10], a p -dimensional random vector Y is said to have a multivariate skewed normal (SN)

distribution, if it has the PDF

f (y) = 2φp(y; ξ,Ω)Φ(αTω−1(y − ξ)), y ∈ Rp, (1.3)

and it has equivalent form

f (y) = 2φp(y; ξ,Ω)Φ
(
δTΩ̄ω−1(y − ξ)
√

1 − δTΩ̄−1δ

)
, y ∈ Rp, (1.4)

where ξ ∈ Rp is the location parameter, α ∈ Rp is the slant parameter and δ = (1 + αTΩ̄α)−1/2Ω̄α is
the skewness parameter vector, with −1p < δ = (δ1, . . . , δp)T < 1p. Here, 1p is p-dimensional vector
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with all elements 1. The matrix ω = diag(ω1, . . . , ωp) = (Ω � Ip)1/2 > 0 is a diagonal matrix, where Ip

is identity matrix of size p and � denotes the Hadamard product. Scale matrix Ω is a positive definite
matrix and Ω̄ is a positive definite p× p correlation matrix, with Ω = ωΩ̄ω. The random variable Y is
usually denoted as Y ∼ S Np(ξ,Ω,α) and Y ∼ S Np(ξ,Ω, δ) if Y has PDF (1.3) and (1.4), respectively.
It is neccessary to mention that the SN distribution has the stochastic representation:

Y d
= ξ + ω(δU + Z), (1.5)

where ξ ∈ Rp, Z ∼ Np(0, Ω̄ − δδT), univariate random variable U ∼ T N1(0,+∞; 0, 1), independently
of Z. Specifically, the SN distribution has the following hierarchial representation:

Y|(U = u) ∼ Np(ξ + ωδu,Ω − ωδδTω). (1.6)

From (1.6) the SN distribution is a mean mixtures of the normal distribution, as stated in Negarestani
et al. [22], the SN distribution cannot be obtained through the NMVM distributions.

For the last three decades, a growing body of literature related to SN distribution has been widely
explored, as witnessed by the numerous applications in financial markets, such as financial risk
measurement and portfolio optimization. For example in Bernardi et al. [12] and Mousavi et al. [20].
Also there is considerable amount of literatures of extensions and alternative formulations related to
skewed distributions, such as the hierarchical skew-normal (HSN) distribution in Liseo and
Loperfido [19], the closed skew-normal (CSN) distribution in González-Farı́as et al. [14], the
fundamental skew-normal (FUSN) distribution in Arellano-Valle and Genton [3], the pseudo normal
(PN) family of distributions in Ogasawara [23]. Azzalini [7] provided an overview on the progeny of
the skew-normal family.

According to Arellano-Valle and Azzalini [2], these distributions (HSN, CSN, FUSN) can be seen
as the special cases of unified skew normal distribution (SUN). From [2, 9], a d-dimensional random
vector Y is said to have a SUN distribution, denoted by S UNd,m(ξ,Ω,∆,γ,Γ), if its PDF is

f (y) = φd(y; ξ,Ω)
Φm(γ + ∆TΩ̄−1ω−1(y − ξ); 0,Γ − ∆TΩ̄−1∆)

Φm(γ; 0,Γ)
, y ∈ Rd, γ ∈ Rm, (1.7)

which has the stochastic representation

Y d
= ξ + ω

(
∆Γ−1U + Z

)
, (1.8)

where ξ, ω are as in (1.4), Z ∼ Nd(0, Ω̄ − ∆Γ−1∆T), Ω = ωΩ̄ω > 0 is a positive definite matrix, Ω̄
and Γ are d × d and m × m full-rank correlation matrices, respectively. ∆ = (δi j) is d × m matrix, with
−1 < δi j < 1, for i ∈ {1, . . . , d}, j ∈ {1, . . . ,m}. m-dimensional random vector U ∼ T Nm(−γ,+∞; 0,Γ),
independently of Z. When γ = 0, m = 1, the PDF in (1.7) reduces to (1.4), then the SUN distribution
degenerates to the SN distribution. When m = 1 the SUN distribution degenerates to the extended
skewed normal (ESN) distribution.

Recently, Negarestani et al. [22] proposed a new class of mean mixtures of univariate normal
distributions by replacing the standard half normal random variable U in the stochastic representation
(1.5) of the SN distribution with a general random variable, and analyzed its basic properties and its
flexibility in fitting skewed data. Abdi et al. [1] extended the mean mixtures of univariate normal
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distributions in [22] to multivariate cases, and proposed the mean mixtures of multivariate normal
(MMN) distributions, and studied their flexibility and calculated a variety of different skewness
parameters.

Following this way, in this paper, we prposed the extended mean mixtures of multivariate normal
(EMMN) distributions by considering the stochastic representation of the SUN distribution (when
γ = 0,Γ = Im) and studying the case when the multivariate random variable U in (1.8) takes a general
multivariate random variable.

The remainder of this paper is laid out as follows. In Section 2, we give the definition of the
EMMN distributions. Some basic properties are studied in Section 3. In Section 4, an Expectation
Maximization (EM) algorithm is developed for computing the maximum likelihood estimator of the
EMMN distributions. Two sepecial cases, the EMMNG and EMMNE distributions, are studied in
detail in Section 5. In Section 6, a simulation study is carried out for evaluating the performance of the
EM-based estimators. In Section 7, to illustrate the applicability of the proposed distributions, a real
data sets are analyzed. The multivariate tail conditional expectation (MTCE) is derived for the EMMN
family in Section 8. Finally, in Section 9, some concluding remarks are made.

2. EMMN distribution

Definition 1. A d-dimensional random vector Y has an extended mean mixtures of multivariate
normal (EMMN) distribution, denoted by Y ∼ EMMNd,m(ξ,Ω,∆; H), if and only if it has the
stochastic representation

Y d
= ξ + ω(∆U + Z), (2.1)

where Ω = ωΩ̄ω > 0 is a positive definite matrix, and ξ, ω, ∆ are as in stochastic
representation (1.8). Z ∼ Nd(0, Ω̄ − ∆∆T), U is an arbitrary m-dimensional random variable whose
components are independent of each other and whose CDF is denoted as H(·; v), indexed by the
parameter v = (v1, . . . , vk), and U is independent of Z.

If U has a PDF h(·; v), an integral form of the PDF of Y ∼ EMMNd,m(ξ,Ω,∆; H) can be obtained as

fEMMNd,m(y; ξ,Ω,∆, v) =

∫
Rm
φd

(
y; ξ + ω∆u,Ω − ω∆∆Tω

)
dH(u; v)

=

∫
Rm
φd

(
y; ξ + ω∆u,Ω − ω∆∆Tω

)
h(u; v) du, y ∈ Rd. (2.2)

Noting that, in (2.1), when m = 1, the EMMN distribution has the same stochastic representation as
the MMN distribution in [1], which indicates the MMN distibution is a special case of the EMMN
distribution. When m = 1 and U follows univariate standard half normal distribution, the EMMN
distribution degenerates to the SN distribution. The hierarchical representation for the EMMN
distribution is

Y|(U = u) ∼ Nd(ξ + ω∆u,Ω − ω∆∆Tω), U ∼ H(·; v). (2.3)

From (2.3), for EMMN distributions, just the mean parameter is mixed with arbitrary multivariate
random variable U, but just as shown in [1, 22], EMMN distributions cannot be obtained from the
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Normal Mean-Variance Mixtures (NMVM) family either. Table 1 shows the EMMN, MMN, and SN
distributions.

Table 1. Summary of the EMMN, MMN, and SN distributions.
Distribution EMMN MMN SN

Notation Y ∼ EMMNp,m(ξ,Ω,∆; H) Y ∼ MMNp(ξ,Ω, δ; H) Y ∼ S Np(ξ,Ω, δ)
Density

∫
Rm φp

(
y; ξ + ω∆u,Ω − ω∆∆Tω

)
h(u; v) du

∫
R
φd

(
y; ξ + ωδu,Ω − ωδδTω

)
h(u; v) du 2φp(y; ξ,Ω)Φ(αTω−1(y − ξ))

Stochastic Y d
= ξ + ω(∆U + Z) Y d

= ξ + ω(δU + Z) Y d
= ξ + ω(δU + Z)

representation U : m × 1 ∼ h(u; v), v ∈ Rk U ∼ h(u; v), v ∈ Rk U d
= |U0|,U0 ∼ N(0, 1)

Z ∼ Np(0, Ω̄ − ∆∆T) Z ∼ Np(0, Ω̄ − δδT) Z ∼ Np(0, Ω̄ − δδT)

Mean ξ + ω∆E(U) ξ + ωδE(U) ξ +

√
2
π
ωδ

Covariance matrix Ω + ω∆ [var(U) − Im]∆Tω Ω + ωδ [var(U) − 1)] δTω Ω − 2
π
ωδδTω

Skewness Parameter ∆ ∈ Rp×m δ ∈ Rp δ ∈ Rp

Free Parameters p + 1
2 (1 + p)p + pm + k 2p + 1

2 (1 + p)p + k 2p + 1
2 (1 + p)p

3. Properties

In this section, we explore some basic properties of the EMMN distribution.

Remark 1. The normalized EMMN distribution can be constructed through the transformation X =

ω−1(Y − ξ), which has the stochastic representation of X = ∆U + Z with the hierarchial representation
X|(U = u) ∼ Nd(∆u, Ω̄ − ∆∆T), U ∼ H(·; v). Denoted by X ∼ EMMNd,m(0, Ω̄,∆; H).

Lemma 1. If Y ∼ EMMNd,m(ξ,Ω,∆; H), the characteristic function (CF) and the moment generating
function (MGF) of Y are as follows:

CY(t) = eitTξ− 1
2 tTΣY tCU(i∆Tωt; v), MY(t) = etTξ+ 1

2 tTΣY t MU(∆Tωt; v), (3.1)

respectively, where i =
√
−1, ΣY = Ω − ω∆∆Tω, and CU(·; v) = CU(·), MU(·; v) = MU(·) are the CF

and MGF of U, respectively.

Proof.

CY(t) = E
[
eitTY

]
= E

[
eitT(ξ+ω(∆U+Z))

]
= eitTξE

[
eitTω∆U

]
E

[
eitTωZ

]
= eitTξ− 1

2 tTΣY tCU(i∆Tωt; v),

and

MY(t) = E
[
etTY

]
= E

[
etT(ξ+ω(∆U+Z))

]
= etTξE

[
etTω∆U

]
E

[
etTωZ

]
= etTξ+ 1

2 tTΣY t MU(∆Tωt; v).

�

If X ∼ EMMNd,m(0, Ω̄,∆; H), then the CF and MGF of X are

CX(t) = e
1
2 tTΣX tCU(i∆T t; v), MX(t) = e

1
2 tTΣX t MU(∆T t; v),

respectively, where ΣX = Ω̄ − ∆∆T.
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It can be easily concluded that the mean vector and covariance matrix of EMMNd,m(ξ,Ω,∆; H) are
E(Y) = ξ +ω∆E(U) and Var(Y) = Ω +ω∆ [Var(U) − Im]∆Tω. It should be noted that theoretically it
is possible to calculate the moments of random variables of any order by MGF (3.1), but in practice it
is complicated to derive the explicit formula for moments of order three or higher.

Theorem 1. If Y1 ∼ EMMNd,m(ξ,Ω,∆; H) and Y2 ∼ Nd(µ,Σ) are independent variables, then Y =

Y1 + Y2 ∼ EMMNd,m(ξY,ΩY,∆Y; H), where ξY = ξ + µ, ΩY = Ω + Σ, and ∆Y = ω−1
Y ω∆, with

ωY = (ΩY � Ip)1/2.

Proof. From (2.1) and the MGF of Nd(µ,Σ) is exp
(
tTµ + 1

2 tTΣt
)
. It can be immediately obtained that

MY(t) = MY1+Y2(t) = E
[
etT(Y1+Y2)

]
= E

[
etTY1

]
E

[
etTY2

]
= etT(ξ+µ)e

1
2 tT[(Ω+Σ)−ω∆∆Tω]t MU(∆Tωt; v)

= etT(ξ+µ)e
1
2 tT[(Ω+Σ)−ωY∆Y∆

T
YωY]t MU(∆T

YωY t; v)

= etTξY e
1
2 tT[ΩY−ωY∆Y∆

T
YωY]t MU(∆T

YωY t; v),

where ωY = (ΩY � Ip)1/2 = [(Ω + Σ) � Id]1/2, and by ∆T
YωY = ∆Tω, then ∆Y = ω−1

Y ω∆, hence the
results. �

Theorem 2. If X ∼ EMMNd,m(0, Ω̄,∆; H) and A is a non-singular d × d matrix such that
diag(ATΩ̄A) = Id, that is, ATΩ̄A is a correlation matrix, then ATX ∼ EMMNd,m(0, ATΩ̄A, AT∆; H).

Proof. From (2.1), we can easily obtain

MAT X(t) = E
[
etT AT X

]
= E

[
etT AT(∆U+Z)

]
= E

[
etT AT∆U

]
E

[
etT AT Z

]
= e

1
2 {t

T(AT(Ω̄−∆∆T)A)t}MU(∆T At)

= e
1
2 {t

T(ATΩ̄A−AT∆∆T A)t}MU(∆T At).

Upon using the uniqueness property of the moment generating function, the required result is obtained.
�

Theorem 2 presents that the EMMN distribution is closed under affine transformations.

Theorem 3. If Y ∼ EMMNd,m(ξ,Ω,∆; H), A is a full-rank d × h matrix, with h ≤ d, and c ∈ Rh, then
T = c + ATY ∼ EMMNh,m(ξT,ΩT,∆T; H), where ξT = c + ATξ, ΩT = ATΩA, and ∆T = ω−1

T ATω∆,
with ωT = (ΩT � Ih)1/2.

Proof. From (2.1),

MT = E
[
etTT

]
= E

[
etT(c+AT(ξ+ω(∆U+Z)))

]
= etT(c+ATξ)E

[
etT ATω∆U

]
E

[
eATωZ

]
AIMS Mathematics Volume 7, Issue 7, 12390–12414.
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= etT(c+ATξ)e
1
2 {t

T(ATωΩ̄ωA−ATω∆∆TωA)t}MU(∆TωAt)

= etTξT e
1
2 {t

T(ΩT−ωT∆T∆
T
TωT)t}MU(∆T

TωT t),

it can be obtained ξT = c + ATξ, ωT = (ΩT � Ih)1/2 = ((ATΩA) � Ih)1/2, and with ∆T
TωT = ATω∆, then

∆T = ω−1
T ATω∆, which completes the proof. �

Theorem 4. If Y ∼ EMMNd,m(ξ,Ω,∆; H), ∆ is a full-rank d × m matrix, with m ≤ d, then there exists
a linear transformation Z∗ = A∗(Y − ξ) such that Z∗ ∼ EMMNd,m(0, Id,∆∗; H) where ∆∗ = (δ∗i j) is
d × m matrix, with δ∗ii = δ∗i = (δT

i Ω̄
−1δi)1/2 (i = j), δ∗i j = 0 (i , j), for i ∈ {1, · · · , d}, j ∈ {1, · · · ,m}. δi

is the ith column of ∆.

Proof. Note that the matrix Ω > 0 is assumed in the EMMN distribution, through the factorization
Ω = ωΩ̄ω. The matrix Ω̄ is a positive definite matrix if and only if there exists some invertible matrix
C such that Ω̄ = CTC. If ∆ , 0, there exists an orthogonal matrix P with the first m column being
proportional to CΩ̄−1∆, while for ∆ = 0 we set P = Ip. Finally, define A∗ = (C−1 P)Tω−1. By using
Theorem 3, we have

Z∗ ∼ EMMNEd,m(ξZ∗ ,ΩZ∗ ,∆Z∗; H),

where ξZ∗ = 0, ΩZ∗ = A∗ΩAT
∗ = Id, ωZ∗ = Ip, ∆Z∗ = A∗ω∆ = (C−1 P)T∆. Let ∆ = (δ1, δ2, . . . , δm) and

rewrite orthogonal matrix P as partitioned matrix

P =
(
CΩ̄−1∆K | Q

)
,

where K = diag(k1, k2, . . . , km), (k1, k2, . . . , km)T ∈ Rm, from the properties of orthogonal matrix, we
can conclude that

ki =
1√

δT
i Ω̄
−1δi

, i ∈ {1, . . . ,m} ,

and QTC−1∆ = 0. Then,

∆Z∗ =
(
C−1 P

)T
∆ =

(
KT∆TΩ̄−1C

QT

)
C−1∆ =

(
KT∆TΩ̄−1∆

QTC−1∆

)
=

(diag(∆TΩ̄−1∆)
) 1

2

O

 ,
where diag(∆TΩ̄−1∆) is a diagonal matrix whose ith diagonal element coincide with the ith diagonal
element of the matrix ∆TΩ̄−1∆, for i ∈ {1, . . . ,m}, and O is a matrix with all elements 0. Then, the
required result is obtained. �

The variable Z∗, which we shall somestimes refer to as, like the MMN distribution in [1], a canonical
variate. It is assumed the components of U are mutually independent in (2.1), then the joint density
of Z∗ can be derived from (2.1), and be given by the product of (d − m) standard normal densities and
at most m non-Gaussian components MMN1(0, 1, δ∗i ; Hi), i ∈ {1, . . . ,m}, where Hi is CDF of the ith
component of U. Hence, the density of Z∗ is

fZ∗(z) =

m∏
i=1

fZ∗i (zi)
d∏

i=m+1

φ(zi), (3.2)

where Z∗i ∼ MMN1(0, 1, δ∗i ; Hi). For more details about this distribution, one may refer to [22].
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Remark 2. When m = 1, by (3.2), fZ∗(z) = fZ∗1
(z1)

∏d
i=2 φ(zi), which is the result of the canonical form

of MMN distribution in [1].

Theorem 5. If Y ∼ EMMNd,m(ξ,Ω,∆; H), then, the mode of Y is

M0 = ξ + ω∆

(
m∗01

δ∗1
e1 + · · · +

m∗0m

δ∗m
em

)
,

where m∗0i is the mode of MMN1(0, 1, δ∗i ; Hi) distribution, i ∈ {1, . . . ,m}, δ∗i is the same as in Theorem 4
and ei is m-dimensional unit normal vector whose ith element is 1.

Proof. First, it can be obtained that the mode of the corresponding canonical variable
Z∗ ∼ EMMNd,m(0, Id,∆∗; H) by solving the following equations with respect to z1, . . . , zd:

∂ fz∗1
(z1)

∂z1
= 0,

∂ fz∗2
(z2)

∂z2
= 0, . . . ,

∂ fz∗m(zm)
∂zm

= 0, z j

m∏
i=1

fz∗i (zi) = 0, j ∈ {m + 1, . . . , d}.

When z j = 0, the last d − m equations are fullfilled, and the root of the first m equations correspond
to the mode, m∗01,m

∗
02, . . . ,m

∗
0m say, of the MMN1(0, 1, δ∗i ; Hi), i ∈ {1, . . . ,m} distribution, respectively.

Therefore, the mode of Z∗ is

M∗
0 = (m∗01,m

∗
02, . . . ,m

∗
0m, 0, . . . , 0)T = ∆∗

(
m∗01

δ∗1
e1 + · · · +

m∗0m

δ∗m
em

)
.

By using Theorem 4, Y = ξ+ωCT PZ∗ and ∆∗ = PTCΩ̄−1∆. Since the mode is equivariant with respect
to affine transformations, the mode of Y is

M0 = ξ + ωCT PM∗
0 = ξ + ωCT P∆∗

(
m∗01

δ∗1
e1 + · · · +

m∗0m

δ∗m
em

)
= ξ + ωCT PPTCΩ̄−1∆

(
m∗01

δ∗1
e1 + · · · +

m∗0m

δ∗m
em

)
= ξ + ω∆

(
m∗01

δ∗1
e1 + · · · +

m∗0m

δ∗m
em

)
,

which complete the proof of the result. �

Remark 3. When m = 1, M0 = ξ+
m∗01
δ∗1
ωδ1, which is consistent with the results of the MMN distribution

in [1].

4. Likelihood estimation through EM algorithm

In this section, we propose an EM-type algorithm, as taken in [1], to obtain the maximum likelihood
estimates (MLE) of all parameters of EMMNd,m(ξ,Ω,∆; H). Let Y1,Y2, . . . ,Yn be a random sample
of size n from a EMMNd,m(ξ,Ω,∆; H) distribution. To implement the EM-type algorithm, the random
vector Y and U in stochastic representation (2.1) are considered as observable variable and latent
variable, respectively. For Yi, i ∈ {1, . . . , n} in (2.1), let (Yi,Ui), i ∈ {1, . . . , n}, be the complete-data,
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where Yi is the observed data or incomplete-data, and Ui is considered as missing data. Let θ =

(ξ,Ω,∆, v). By (2.3), for Yi, i ∈ {1, . . . , n},

Yi|(Ui = ui) ∼ Nd(ξ + ω∆ui,ΣY), Ui
i.i.d.
∼ H(·; v),

where ΣY = Ω − ω∆∆Tω. Let y = (yT
1 , . . . , y

T
n)T, and yi is a realization of EMMNd,m(ξ,Ω,∆; H). Note

that

f (yi,ui) = f (yi|ui)h(ui; v)

= (2π)−
d
2 |ΣY |

− 1
2 exp

{
−

1
2

(yi − ξ − ω∆ui)TΣ−1
Y (yi − ξ − ω∆ui)

}
· h(ui; v), (4.1)

the complete-data likelihood function is as follows

Lc(θ) = (2π)−
nd
2 |ΣY |

− n
2 exp

−1
2

n∑
i=1

(yi − ξ − ω∆ui)TΣ−1
Y (yi − ξ − ω∆ui)

 · n∏
i=1

h(ui; v),

and the complete-data log-likelihood function is given by

lc(θ) = −
n
2

ln |ΣY | −
1
2

n∑
i=1

(yi − ξ)TΣ−1
Y (yi − ξ) +

n∑
i=1

(yi − ξ)TΣ−1
Y ω∆ui

−
1
2

n∑
i=1

uT
i ∆

TωΣ−1
Y ω∆ui +

n∑
i=1

ln h(ui; v),

where the constant and parameter-independent terms in the above equation are omitted. Let θ̂(k) =(̂
ξ(k), Ω̂(k), ∆̂(k), v̂(k)

)
be the updated estimates after the kth iteration of the EM algorithm.

E-step: To compute the so-called Q-function, denoted by Q(θ|̂θ(k)),

Q
(
θ|̂θ(k)

)
= E

[
lc(θ)|Yi = yi, θ̂

(k)
]

= −
n
2

ln |ΣY | −
1
2

n∑
i=1

(yi − ξ)TΣ−1
Y (yi − ξ) +

n∑
i=1

(yi − ξ)TΣ−1
Y ω∆E

[
ui|Yi = yi, θ̂

(k)
]

−
1
2

n∑
i=1

E
[
uT

i ∆
TωΣ−1

Y ω∆ui|Yi = yi, θ̂
(k)

]
+

n∑
i=1

E
[
ln h(ui; v)|Yi = yi, θ̂

(k)
]
,

and set A = ω∆, then

Q
(
θ|̂θ(k)

)
= −

n
2

ln |ΣY | −
1
2

n∑
i=1

(yi − ξ)TΣ−1
Y (yi − ξ) +

n∑
i=1

(yi − ξ)TΣ−1
Y AE

[
ui|Yi = yi, θ̂

(k)
]

−
1
2

n∑
i=1

E
[
uT

i ATΣ−1
Y Aui|Yi = yi, θ̂

(k)
]

+

n∑
i=1

E
[
ln h(ui; v)|Yi = yi, θ̂

(k)
]
. (4.2)

M-step: Maximize Q(θ|̂θ(k)) of (4.2) with respect to θ,

∂Q
(
θ|̂θ(k)

)
∂ξ

= 0,
∂Q

(
θ|̂θ(k)

)
∂A

= 0,
∂Q

(
θ|̂θ(k)

)
∂ΣY

= 0.

AIMS Mathematics Volume 7, Issue 7, 12390–12414.



12399

After some algebraic manipulation, we can get the following closed-form expressions:

Â(k+1) =

 n∑
i=1

yiE
[
ui|Yi = yi, θ̂

(k)
]T
− ȳ

n∑
i=1

E
[
ui|Yi = yi, θ̂

(k)
]T

× n∑
i=1

E
[
uiuT

i |Yi = yi, θ̂
(k)

]
−

1
n

 n∑
i=1

E[ui|Yi = yi, θ̂
(k)]

  n∑
i=1

E
[
ui|Yi = yi, θ̂

(k)
]T



−1

,

ξ̂(k+1) = ȳ −
1
n

Â(k+1)
n∑

i=1

E
[
ui|Yi = yi, θ̂

(k)
]
,

Σ̂
(k+1)
Y =

1
n

n∑
i=1

(yi − ξ̂
(k+1))(yi − ξ̂

(k+1))T −
2
n

n∑
i=1

(y − ξ̂(k+1))E
[
ui|Yi = yi, θ̂

(k)
]T (

Â(k+1)
)T

+
1
n

Â(k+1)
n∑

i=1

E
[
uiuT

i |Yi = yi, θ̂
(k)

] (
Â(k+1)

)T
,

where ȳ = 1
n

∑n
i=1 yi is the sample mean vector. Then,

Ω̂(k+1) = Σ̂
(k+1)
Y + Â(k+1)

(
Â(k+1)

)T
,

∆̂ =
(
ω̂(k+1)

)−1
Â(k+1), ω̂ =

(
Ω̂ � Ip

)1/2
.

From [1], two strategies for update of v̂(k) were proposed as:
M-step 2:

v̂(k+1) = arg max
v

n∑
i=1

E
[
ln h(ui; v)|Yi = yi, θ̂

(k)
]
.

Modified M-step 2:

v̂(k+1) = arg max
v

n∑
i=1

ln fEMMNd,m

(
yi; ξ̂(k+1), Ω̂(k+1), ∆̂(k+1), v

)
.

Stopping criterion: Relative likelihood-based approach is the common way for stopping criterion,
that is ∣∣∣∣l (̂θ(k+1)|y

)
− l

(̂
θ(k)|y

)∣∣∣∣∣∣∣∣l (̂θ(k)|y
)∣∣∣∣ < ε,

where l(̂θ(k)|y) =
∑n

i=1 ln fEMMNd,m

(
yi; ξ̂(k), Ω̂(k), ∆̂(k), v̂(k)

)
, and the threshold ε usually be set to 10−5. For

other stopping criterions, one may refer to Lee and McLachlan [17].

Remark 4. The initial value of local and scale parameter ξ, Ω could be obtained by sample mean
and sample covariance, respectively, and for the skewness matrix ∆, whose initial value could be set
according to the sample skewness, and other strategies related to this could be found in Lee et al. [18].
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5. Special case of EMMN distribution

In this section, we explore a special case of the EMMN family when the m-dimensional mixture
random vector U in stochastic representation (2.1) follows the multi-standard gamma distribution
with correponding PDF h(u; v) =

∏m
i=1 uvi−1

i e−ui/Γ(vi), vi > 0, ui > 0, i ∈ {1, . . . ,m}. It means that each
component Ui of random vector U is independent of each other and Ui ∼ Ga(vi, 1), following
univariate standard gamma distribution with parameter vi. We denote this special distribution by
Y ∼ EMMNGd,m(ξ,Ω,∆, v), v = (v1, . . . , vm). We obtain the PDF of Y by (2.2) as follows:

fEMMNGd,m(y; ξ,Ω,∆, v)

=φd(y; ξ,ΣY)
∫
Rm

+

exp
{
−

1
2

[−2(y − ξ)TΣ−1
Y ω∆u + (ω∆u)TΣ−1

Y (ω∆u)]
} m∏

i=1

1
Γ(vi)

uvi−1
i e−ui dµ, y ∈ Rd.

By (3.1), the MGF of Y ∼ EMMNGd,m(ξ,Ω,∆, v) is

MY(t) = etTξ+ 1
2 tTΣY t

m∏
i=1

(1 − tTω∆ei)−vi . (5.1)

For U ∼ Ga(v, 1), E(Ur) =
Γ(v+r)
Γ(v) , r > 0. We can conclude that E(U) = v, E(U⊗UT) = v⊗ vT + diag(v).

Specifically, E(Y) = ξ + ω∆v, var(Y) = Ω + ω∆diag(v − 1d).

Definition 2. (Abdi et al. [1]) A random vector Y (or its distribution) is said to be infinitely divisible
if, for each n ≥ 1, there exist independent and identically distributed (i.i.d.) random vectors Y1, . . . ,Yn

such that Y d
= Y1 + · · · + Yn.

Theorem 6. The EMMNG distribution is infinitely divisible.

Proof. Considering X ∼ EMMNGd,m(0, Ω̄,∆, v), v = (v1, . . . , vm) and Xi
d
= ∆Ui + Zi, where Ui =

(Ui1, . . . ,Uim)T, Ui1, . . . ,Uim are independent and Ui j ∼ Ga
(
α =

v j

n , β = 1
)

for j ∈ {1, . . . ,m}. Zi ∼

Nd

(
0, 1

n (Ω̄ − ∆∆T)
)
. Note that

∑n
i=1 Ui j ∼ Ga(v j, 1) and

∑m
i=1 Zi ∼ Nd(0, Ω̄ − ∆∆T), then it can be

concluded that X d
= X1 + · · · + Xn, which completes the proof of Theorem 6. �

When v = 1m in the EMMNG distribution, i.e., U in stochastic representation (2.1) follows the
multi-standard exponential distribution, and we write the d-dimensional random vector
Y ∼ EMMNEd,m(ξ,Ω,∆). By (2.2), the PDF of Y is obtained as

fY(y) = φd(y; ξ,ΣY)
∫
Rm

+

exp
{
−

1
2

[
−2(y − ξ)TΣ−1

Y ω∆u + (ω∆u)TΣ−1
Y (ω∆u)

]}
e1T

mu du

= (2π)
m
2 |ΣE|

− 1
2 φd (y; ξ,ΣY) exp

{
1
2
ηTΣEη

}∫
Rm

+

φm (u;µE,ΣE) du, y ∈ Rd, (5.2)

where µE = ΣEη, η = ∆TωΣ−1
Y (y − ξ) − 1m, ΣE =

(
∆TωΣ−1

Y ω∆
)−1

.
Figure 1 illustrates the contour plots of the bivariate EMMNE distributions, where (a)–(e)

correspond to Ω = (1, 0; 0, 1), (f) and (g) correspond to Ω = (1, 1.5; 1, 1), and (h) and (i) correspond to
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Ω = (3, 0; 0, 1.5), and different choice of ∆ for ξ = (0, 0)T, we can see that the EMMNE distribution
has flexible shapes which clearly depends on Ω and ∆.
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Figure 1. Contour plots of EMMNE distributions for different choices of ∆.

Lemma 2. Let X ∼ T Np(a, b;µ,Σ). Then

E [X] = µ + Φ̄−1
p (a, b;µ,Σ)ΣqN(a, b;µ,Σ),

E
[
XXT

]
= Σ + µµT + Φ̄−1

p (a, b;µ,Σ)
{
µ
(
ΣqN(a, b;µ,Σ)

)T
+ ΣqN(a, b;µ,Σ)µT

+Σ
(
HN(a, b;µ,Σ) + DN(a, b;µ,Σ)

)
Σ
}
.
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The expression of qN(a, b;µ,Σ), HN(a, b;µ,Σ), DN(a, b;µ,Σ) and for more details, one may refer
to Roozegar et al. [25].

The following theorem plays a vital role in implementing the EM algorithm for parameter estimation
of the EMMNE distribution.

Theorem 7. If Y ∼ EMMNEd,m(ξ,Ω,∆) with U in stochastic representation (2.1) follows the multi-
standard exponential distribution, then U|(Y = y) ∼ T Nm(0,+∞;µE,ΣE), where µE = ΣEη, η =

∆TωΣ−1
Y (y − ξ) − 1m, ΣE =

(
∆TωΣ−1

Y ω∆
)−1

=
(
∆T(Ω̄ − ∆∆T)−1∆

)−1
. Furthermore,

E
[
U|Y = y

]
= µE + Φ̄−1

m (0,+∞;µE,ΣE)ΣEqN(0,+∞;µE,ΣE),

E
[
UUT|Y = y

]
= ΣE + µEµ

T
E + Φ̄−1

m (0,+∞;µE,ΣE)
{
µE

(
ΣEqN(0,+∞;µE,ΣE)

)T

+ ΣE
(
HN(0,+∞;µE,ΣE) + DN(0,+∞;µE,ΣE)

)
ΣE

}
.

The completed proof can be found in Appendix.

Remark 5. The MLE of the parameters of the EMMNE distribution can be obtained by Theorem 7
with

E
[
Ui|Yi = yi, θ̂

(k)
]

= µ̂(k)
E

+ Φ̄−1
p (0,+∞; µ̂(k)

E
, Σ̂(k)
E

)Σ̂(k)
E

qN(0,+∞; µ̂(k)
E
, Σ̂(k)
E

),

E
[
UiUT

i |Yi = yi, θ̂
(k)

]
= Σ̂

(k)
E

+ µ̂(k)
E
µ̂(k)T
E

+ Φ̄−1
p (0,+∞; µ̂(k)

E
, Σ̂(k)
E

)

×

{
µ̂(k)
E

(
Σ̂

(k)
E

qN(0,+∞; µ̂(k)
E
, Σ̂(k)
E

)
)T

+ Σ̂
(k)
E

qN(0,+∞; µ̂(k)
E
, Σ̂(k)
E

)̂µ(k)T
E

+ Σ̂E(k)

(
HN(0,+∞; µ̂(k)

E
, Σ̂(k)
E

) + DN(0,+∞; µ̂(k)
E
, Σ̂(k)
E

)
)
Σ̂

(k)
E

}
.

Since v = 1m, for EMMNE distribution, the M-step 2 in EM algorithm will be skipped.

Theorem 8. If Y ∼ EMMNE distribution, then Y is log-concave.

Proof. The proof is similar to that of Theorem 9 in [1], considering the PDF of the canonical form of
Y, and by (3.2), we have

fZ∗(z) =

m∏
i=1

fZ∗i (zi)
d∏

i=m+1

φ(zi), (5.3)

where Z∗i ∼ EMMNE1(0, 1, δ∗i ), and was proved to be log-concave in Negarestani et al. [22]. The
univariate normal distribution is also log-concave, hence the canoical form Z∗ = (Z∗1, . . . ,Z

∗
d) is log-

concave, considering the property that log-concavity is preserved by affine transformation, then we
complete the proof. �

6. Simulation study

In this section, we examine the performance of the EM-type algorithm in parameter estimation
of the EMMNE distribution. Four terms are considered, including average values (Mean), standard
deviations (Std.), bias (Bias) and mean squared error (MSE) which are calculated with sample sizes
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n ∈ {50, 100, 300, 500} based on 300 replications from the EMMNEd,m(ξ,Ω,∆), where d = m = 2, and
parameters are considered as follows:

ξ = (5, 10), Ω =

(
0.4 0
0 0.6

)
, ∆ =

(
0.3 0.1
0.2 0.7

)
.

The formulations of Mean, Std. Bias and MSE are

̂̄θ =
1
n

n∑
i=1

θ̂i,

√∑n
i=1(θ̂i −

̂̄θ)2

n
,

∑n
i=1(θ̂i − θ)

n
,

∑n
i=1(θ̂i − θ)2

n
,

respectively, where θ is the true parameter (each of ξ = (ξ1, ξ2)T, ∆ = (δ11, δ12; δ21, δ22)T and Ω =

diag(σ11, σ22)) and θ̂i is the estimate from the ith simulated sample.
Table 2 presents the results of the simulation, containing the average value (Mean), the

corresponding standard deviations (Std.), Bias and MSE of the EM estimates of all the parameters of
the EMMNE distribution in 300 simulated samples for each sample size. It can be seen that the Bias
and MSE decrease as sample size n increases, thus varifying the asymptotic unbiasedness and
consistency of the MLE.

Table 2. Mean, Std., Bias and MSE of the EM estimates over 300 samples from the MMNE model.

Sample size Measure
ξ = (ξ1, ξ2) Σ = (σ11, σ12;σ21, σ22) ∆ = (δ11, δ12; δ21, δ22)

ξ1 ξ2 σ11 σ12 σ21 σ22 δ11 δ12 δ21 δ22

50 Mean 5.0430 10.0164 0.3991 -0.0016 -0.0016 0.5838 0.2968 0.1000 0.2011 0.6986
Std 0.0942 0.1112 0.0811 0.0671 0.0671 0.1279 0.0250 0.0367 0.0089 0.0200
Bias 0.0043 0.0164 -0.0009 -0.0016 -0.0016 -0.0162 -0.0032 < 0.0001 0.0011 -0.0014
MSE 0.0089 0.0126 0.0066 0.0045 0.0045 0.0166 0.0006 0.0013 0.0001 0.0004

100 Mean 5.0110 10.0064 0.3973 0.0022 0.0022 0.6050 0.2975 0.1031 0.2011 0.6983
Std 0.0680 0.0810 0.0622 0.0461 0.0461 0.0946 0.0160 0.0251 0.0062 0.0135
Bias 0.0110 0.0064 -0.0027 0.0022 0.0022 0.0050 -0.0025 0.0031 0.0011 -0.0017
MSE 0.0047 0.0066 0.0039 0.0021 0.0021 0.0090 0.0003 0.0006 < 0.0001 0.0002

300 Mean 5.0077 9.9976 0.4005 -0.0004 -0.0004 0.6068 0.3018 0.0988 0.1998 0.7005
Std 0.0392 0.0462 0.0309 0.0262 0.0262 0.0536 0.0107 0.01600 0.0039 0.0087
Bias 0.0077 -0.0024 0.0005 -0.0004 -0.0004 0.0068 0.0018 -0.0012 -0.0002 0.0005
MSE 0.0016 0.0021 0.0010 0.0007 0.0007 0.0029 0.0001 0.0003 < 0.0001 0.0001

500 Mean 5.0030 10.0027 0.4023 0.0047 0.0047 0.6009 0.3000 0.1013 0.2004 0.6994
Std 0.0311 0.0350 0.0252 0.0216 0.0216 0.0428 0.0075 0.0123 0.0028 0.0061
Bias 0.0030 0.0027 0.0023 0.0047 0.0047 0.0009 < 0.0001 0.0013 0.0004 -0.0006
MSE 0.0010 0.0012 0.0006 0.0005 0.0005 0.0018 0.0001 0.0002 < 0.0001 < 0.0001

Table 3 shows the average computational time of the EM algorithm for each sample size, noting that
the value would be influenced by the CPU of the computer. As the dimension of skewness parameter
increasing, comparing the reult with the MMNE distribution in [1], the average computational time
spent for the EMMNE distribution is quite long.
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Table 3. Average run times (in seconds) for the EM algorithm.

Sample size (n) Time
50 25.4162

100 50.9620
300 151.1491
500 242.2890

7. Real data example

In this section, we fit the EMMNE distribution for the Italian olive oil data which can be avilable in
the R software, pgmm package. The data set consists of 572 observations of 10 columns. To support
our illustration, we consider the first 323 observations of the 8th and 9th columns, the Linolenic and
Arachidic fatty acids, respectively, and present the histograms in Figure 2.

Histogram of Linolenic

Linolenic

F
re

q
u
e
n
c
y

20 40 60

0
2
0

4
0

6
0

Histogram of Arachidic

Arachidic

F
re

q
u
e
n
c
y

40 60 80 100

0
1
0

2
0

3
0

4
0

5
0

6
0

Figure 2. The histograms for the Linolenic and Arachidic fatty acids of olive oil data set.

To fit the EMMNE distribution, we consider the sample mean, sample covariance and take
∆ = (0.6546,−0.3750; 0.2000, 0.4977), which are given in Table 4, as the initial values in the EM
algorithms for the parameters ξ,Ω and ∆, respectively. We compared the EMMNE distribution with
the MMNE, SN and ST distributions in terms of the log likelihood values, AICs and BICs, and the
results were presented in Table 5. As shown in Table 5, the EMMNE distribution produces the highest
log-likelihood value, and smallest AIC and BIC values, hence, it provides a better fit than other
distributions. Figure 3 shows the scatter plot of the real data and the contour plots of the fitted
EMMNE, MMNE, SN and ST distributions.
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Figure 3. Scatter plots of the olive oil data, and the contour plots of the fitted EMMNE,
MMNE, skew-normal (SN) and skew-t (ST) distributions.

Table 4. Initial values in the EM algorithm.

ξ Ω ∆38.0650

63.1177


63.3673 40.9800

40.9800 124.2586


0.6546 −0.3750

0.2000 0.4977



Table 5. Results of fitting the distributions. l(̂θ|y): Log-likelihood value, AIC: Akaike
information criterion, BIC: Bayesian information criterion.

Distribution l(̂θ|y) AIC BIC

SN -2320.039 4654.079 4680.522

ST -2316.320 4648.640 4678.861

MMNE -2314.604 4643.207 4669.651

EMMNE -2291.114 4600.228 4634.227
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Table 6. Parameter estimates of the EMMNE distribution by using EM Algorithm.

ξ̂ Ω̂ ∆̂34.5675

55.6717


61.4410 32.2205

32.2205 136.2856


0.6529 −0.3444

0.1736 0.5144


8. MTCE for EMMN distribution

In this section, we introduce the important risk measure: The multivariate tail conditional
expectation (MTCE) and calculate its expression for EMMN distributions. Briefly, a risk measure
could be seen as a mapping from a set of random variables associating the risks to the real line. A
comprehensive study of risk theorey can be found in the book of Denult et al. [13].

Definition 3. For a univariate random variable X, the tail conditional expectation (TCE) is defined by

TCEq(X) = E
[
X|X > VaRq(X)

]
, q ∈ (0, 1),

where VaRq(X) = F−1
X (q) = inf {x ∈ R|FX(x) ≥ q} = sup {x ∈ R|FX(x) < q}, which is known as the

value at risk (VaR) measure.

Definition 4. For an n-dimensional random vector X = (X1, X2, . . . , Xn)T, the multivariate tail
conditional expectation (MTCE) introduced by Landsman et al. [16] is as follows,

MTCEq(X) = E
[
X|X > VaRq(X)

]
= E

[
X|X1 > VaRq1(X1), . . . , Xn > VaRqn(Xn)

]
, q = (q1, . . . , qn) ∈ (0, 1)n.

Here VaRq(X) is the n × 1 vector (VaRq1(X1),VaRq2(X2), . . . ,VaRqn(Xn))T.

Theorem 9. Let Y ∼ EMMNd,m(ξ,Ω,∆; H). Then, the MTCE of Y is given by

MTCEq(Y) =
1

F̄Y(yq)

{(
Ω − ω∆∆Tω

) 1
2

Λq(u) + ξEU

[
Φd(−κq(U))

]
+ ω∆EU

[
UΦd(−κq(U))

]}
,

where

Λq(u) = (λ1,q1 , λ2,q2 , . . . , λd,qd )T,

λi,q = EU

[
φ
(
κq,i(u)

)
Φd−1

(
−κq,−i(u)

)]
, i ∈ {1, . . . , d} ,

κq(u) =
(
κq1,1(u), κq2,2(u), . . . , κqd ,d(u)

)T

=
(
Ω − ω∆∆Tω

)− 1
2
(
VaRq(Y) − ξ − ω∆u

)
,

κq,−i(u) =
(
κq1,1(u), . . . , κqi−1,i−1(u), κqi+1,i+1(u), . . . , κqd ,d(u)

)T
.

Proof. By (2.2), note that
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MTCEq(Y) = E
[
Y|Y1 > VaRq1(Y1), . . . ,Yd > VaRqd (Yd)

]
=

1
F̄Y(yq)

∫ +∞

VaRq(Y)

y
∫
Rm
φd(y; ξ + ω∆u,Ω − ω∆∆Tω)h(u; v) du dy,

where F̄Y(yq) = P(Y > yq), and the
∫ +∞

VaRq(Y)
dy is multi-dimensional integrals.

Let t =
(
Ω − ω∆∆Tω

)− 1
2 (y − ξ − ω∆u), then

MTCEq(Y) =
1

F̄Y(yq)

∫
Rm

∫ +∞

κq(u)

[(
Ω − ω∆∆Tω

) 1
2 t + (ξ + ω∆u)

]
φd(t; 0, Id)h(u; v) dt du

=
1

F̄Y(yq)

{(
Ω − ω∆∆Tω

) 1
2

∫
Rm

∫ +∞

κq(u)

tφd(t; 0, Id)h(u; v) dt du

+ ξEU

[
Φd(−κq(U))

]
+ ω∆EU

[
UΦd(−κq(U))

]}
,

where
∫ +∞

κq(u)
dt is multi-dimensional integrals. And for

Λq(u) =

∫
Rm

∫ +∞

κq(u)

tφd(t; 0, Id)h(u; v) dt du,

by ∫ +∞

κq(u)

φd(t; 0, Id) dt = Φd(−κq(u)),

we conclude that

λi,q =

∫
Rm

∫ +∞

κq(u)

tiφd(t; 0, Id)h(u; v) dt du

=

∫
Rm

∫ ∞

κq,i(u)
ti

e−
1
2 t2i
√

2π
dti

∫ +∞

κq,−i(u)

e−
1
2 tT

d−1,−i td−1,−i

(2π)
d−1

2

dtd−1,−i h(u; v) du

= EU

[
φ
(
κq,i(u)

)
Φd−1

(
−κq,−i(u)

)]
,

where t = (t1, . . . , td)T, td−1,−i = (t1, . . . , ti−1, ti+1, . . . td)T, thus completes the proof of the result. �

Corollary 1. When m = 1, U ∼ Exp(1), Y degenerates to the MMNE distribution, and denoted by
Y ∼ MMNEd(ξ,Ω,∆) (see [1]), then

MTCEq(Y) =
1

F̄Y(yq)

{(
Ω − ω∆∆Tω

) 1
2

Λq(u) + ξEU

[
Φd(−κq(U))

]
+ ω∆EU

[
UΦd(−κq(U))

]}
,

where,

λi,q =

exp
{

1−2ζiβi

2β2
i

}
βi

Φ

(
ζiβi − 1
βi

)
ET

[
Φd−1

(
−κq,−i

(
T
βi

+
ζiβi − 1
β2

i

))]
, i ∈ {1, . . . , d} ,
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T ∼ T N1(− ζiβi−1
βi
,+∞; 0, 1),

ζ = (ζ1, . . . , ζd)T =
(
Ω − ω∆∆Tω

)− 1
2
[
VaRq(Y) − ξ

]
,

β = (β1, . . . , βd)T =
(
Ω − ω∆∆Tω

)− 1
2 ω∆.

Proof. By using Theorem 9,

λi,q = EU

[
φ
(
κq,i(U)

)
Φd−1

(
−κq,−i(U)

)]
=

∫ +∞

0
φ
(
κq,i(u)

)
Φd−1

(
−κq,−i(u)

)
e−u du

=

∫ +∞

0
φ (ζi − βiu) Φd−1

(
−κq,−i(u)

)
e−u du

=

∫ +∞

0

1
√

2π
exp

{
−

1
2

(ζi − βiu)2 − u
}

Φd−1

(
−κq,−i(u)

)
du,

writing βi

(
u − ζiβi−1

β2
i

)
= t, then

λi,q =

∫ +∞

−
ζiβi−1
βi

1
βi

exp
{

1 − 2ζiβi

2β2
i

}
φ(t)Φd−1

(
−κq,−i

(
t
βi

+
ζiβi − 1
β2

i

))
dt

=

exp
{

1−2ζiβi

2β2
i

}
βi

Φ

(
ζiβi − 1
βi

)
ET

[
Φd−1

(
−κq,−i

(
T
βi

+
ζiβi − 1
β2

i

))]
.

�

Corollary 2. When m = 1, U ∼ Ga(ν, 1), Y degenerates to the MMNG distribution, and denoted by
Y ∼ MMNGd(ξ,Ω,∆, ν) (see [1]), then

MTCEq(Y) =
1

F̄Y(yq)

{(
Ω − ω∆∆Tω

) 1
2

Λq(u) + ξEU

[
Φd(−κq(U))

]
+ ω∆EU

[
UΦd(−κq(U))

]}
,

where

λi,q = ciET

(T
βi

+
ζiβi − 1
β2

i

)ν−1

Φd−1

(
−κq,−i

(
T
βi

+
ζiβi − 1
β2

i

)) , i ∈ {1, . . . , d} ,

ci =

exp
{

1−2ζiβi

2β2
i

}
Γ(ν)βi

Φ

(
ζiβi − 1
βi

)
,

T ∼ T N1(− ζiβi−1
βi
,+∞; 0, 1), ζ = (ζ1, . . . , ζd)T, β = (β1, . . . , βd)T are the same as those in Corllary 1.
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Proof. By using Theorem 9,

λi,q = EU

[
φ
(
κq,i(U)

)
Φd−1

(
−κq,−i(U)

)]
=

∫ +∞

0
φ
(
κq,i(u)

)
Φd−1

(
−κq,−i(u)

) 1
Γ(ν)

uν−1e−u du

=

∫ +∞

0
φ (ζi − βiu) Φd−1

(
−κq,−i(u)

) 1
Γ(ν)

uν−1e−u du

=

∫ +∞

0

1
Γ(ν)

1
√

2π
exp

{
−

1
2

(ζi − βiu)2 − u
}

uν−1Φd−1

(
−κq,−i(u)

)
du,

writing βi

(
u − ζiβi−1

β2
i

)
= t, then

λi,q =

∫ +∞

−
ζiβi−1
βi

exp
{

1−2ζiβi

2β2
i

}
Γ(ν)βi

Φ

(
ζiβi − 1
βi

)
φ(t)

(
t
βi

+
ζiβi − 1
β2

i

)ν−1

× Φd−1

(
−κq,−i

(
t
βi

+
ζiβi − 1
β2

i

))
dt

= ciET

(T
βi

+
ζiβi − 1
β2

i

)ν−1

Φd−1

(
−κq,−i

(
T
βi

+
ζiβi − 1
β2

i

)) .
�

Corollary 3. When m = 1, U ∼ T N1(0,+∞; 0, 1), then Y ∼ S Nd(ξ,Ω,∆), and we have

MTCEq(Y) =
1

F̄Y(yq)

{(
Ω − ω∆∆Tω

) 1
2

Λq(u) + ξEU

[
Φd(−κq(U))

]
+ ω∆EU

[
UΦd(−κq(U))

]}
,

where

λi,q =

√
2 exp

{
−

ζ2
i

2(1+β2
i )

}
√
π(1 + β2

i )
Φ

(
ζiβi

1 + β2
i

)
ET

Φd−1

−κq,−i

 T√
1 + β2

i

+
ζiβi

1 + β2
i



 , i ∈ {1, . . . , d} ,

T ∼ T N1(− ζiβi

1+β2
i
,+∞; 0, 1), ζ = (ζ1, . . . , ζd)T, β = (β1, . . . , βd)T are the same as those in Corollary 1.

Proof. By using Theorem 9,

λi,q = EU

[
φ
(
κq,i(U)

)
Φd−1

(
−κq,−i(U)

)]
= 2

∫ +∞

0
φ
(
κq,i(u)

)
Φd−1

(
−κq,−i(u)

)
φ(u) du

= 2
∫ +∞

0
φ (ζi − βiu) Φd−1

(
−κq,−i(u)

)
φ(u) du

=

∫ +∞

0

1
π

exp
{
−

1
2

(ζi − βiu)2 −
1
2

u2
}

Φd−1

(
−κq,−i(u)

)
du,
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writing

(
u− ζiβi

1+β2
i

)
1√
1+β2

i

= t, then

λi,q =

∫ +∞

−
ζiβi

1+β2
i

√
2

π(1 + β2
i )

exp
{
−

ζ2
i

2(1 + β2
i )

}
φ(t)Φd−1

−κq,−i

 t√
1 + β2

i

+
ζiβi

1 + β2
i


 dt

=

√
2 exp

{
−

ζ2
i

2(1+β2
i )

}
√
π(1 + β2

i )
Φ

(
ζiβi

1 + β2
i

)
ET

Φd−1

−κq,−i

 T√
1 + β2

i

+
ζiβi

1 + β2
i



 .

�

Remark 6. When ξ = 0, Ω = Ω̄, the results of Corollary 3 coincide with the MTCE of multivariate
skew-normal distribution in Mousavi et al. [20].

Corollary 4. When ∆ = O, is a zero matrix, Y degenerates to the multivariate normal distribution, and
denoted by Y ∼ Nd(ξ,Ω), then

MTCEq(Y) = ξ +Ω
1
2 Υq,

where, Υq = (υ1, . . . , υd)T,

υi =
φ
(
κq,i

)
Φd−1

(
−κq,−i

)
Φ̄d(κq)

=
φ
(
κq,i

)
Φ̄d−1

(
κq,−i

)
Φ̄d(κq)

, i ∈ {1, . . . , d} .

Proof. By using Theorem 9, and when ∆ = O,

MTCEq(Y) =
1

F̄Y(yq)

{
Ω

1
2 Λq(u) + ξEU

[
Φd(−κq(u))

]}
Λq(u) = Λq = (λ1,q1 , λ2,q2 , . . . , λd,qd )T,

λi,q = φ
(
κq,i(u)

)
Φd−1

(
−κq,−i(u)

)
= φ

(
κq,i

)
Φd−1

(
−κq,−i

)
, i ∈ {1, . . . , d} ,

κq(u) = κq = Ω−
1
2
(
VaRq(Y) − ξ

)
,

κq,−i =
(
κq1,1, . . . , κqi−1,i−1, κqi+1,i+1, . . . , κqd ,d

)T
.

By replacing F̄Y(yq) = Φ̄d(κq), EU

[
Φd(−κq(u))

]
= Φd(−κq) = Φ̄d(κq), we complete the proof of the

result. �

Remark 7. The results of Corollary 4 coincide with the MTCE of the multivariate normal distribution
in Landsman et al. [16].
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9. Conclusions

In this paper, we have presented the extended mean mixtures of multivariate normal (EMMN)
distributions, which include the MMN, SN and the multivariate normal distribution as special cases.
We have explored some basic properties of this family of distributions, including characteristic
function, moment generating function, the distributions of affine transformations and canonical forms.
In addition, we have developed a general EM-type algorithm for estimating parameters in the EMMN
distribution. Two special cases of the EMMN family corresponding to the mixtures of multi-standard
gamma and multi-standard exponential distributions have been studied in detail. Numerical results
from simulation study have been shown the performance of the MLE of parameters in the EMMNE
distribution. The results of the fitting of real data sets revealed that the EMMNE distribution perform
better in fitting compared to the MMNE, SN and ST distributions. Finally, we introduced the risk
measure theory of tail conditional expectation, and derived the theoretical formula of the multivariate
tail conditional expectation (MTCE) of the EMMN distribution.
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Appendix

Proof of Theorem 7. Note that

fU|Y(u) =
fU(u) f (y|u)∫

Rm
+

fU(u) f (y|u) du
,

where

fU(u) f (y|u) = (2π)−
d
2 |ΣY |

− 1
2 exp

{
−

1
2

(y − ξ − ω∆u)TΣ−1
Y (y − ξ − ω∆u)

}
exp

{
−uT1m

}
, (a.1)

and

−
1
2

(y − ξ − ω∆u)TΣ−1
Y (y − ξ − ω∆u)

= −
1
2

[
(y − ξ)TΣ−1

Y (y − ξ) − uT∆TωΣ−1
Y (y − ξ) − (y − ξ)TΣ−1

Y ω∆u + uT∆TωΣ−1
Y ω∆u

]
,

then, (a.1) turns to

φd(y; ξ,ΣY) exp
{
−

1
2

[
−uT∆TωΣ−1

Y (y − ξ)−(y − ξ)TΣ−1
Y ω∆u+uT∆TωΣ−1

Y ω∆u+uT1m+1T
mu

]}
, (a.2)
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where

− uT∆TωΣ−1
Y (y − ξ) − (y − ξ)TΣ−1

Y ω∆u + uT∆TωΣ−1
Y ω∆u + uT1m + 1T

mu

= −uT
[
∆TωΣ−1

Y (y − ξ) − 1m

]
−

[
(y − ξ)TΣ−1

Y ω∆ − 1T
m

]
u + uT∆TωΣ−1

Y ω∆u

=

{
u −

(
∆TωΣ−1

Y ω∆
)−1[
∆TωΣ−1

Y (y − ξ) − 1m

]}T
∆TωΣ−1

Y ω∆

×

{
u −

(
∆TωΣ−1

Y ω∆
)−1[
∆TωΣ−1

Y (y − ξ) − 1m

]}
−

[
∆TωΣ−1

Y (y − ξ) − 1m

]T (
∆TωΣ−1

Y ω∆
)−1 [
∆TωΣ−1

Y (y − ξ) − 1m

]
,

then, (a.2) turns to

(2π)
m
2 |∆TωΣ−1

Y ω∆|
− 1

2φd (y; ξ,ΣY) φm

(
u;

(
∆TωΣ−1

Y ω∆
)−1 [
∆TωΣ−1

Y (y − ξ) − 1m

]
,
(
∆TωΣ−1

Y ω∆
)−1

)
× exp

{
1
2

[
∆TωΣ−1

Y (y − ξ) − 1m

]T (
∆TωΣ−1

Y ω∆
)−1 [
∆TωΣ−1

Y (y − ξ) − 1m

]}
= (2π)

m
2 |ΣE|

− 1
2φd(y; ξ,ΣY)φm(u;µE,ΣE) exp

{
1
2
ηTµE

}
= (2π)

m
2 |ΣE|

− 1
2φd(y; ξ,ΣY)φm(u;µE,ΣE) exp

{
1
2
ηTΣEη

}
,

where µE = ΣEη, η =
[
∆TωΣ−1

Y (y − ξ) − 1m

]
, ΣE =

(
∆TωΣ−1

Y ω∆
)−1

. Hence,

fU|Y(u) =
(2π)

m
2 |ΣE|

− 1
2φd(y; ξ,ΣY)φm(u;µE,ΣE) exp

{
1
2η

TµE
}

∫
Rm

+

(2π)
m
2 |ΣE|

− 1
2φd(y; ξ,ΣY)φm(u;µE,ΣE) exp

{
1
2η

TµE
}

du
=

φm(u;µE,ΣE)∫
Rm

+

φm(u;µE,ΣE) du
,

which completes the proof of the result. �

References

1. M. Abdi, M. Madadi, N. Balakrishnan, A. Jamalizadeh, Family of mean-mixtures of multivariate
normal distributions: Properties, inference and assessment of multivariate skewness, J. Multivar.
Anal., 181 (2021), 104679. https://doi.org/10.1016/j.jmva.2020.104679

2. R. B. Arellano-Valle, A. Azzalini, On the unification of families of skew-normal distributions,
Scand. J. Stat., 33 (2006), 561–574. https://doi.org/10.1111/j.1467-9469.2006.00503.x

3. R. B. Arellano-Valle, M. G. Genton, On fundamental skew distributions, J. Multivar. Anal., 96
(2005), 93–116. https://doi.org/10.1016/j.jmva.2004.10.002

4. O. Arslan, Variance-mean mixture of Kotz-type distributions, Commun. Stat.-Theory Methods, 38
(2009), 272–284. https://doi.org/10.1080/03610920802192497

5. O. Arslan, Variance-mean mixture of the multivariate skew normal distribution, Stat. Papers, 56
(2015), 353–378. https://doi.org/10.1007/s00362-014-0585-7

AIMS Mathematics Volume 7, Issue 7, 12390–12414.

http://dx.doi.org/https://doi.org/10.1016/j.jmva.2020.104679
http://dx.doi.org/https://doi.org/10.1111/j.1467-9469.2006.00503.x
http://dx.doi.org/https://doi.org/10.1016/j.jmva.2004.10.002
http://dx.doi.org/https://doi.org/10.1080/03610920802192497
http://dx.doi.org/https://doi.org/10.1007/s00362-014-0585-7


12413

6. A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist., 12 (1985),
171–178.

7. A. Azzalini, An overview on the progeny of the skew-normal family–A personal perspective, J.
Multivar. Anal., 188 (2022), 104851. https://doi.org/10.1016/j.jmva.2021.104851

8. A. Azzalini, A. Capitanio, Statistical applications of the multivariate skew-normal distribution, J.
R. Stat. Soc. Ser. B-Stat. Methodol., 61 (1999), 579–602. https://doi.org/10.1111/1467-9868.00194

9. A. Azzalini, A. Capitanio, The skew-normal and related families, New York: Cambridge University
Press, 2014. https://doi.org/10.1017/CBO9781139248891

10. A. Azzalini, A. D. Valle, The multivariate skew-normal distribution, Biometrika, 83 (1996), 715–
726. https://doi.org/10.1093/biomet/83.4.715

11. O. Barndorff-Nielsen, J. Kent, M. Sørensen, Normal variance-mean mixtures and z distributions,
Int. Stat. Rev., 50 (1982), 145–159. https://doi.org/10.2307/1402598

12. M. Bernardi, R. Cerqueti, A. Palestini, The skew normal multivariate risk measurement framework,
Comput. Manag. Sci., 17 (2020), 105–119. https://doi.org/10.1007/s10287-019-00350-8

13. M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas, Actuarial theory for dependent risks: Measures,
orders and models, England: John Wiley & Sons, Ltd, 2005. https://doi.org/10.1002/0470016450
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