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1. Introduction

Consider the stochastic fractional differential equation with several delays in control:
CDα

t z(t) = Az(t) +
r∑

q=0
Equ(t − ηq) + %1

(
t, z(t),

r∑
q=0

u(t − ηq)
)

+ %2

(
t, z(t),

r∑
q=0

u(t − ηq)
)dυ(t)

dt
,

t ∈ [0, `],
z(0) = z0, z′(0) = z1,

u(t) = 0, t ∈ [−ηr, 0],

(1.1)

where 1 < α < 2 and CDα
t is the standard Caputo fractional derivative of order α. Let Z and W be

separable Hilbert spaces such that the state function z(t) ∈ Z. The operator A generates a strongly
continuous α-order fractional cosine family {Cα(t) : t ≥ 0} inZ. Let υ be aW-valued Weiner process
with a finite trace nuclear covariance operator Q ≥ 0 on a complete probability space (Ω,Υ, P), where
Υt ⊂ Υ, t ∈ [0, `] is a normal filtration. Υt is a right continuous increasing family and Υ0 contains all
P-null sets. Also, let L0

2 = L2
(
Q1/2W,Z

)
, the space of all Hilbert-Schmidt operators from Q1/2W toZ
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be a separable Hilbert space with the norm ‖ψ‖2Q = tr[ψQψ∗]. Let the control function u takes value in
a separable and reflexive Hilbert space U and Eq ∈ L(U,Z), q = 0, 1, 2, . . . , r are linear continuous
operators and 0 = η0 < η1 < η2 < · · · < ηq < · · · < ηr−1 < ηr are delay points. For convenience, let
u(·) ∈ Uad = L

p
Υ

([0, `],U), whereUad denotes the set of admissible control functions which is closed
and convex. %q, q = 1, 2 are nonlinear functions that satisfy some suitable conditions which will be
specified later. z0 and z1 denote Υ0-measurableZ-valued random variables.

Let C([0, `],Lp(Υ,Z)) be the Banach space of continuous maps defined on [0, `] into Lp(Υ,Z)
such that

sup
t∈[0,`]
E‖z(t)‖p

Z
< ∞,

where Lp(Υ,Z) denotes the Banach space of all Z valued, p-integrable and Υ-measurable random
variables and E is the expectation given by E(z) =

∫
Ω

z(υ)dP. Take C2 = Cp([0, `],Z), then C2 is a
closed subspace of C([0, `],Lp(Υ,Z)) endowed with the norm

‖z‖C2 =

(
sup

t∈[0,`]
E‖z(t)‖p

Z

) 1
p

.

Classical differential equations cannot adequately describe more and more phenomena as science
and technology advance. Various physical processes, for example, have memory and heritability
properties that the classical local differential operators cannot adequately represent. Many well-known
mathematicians such as Euler, Liouville, Riemann, Caputo and Letnikov developed a new excellent
tool to describe these nonlocal processes (fractional differential equations described by nonlocal
operators) [13, 19]. In recent years, it has turned out that many phenomena in viscoelastic polymers,
fluid mechanics, foams and animal tissues can be successfully modeled by fractional order derivatives.

The development of Fractional calculus theory is due to the significant contributions of many
mathematicians such as Euler, Liouville, Riemann and Letnikov. The fractional theory deals with
arbitrary order derivatives or integrals. Fractional calculus is an influential tool that plays an essential
role in studying non-integer parametric models. Also, it emerges a significant role to specify bio-
system, neuroscience, drug diffusion in the human body, fractional biological neurons, frequency-
modulated systems, chemical technology and many real-life phenomena. Fractional integrals and
derivatives also appear in control dynamical systems. Fractional differential equations describe many
natural processes and phenomena studied in biotechnology, electric circuits, engineering science,
optimal control, porous media, economics, etc. A comprehensive study of fractional calculus is
essential and is now well-established. For the basic theory of fractional calculus and applications
in control theory, refer to [2, 12, 33].

Noise and stochastic distress are so common in natural and man-made systems that they cannot
be avoided. Furthermore, some randomness may appear. As a result, stochastic models are being
considered for improved performance and are becoming more important tools for formulating and
analyzing phenomena. In 1940, Kiyosi Ito, a Japanese mathematician, pioneered the mathematical
theory of stochastic differential equations.

Many real dynamical systems have a fundamental feature of uncertainty. The theory of stochastic
dynamical systems is now a well-established area of study that is still in active development and has
many unresolved issues. Statistical physics, economic problems, decision problems, epidemiology,
insurance mathematics, risk theory, reliability theory and other stochastic equation-based methods
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are important fields of applications. For more information on the fundamental theory of stochastic
differential equations, see [20]. The control theory is used to study a wide range of stochastic systems.
These papers [6, 24, 25, 31] show the fascinating property of such dynamical systems.

Many mathematicians, physicists and engineers have been drawn to control problems and significant
contributions to theory and applications have been made. R. E. Kalman began systematically
developing controllability theory in 1963. The fundamental concepts of controllability are described in
Barnett (1975), Curtain and Zwart (1995) [26, 28]. The scientific community has grown increasingly
interested in studying control problems described as abstract differential equations or inclusions in
recent decades. The concept of controllability has been central to modern control theory throughout
history. It plays an essential role in investigating and designing dynamical control systems and
has applications in engineering and operations research. Stochastic systems can be used to model
physical problems where some randomness appears. Many researchers have focused their efforts on
determining the controllability of stochastic fractional semilinear systems. Most authors have looked
into the controllability of autonomous systems [5, 8, 17]. Some authors, however, have investigated
non-autonomous systems [31]. For more work, see [9, 18, 24, 30, 34].

The goal of controllability theory is to be able to control a specific system to the desired state by
giving appropriate input functions in a finite time interval. Many authors demonstrated the control
system with several delays [6, 14, 15, 17]. Optimal control theory extends the calculus of variations
in which an optimized objective function is obtained. We minimize the cost functional due to
optimization. It is important in a variety of scientific fields, including engineering, mathematics and
biology. The papers [21, 25, 29] contain some works on controllability.

Fractional-order stochastic differential equations with multiple control delays have played a
significant role in real-life problems. Furthermore, many practical problems have either constant point
or time variable delay terms in their control. Differential equations with multiple delays have many
applications in control, including population dynamics, electro-mechanical, control theory, biology,
epidemiology, etc. Many researchers are now focusing on this theory and its applications. The
controllability concept has numerous applications in control theory, electric bulk power systems,
industrial and chemical process control, aerospace engineering and, more recently, quantum systems
theory. For more information, refer to [4, 10, 32].

In 2006, P. Balasubramaniam and S. K. Ntouyas [23] provided the controllability result for partial
stochastic functional differential inclusions with infinite delay. In 2017, R. Haloi [27] gave sufficient
conditions for controllability of non-autonomous differential equations with a nonlocal finite delay
with deviating arguments. In 2022, A. Afreen et al. [1] studied a semilinear stochastic system with
constant delays in control.

More specifically, in 2012, K. Balachandran et al. [17] considered the following nonlinear fractional
dynamical system with multiple delays in control CDq

t x(t) = Ax(t) +
M∑

i=0
Biu(hi(t)) + f

(
t, x(t), u(t)

)
, t ∈ [0,T ] := J,

x(0) = x0,

where 0 < q < 1, x ∈ Rn, u ∈ Rp.

In 2019, A. Haq and N. Sukavanam [3] obtained sufficient conditions for the controllability of the
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following semilinear delay system
ϑ′′(t) = Aϑ(t) + B1v(t) + B2v(t − b)

+F(t, ϑa(t), v(t) + v(t − b)), t ∈ (0, β],
ϑ′(0) = ϑ1,

g(ϑ) = ϕ, v(t) = 0, t ∈ [−b, 0].

In 2015, A. Shukla et al. [7] studied the approximate controllability of the following semilinear
fractional control system of order α ∈ (1, 2]

CDα
t y(t) = Ay(t) + Bv(t) + f (t, yt, v), 0 ≤ t ≤ T,

y0(θ) = φ(θ), θ ∈ [−h, 0],
y′(0) = y0.

In [6,14,15], the authors have studied the controllability of a semilinear system with multiple delays
in control. However, in 2017, A. Shukla et al. [9] examined fractional-order α ∈ (1, 2] stochastic
system without control delay. Best of our knowledge, there are no papers concerned with the problem
of nonlinear fractional stochastic systems with multiple delays in control in abstract spaces. To fill the
gap, we have constructed the system (1.1), which is inspired by the works of [6, 7, 9, 14, 15]. Our aim
is to examine the controllability of the considered system. To establish the results, first, we transform
the controllability problem into a fixed-point problem.

The remaining part of the paper is designed as follows: Section 2 contains some basic definitions,
lemmas and assumptions. In Section 3, the controllability problem is transformed into the existence of
a fixed-point problem. Sections 4 and 5 contain the main results of the controllability. In Section 6,
several examples are provided to show the effectuality of the result. In the end, a conclusion is added
for further work.

2. Preliminaries and assumptions

Definition 1. [13] The Caputo fractional derivative of order α for a function g ∈ Cn([0, `],R) is
defined by

CDα
t g(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1g(n)(s)ds, n − 1 < α < n, n ∈ N.

Consider the following linear fractional order system

CDα
t z(t) = Az(t), z(0) = ξ, z′(0) = 0, (2.1)

where α ∈ (1, 2), A : D(A) ⊂ Z → Z is closed and densely defined operator in a Hilbert spaceZ.

Definition 2. [9] Let α ∈ (1, 2). A family {Cα}α≥0 ⊂ L(Z) (Banach space of all bounded linear
operators onZ) is called a solution operator (or strongly continuous α-order fractional cosine family)
for (2.1) and A is called the infinitesimal generator of Cα(t), if the following conditions are satisfied

(1) Cα(t) is strongly continuous for t ≥ 0 and Cα(0) = I;
(2) Cα(t)D(A) ⊂ D(A) and ACα(t)ξ = Cα(t)Aξ for all ξ ∈ D(A), t ≥ 0;
(3) Cα(t)ξ is a solution of z(t) = ξ + 1

Γ(α)

∫ t

0
(t − s)α−1Az(s)ds for all ξ ∈ D(A).
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Definition 3. [9] The fractional sine family S α : R+ → L(Z) associated with Cα is defined by

S α(t) =

∫ t

0
Cα(s)ds, t ≥ 0.

Definition 4. [9] The fractional Riemann-Liouville family Pα : R+ → L(Z) associated with Cα is
defined by

Pα(t) = Iα−1
t Cα(t) =

1
Γ(α − 1)

∫ t

0
(t − s)α−2Cα(s)ds, t ≥ 0.

Definition 5. (Mild solution) A stochastic process z ∈ C2 is said to be a mild solution of (1.1) if it
satisfies

z(t) = Cα(t)z0 + S α(t)z1 +

∫ t

0
Pα(t − s)

r∑
q=0

Equ(s − ηq)ds +

∫ t

0
Pα(t − s)%1

(
s, z(s),

r∑
q=0

u(s − ηq)
)
ds

+

∫ t

0
Pα(t − s)%2

(
s, z(s),

r∑
q=0

u(s − ηq)
)
dυ(s). (2.2)

Definition 6. The control system (1.1) is said to be controllable if the initial states of the system are
changed to some other desired states by a controlled input in a finite duration of time. If the system is
controllable for all z0 at t = 0 and for all z(`) = z` at t = `, it will be called completely controllable
on [0, `].

Lemma 1. [9] For any z` ∈ Lp(Υ`,Z), there exists ϕ ∈ Lp
Υ

([0, `],L0
2) such that

z` = Ez` +

∫ `

0
ϕ(s)dυ(s).

Lemma 2. [31] Let V : [0, `] × Ω → L0
2 be strongly measurable mapping such that∫ `

0
E
∥∥∥V(s)

∥∥∥p

L0
2
ds < ∞. Then

E

∥∥∥∥∥ ∫ t

0
V(s)dv(s)

∥∥∥∥∥p

≤ LV

∫ t

0
E
∥∥∥V(s)

∥∥∥p
ds,

for every t ∈ [0, `] and p ≥ 2, where LV is the constant depending on p and `.

Schauder’s fixed-point theorem. Let (X, ‖ · ‖) be a Banach space over K (K = R or C) and S ⊂ X is
a non-empty closed, bounded and convex set. Any compact operator A : S → S has atleast one fixed
point.

The following assumptions hold throughout the paper.

(C1) There exist constants µ1 ≥ 1, µ2 = µ1`, µ3 =
µ1`

α−1

Γ(α) , µ4 > 0 such that ‖Cα(t)‖ ≤ µ1, ‖S α(t)‖ ≤

µ2, ‖Pα(t)‖ ≤ µ3, µ4 = max
{ ∥∥∥Eq

∥∥∥ : q = 0, 1, 2, . . . , r
}
.
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(C2) The nonlinear function %1 : [0, `]×Z×Uad → Z is continuous and there are real constants α1, β1

such that∥∥∥∥%1

(
t, z(t),

r∑
q=0

u(t − ηq)
)
− %1

(
t, z̃(t),

r∑
q=0

ũ(t − ηq)
)∥∥∥∥p

Z
≤ α1‖z − z̃‖p

C2
+ β1‖u − ũ‖p

Uad
,

where ‖u − ũ‖p
Uad

=
r∑

q=0

∥∥∥(u − ũ)(t − ηq)
∥∥∥p
.

(C3) The nonlinear function %2 : [0, `] × Z × Uad → L0
2 is continuous and there are real constants

α2, β2 such that∥∥∥∥%2

(
t, z(t),

r∑
q=0

u(t − ηq)
)
− %2

(
t, z̃(t),

r∑
q=0

ũ(t − ηq)
)∥∥∥∥p

L0
2

≤ α2‖z − z̃‖p
C2

+ β2‖u − ũ‖p
Uad
,

where ‖u − ũ‖p
Uad

=
r∑

q=0

∥∥∥(u − ũ)(t − ηq)
∥∥∥p
.

3. Transformation to a fixed-point problem

Our aim is to find a suitable control u which steers the stochastic solution of the dynamical
system (1.1) from z(0) = z0 to z` = Ez`+

∫ `

0
ϕ(s)dυ(s).Now for each (y,w) ∈ M = C

(
[0, `],Lp(Υ,Z)

)
×

C([0, `],Uad), consider the fractional linear system
CDα

t z(t) = Az(t) +
r∑

q=0
Equ(t − ηq) + %1

(
t, y(t),

r∑
q=0

w(t − ηq)
)

+ %2

(
t, y(t),

r∑
q=0

w(t − ηq)
)dυ(t)

dt
,

t ∈ [0, `],
z(0) = z0, z′(0) = z1,

u(t) = 0, t ∈ [−ηr, 0],

(3.1)

where 1 < α < 2. M = C
(
[0, `],Lp(Υ,Z)

)
× C([0, `],Uad) is the Banach space with the norm

‖(y,w)‖p = ‖y‖p + ‖w‖p, where
‖y‖p = sup

t∈[0,`]
E‖y(t)‖p

Z
.

The solution of (3.1) is given by

z(t) = Cα(t)z0 + S α(t)z1 +

∫ t

0
Pα(t − s)

r∑
q=0

Equ(s − ηq)ds +

∫ t

0
Pα(t − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds

+

∫ t

0
Pα(t − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s). (3.2)

Using u(t) = 0, t ∈ [−ηr, 0], we get

z(t) = Cα(t)z0 + S α(t)z1 +

r∑
q=0

∫ t−ηq

0
Pα(t − s − ηq)Equ(s)ds
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+

∫ t

0
Pα(t − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds

+

∫ t

0
Pα(t − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s). (3.3)

Putting t = ` in (3.3), we get

z(`) = Cα(`)z0 + S α(`)z1 +

r∑
q=0

∫ `−ηq

0
Pα(` − s − ηq)Equ(s)ds

+

∫ `

0
Pα(` − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds

+

∫ `

0
Pα(` − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s). (3.4)

Now, let us introduce the following notation

φ(z0, z(`); y,w) = Ez` −Cα(`)z0 − S α(`)z1 +

∫ `

0
ϕ(s)dυ(s) −

∫ `

0
Pα(` − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds

−

∫ `

0
Pα(` − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s). (3.5)

Define the controllability Grammian operator

ζ(0, ` − ηq; y,w){·} =

r∑
q=0

∫ `−ηq

0
Pα(` − s − ηq)Eq

{
Pα(` − s − ηq)Eq

}∗
E{·|Υs}ds, (3.6)

where q = 0, 1, 2, . . . , r and ∗ denotes the adjoint. System (3.1) is completely controllable if and only
if the controllablity Grammian operator is nonsingular; or equivalently (see Theorem 1, [22])

ζ(0, ` − ηq; y,w) ≥ bI, (3.7)

where b > 0 and I stands for the identity operator.
If the system (3.1) satisfies the above condition, then one of the control that steers the state (3.3) to

the desired state z` is given by

u(t) ≡ (t, 0, z0, ` − ηq, z`; y,w)
= E∗qP∗α(` − t − ηq)ζ−1φ

(
z0, z(`); y,w

)
. (3.8)

Substituting (3.8) into (3.4) with (3.5) and (3.6), it is easy to verify that for each fixed (y,w) ∈ M,

the control u(t) steers the initial state z0 to the desired state z` = Ez` +
∫ `

0
ϕ(s)dυ(s).

If arbitrarily chosen vectors y,w agree with z, u that result from (3.3) and (3.8), respectively, then
these vectors are also solutions of the semilinear system (1.1). Hence, the controllability problem for
system (1.1) becomes an existence of a fixed point problem for (3.3) and (3.8).
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4. Controllability result

Theorem 1. Assume that for (z, ũ) ∈ M,

lim
‖(z,ũ)‖p→∞

‖%1(t, z, ũ)‖p
Z

+ ‖%2(t, z, ũ)‖p
L0

2

‖(z, ũ)‖p = 0,

uniformly on [0, `] and (C1) holds. Further, if there exists a closed bounded convex subset H of M
such that the operator κ defined by

κ(y, w̃) = (z, ũ), for any (y, w̃) ∈ H , (4.1)

where ũ =
r∑

q=0
u(t − ηq), w̃ =

r∑
q=0

w(t − ηq), has a fixed point in H , then the semilinear fractional

system (1.1) is completely controllable if it satisfies (3.7).

Proof. Define the operator κ : H ⊂ M→ H by

κ(y, w̃) = (z, ũ), for any (y, w̃) ∈ H , (4.2)

where

u(t) = E∗qP∗α(` − t − ηq)ζ−1φ
(
z0, z(`); y,w

)
= E∗qP∗α(` − t − ηq)ζ−1 ×

[
Ez` −Cα(`)z0 − S α(`)z1 +

∫ `

0
ϕ(s)dυ(s)

−

∫ `

0
Pα(` − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds −

∫ `

0
Pα(` − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s)

]
,

and

z(t) = Cα(t)z0 + S α(t)z1 +

r∑
q=0

∫ t−ηq

0
Pα(t − s − ηq)Eq × E∗qP∗α(` − s − ηq)ζ−1φ(z0, z(`); y,w)ds

+

∫ t

0
Pα(t − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds +

∫ t

0
Pα(t − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s).

For simplicity, take

‖%1‖
p = sup

s∈[0,`]
E
∥∥∥∥%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)∥∥∥∥p
, ‖%2‖

p = sup
s∈[0,`]

E
∥∥∥∥%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)∥∥∥∥p
,

λ1 =

∫ `

0
E
∥∥∥ϕ(s)

∥∥∥p
ds, Λ = 6p−1µ

p
4µ

p
3

∥∥∥ζ−1
∥∥∥p
,

1
p

+
1
σ

= 1, δ1 = Λ`1+p/σµ
p
3 , δ2 = ΛL%2`µ

p
3 ,

δ3 = 5p−1`1+p/σµ
p
3

{
(r + 1)µp

4δ1 + 1
}
, δ4 = 5p−1`1+p/σµ

p
3

{
(r + 1)µp

4δ2 + L%2

}
,

N1 = Λ
{
E
∥∥∥Ez`

∥∥∥p
+µ

p
1E‖z0‖

p +µ
p
2E‖z1‖

p +Lϕλ1

}
, N2 = 5p−1

{
µ

p
1E‖z0‖

p +µ
p
2E‖z1‖

p +(r+1)`1+p/σµ
p
3µ

p
4 N1

}
,

N = max{N1,N2}, δ = max{δ1, δ2, δ3, δ4}.
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Using Lemma 2 and Holder’s inequality with the assumption (C1), we have

E‖u(t)‖p ≤ 6p−1
∥∥∥E∗qP∗α(` − t − ηq)ζ−1

∥∥∥p
[
E
∥∥∥Ez`

∥∥∥p
+ E

∥∥∥Cα(`)z0

∥∥∥p
+ E

∥∥∥S α(`)z1

∥∥∥p

+Lϕ

∫ `

0
E
∥∥∥ϕ(s)

∥∥∥p
ds + `p/σ

∫ `

0
E

∥∥∥∥∥Pα(` − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)∥∥∥∥∥p

ds

+L%2

∫ `

0
E

∥∥∥∥∥Pα(` − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)∥∥∥∥∥p

ds
]

≤ 6p−1µ
p
4µ

p
3

∥∥∥ζ−1
∥∥∥p

[
E
∥∥∥Ez`

∥∥∥p
+ µ

p
1E‖z0‖

p + µ
p
2E‖z1‖

p + Lϕλ1 + `1+p/σµ
p
3‖%1‖

p + L%2`µ
p
3‖%2‖

p
]

= N1 + δ1‖%1‖
p + δ2‖%2‖

p

≤ N + δ
(
‖%1‖

p + ‖%2‖
p
)
,

⇒ E‖ũ(t)‖p ≤ (r + 1)
[
N + δ

(
‖%1‖

p + ‖%2‖
p
)]

and

E‖z(t)‖p ≤ 5p−1
[
E
∥∥∥Cα(`)z0

∥∥∥p
+ E

∥∥∥S α(`)z1

∥∥∥p
+ `p/σ

r∑
q=0

∫ `−ηq

0
E
∥∥∥Pα(` − s − ηq)Equ(s)

∥∥∥p
ds

+`p/σ
∫ `

0
E

∥∥∥∥∥Pα(` − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)∥∥∥∥∥p

ds

+L%2

∫ `

0
E

∥∥∥∥∥Pα(` − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)∥∥∥∥∥p

ds
]

≤ 5p−1
[
µ

p
1E‖z0‖

p + µ
p
2E‖z1‖

p + (r + 1)`1+p/σµ
p
3µ

p
4

{
N1 + δ1‖%1‖

p + δ2‖%2‖
p
}

+ `1+p/σµ
p
3‖%1‖

p

+L%2`µ
p
3‖%2‖

p
]

= N2 + δ3‖%1‖
p + δ4‖%2‖

p

≤ N + δ
(
‖%1‖

p + ‖%2‖
p
)
.

Since the function %1 and %2 satisfy Proposition 1 of [16]. Therefore, for each pair of constants
N and δ, there exists ε > 0 such that, if E‖y(t)‖p ≤ ε

2 and E‖w̃(t)‖p ≤ ε
2 , i.e., ‖(y, w̃)‖p ≤ ε, then

N + δ
(
‖%1‖

p + ‖%2‖
p
)
≤ ε. Therefore, E‖ũ(t)‖p ≤ (r + 1)ε and E‖z(t)‖p ≤ ε. Thus, we have proved that,

if H(ε′) =
{
(y, w̃) ∈ H : ‖y‖p ≤ ε

2 and ‖w̃‖p ≤ ε
2

}
, where ε′ = max{(r + 2)ε, ε} then κ maps H(ε′) into

iteslf. Since %1, %2 are continuous, therefore κ is continuous. The complete continuity of κ is followed
by Arzela-Ascoli theorem. AsH(ε′) is closed, bounded and convex set, therefore by Schauder’s fixed
point theorem, κ has a fixed point (y, w̃) ∈ H(ε′), i.e., κ(y, w̃) = (y, w̃) ≡ (z, ũ). Hence, we have

z(t) = Cα(t)z0 + S α(t)z1 +

r∑
q=0

∫ t−ηq

0
Pα(t − s − ηq)Equ(s)ds +

∫ t

0
Pα(t − s)%1

(
s, y(s),

r∑
q=0

w(s − ηq)
)
ds

+

∫ t

0
Pα(t − s)%2

(
s, y(s),

r∑
q=0

w(s − ηq)
)
dυ(s).
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It is easy to prove that the control u(t) steers the system (1.1) from z0 to z`. Hence, the system (1.1)
is completely controllable. �

5. Optimal controllability

We consider the Lagrange problem to find an optimal state-control pair (z0, u0) ∈ C2 × Uad

satisfying [25]
I(z0, u0) ≤ I(z, u), ∀ (z, u) ∈ C2 ×Uad,

where z denotes the mild solution of the stochastic system (1.1) corresponding to the control u ∈ Uad

and

I(z, u) = E
{ ∫ `

0
G̃

(
t, z(t),

r∑
q=0

u(t − ηq)
)
dt

}
. (5.1)

To discuss the Lagrange problem, we assume the following conditions

(C4) The Borel measurable function G̃ : [0, `] ×Z ×Uad → R ∪ {∞} satisfies
(a) For almost all t ∈ [0, `], G̃(t, z, ·) is convex onUad for each z ∈ Z.
(b) For almost all t ∈ [0, `], G̃(t, ·, ·) is sequentially lower semicontinuous onZ×Uad.

(c) There exist constants e1 ≥ 0, e2 > 0 and Φ is a non-negative function in L1([0, `],R)
such that

G̃

(
t, z(t),

r∑
q=0

u(t − ηq)
)
≥ Φ(t) + e1‖z‖Z + e2‖u‖

p
Uad
,

where ‖u‖p
Uad

=
r∑

q=0
‖u(t − ηq)‖p.

Balder’s Theorem 2.1. [11]: The following three conditions
(a) f (t, ·, ·) is sequentially l.s.c. on X × V µ-a.e.,
(b) f (t, x, ·) is convex on V for every x ∈ X µ-a.e.,
(c) there exist M > 0 and ψ ∈ L1

R such that f (t, x, v) ≥ ψ(t) − M(‖x‖ + |v|) for all x ∈ X, v ∈ V µ-a.e.,
are sufficient for sequential strong-weak lower semicontinuity of I f on L1

X × L1
V . Moreover, they are

also necessary, provided that I f (x̄, v̄) < +∞ for some x̄ ∈ L1
X, v̄ ∈ L1

V .

Theorem 2. Let assumptions (C1)–(C4) hold. Further, if all the hypotheses of Theorem 1 are satisfied,
then there exists an optimal pair of (1.1) if 3p−1µ

p
3(`p/σα1 + α2L%2) < 1.

Proof. It is enough to show that there exists (z0, u0) ∈ C2 ×Uad which minimize I(z, u).
If inf{I(z, u) : (z, u) ∈ Z ×Uad} = ∞, then result holds trivially.
If inf{I(z, u) : (z, u) ∈ Z × Uad} = ε0 < ∞, then there exists a minimizing sequence {(zn, un)} such

that I(zn, un) → ε0 as n → ∞. Since Uad is closed and convex, therefore, sequence {un} has a weakly
convergent subsequence um → u0 ∈ Uad by Marzur Lemma.
Using Theorem 1, for each um ∈ Uad, there exists a mild solution zm of (1.1),

zm(t) = Cα(t)z0 + S α(t)z1 +

∫ t

0
Pα(t − s)

r∑
q=0

Equm(s − ηq)ds
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+

∫ t

0
Pα(t − s)%1

(
s, zm(s),

r∑
q=0

um(s − ηq)
)
ds +

∫ t

0
Pα(t − s)%2

(
s, zm(s),

r∑
q=0

um(s − ηq)
)
dυ(s).

Similarly, corresponding to u0, we have

z0(t) = Cα(t)z0 + S α(t)z1 +

∫ t

0
Pα(t − s)

r∑
q=0

Equ0(s − ηq)ds

+

∫ t

0
Pα(t − s)%1

(
s, z0(s),

r∑
q=0

u0(s − ηq)
)
ds +

∫ t

0
Pα(t − s)%2

(
s, z0(s),

r∑
q=0

u0(s − ηq)
)
dυ(s).

We have,
E‖zm(t) − z0(t)‖p

≤ 3p−1E

∥∥∥∥∥ ∫ t

0
Pα(t − s)

r∑
q=0

{
Equm(s) − Equ0(s)

}
ds

∥∥∥∥∥p

+3p−1E

∥∥∥∥∥ ∫ t

0
Pα(t − s)

{
%1

(
s, zm(s),

r∑
q=0

um(s − ηq)
)
− %1

(
s, z0(s),

r∑
q=0

u0(s − ηq)
)}

ds
∥∥∥∥∥p

+3p−1E

∥∥∥∥∥ ∫ t

0
Pα(t − s)

{
%2

(
s, zm(s),

r∑
q=0

um(s − ηq)
)
− %2

(
s, z0(s),

r∑
q=0

u0(s − ηq)
)}

dυ(s)
∥∥∥∥∥p

≤ 3p−1`p/σµ
p
3µ

p
4(r + 1)

∫ t

0

∥∥∥um − u0
∥∥∥p

ds + 3p−1`p/σµ
p
3

∫ t

0

{
α1

∥∥∥zm − z0
∥∥∥p

+ β1

∥∥∥um − u0
∥∥∥p}

ds

+3p−1µ
p
3 L%2

∫ t

0

{
α2

∥∥∥zm − z0
∥∥∥p

+ β2

∥∥∥um − u0
∥∥∥p}

ds

≤ 3p−1µ
p
3

(
`p/σµ

p
4(r + 1) + `p/σβ1 + β2L%2

) ∫ t

0

∥∥∥um − u0
∥∥∥p

ds + 3p−1µ
p
3(`p/σα1 + α2L%2)

∫ t

0

∥∥∥zm − z0
∥∥∥p

ds.

Since 3p−1µ
p
3(`p/σα1 + α2L%2) < 1 and

∥∥∥um − u0
∥∥∥p
→ 0, we conclude that zm → z0.

Applying Balder’s theorem (see Theorem 2.1, [11]), we obtain

ε0 = lim
m→∞
E
{ ∫ `

0
G̃

(
t, zm(t),

r∑
q=0

um(t − ηq)
)
dt

}
≥ E

{ ∫ `

0
G̃

(
t, z0(t),

r∑
q=0

u0(t − ηq)
)
dt

}
= I(z0, u0) ≥ ε0.

This shows that I(z0, u0) = ε0. �
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6. Applications

Example 6.1. Consider the following fractional system with single point delay in control

CD1.7
t z(t, x) = zxx(t, x) + E0u(t, x) + 5u(t − 2π, x)

+t3 sin(3πt)
(
z(t, x) + u(t, x) + u(t − 2π, x)

)
+t cos(t)

(
3
∂zt(x)
∂x

+ u(t, x) + u(t − 2π, x)
)dυ(t)

dt
, x ∈ [0, π], t ∈ [0, 7],

z(0, x) = z0(x),
∂z(t, x)
∂t

∣∣∣∣
t=0

= z1(x), u(t) = 0, t ∈ [−2π, 0],

z(t, 0) = z(t, π) = 0, t ∈ [0, 7].

(6.1)

Here, η0 = 0, η1 = 2π.
LetZ = L2[0, π] and the operator A : Z → Z is defined as Az = z′′ with

D(A) =
{
z ∈ Z : z, z′ are absolutely continuous, z′′ ∈ Z and z(0) = z(π) = 0

}
.

The operator A has discrete spectrum with normalized eigenvectors eq(x) =

√
2
π

sin(qx) corresponding
to the eigenvalues λq = −q2, q ∈ N. The set {eq : q ∈ N} forms an orthogonal basis for Z. Thus, we
have

Az =
∑
q∈N

−q2〈z, eq〉eq, z ∈ D(A).

A generates strongly continuous cosine and sine family given by

C(t)z =
∑
q∈N

cos(qt)〈z, eq〉eq,

and
S (t)z =

∑
q∈N

sin(qt)
q
〈z, eq〉eq, t ∈ R,

respectively. For α ∈ (1, 2) [12]

Cα(t) =

∫ ∞

0
t−α/2ψα/2(st−α/2)C(s)ds,

where

ψµ(x) =

∞∑
n=0

(−x)n

n!Γ(−µn + 1 − µ)
, 0 < µ < 1, t > 0.

Define

U =

{
u : u =

∞∑
q=2

uqeq(x)
∣∣∣∣ ∞∑

q=2

u2
q < ∞

}
,

with the norm ‖u‖ =

(
∞∑

q=2
u2

q

)1/2

.

Define the operator E0 : U → Z by E0u =
(
Eu

)
(t), where E ∈ L(U,Z) such that

Eu(t) = 2u2(t)e1(x) +

∞∑
q=2

uq(t)eq(x).
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If we define z(t) and u(t) as
z(t)(·) = z(t, ·), u(t)(·) = u(t, ·).

Then

%1

(
t, z(t),

1∑
q=0

u(t − ηq)
)
(x) = t3 sin(3πt)

(
z(t, x) + u(t, x) + u(t − 2π, x)

)
,

and

%2

(
t, z(t),

1∑
q=0

u(t − ηq)
)
(x) = t cos(t)

(
3
∂zt(x)
∂x

+ u(t, x) + u(t − 2π, x)
)
.

Now the system (6.1) can be written as in the abstract form (1.1). Thus, (6.1) has a solution. Clearly,
all the requirements of Theorem 1 are satisfied, therefore, the system (6.1) is completely controllable
on [0, 7].
Example 6.2. Consider the following system

CD1.85
t z(t, x) = zxx(t, x) + E0u(t, x) +

4∑
q=1

u(t − 3q, x) +
5

1 + sin t
z(t, x) + 2πu(t, x)

+e2u(t − 3, x) + u(t − 6, x) +
1
7e

u(t − 9, x) + u(t − 12, x)

+

(
πe−5tz(t, x) +

3
1 + e2t

4∑
q=0

u(t − 3q, x)
)dυ(t)

dt
, x ∈ [0, π], t ∈ [0, 14],

z(0, x) = z0(x),
∂z(t, x)
∂t

∣∣∣∣
t=0

= z1(x), u(t) = 0, t ∈ [−12, 0],

z(t, 0) = z(t, π) = 0, t ∈ [0, 14].

(6.2)

Collecting the above definitions and following Example 6.1, we can easily conclude the result.
Example 6.3. Consider the following system having multiple delays

CD1.5
t z(t, x) = zxx(t, x) +

7
9

n∑
q=0

u(t − 2q, x) + e−3tz(t, x) + 8e−4t
n∑

q=0
u(t − 2q, x)

+

(
5z(t, x) +

2
1 + π

n∑
q=0

u(t − 2q, x)
)dυ(t)

dt
, x ∈ [0, π], t ∈ [0, 3n],

z(0, x) = z0(x),
∂z(t, x)
∂t

∣∣∣∣
t=0

= z1(x), u(t) = 0, t ∈ [−2n, 0],

z(t, 0) = z(t, π) = 0, t ∈ [0, 3n].

(6.3)

Following Example 6.1, we can conclude that the system (6.3) is completely controllable on [0, 3n].

7. Conclusions

In the present paper, we have established sufficient conditions for the controllability of a semilinear
fractional stochastic system with multiple delays in control. The controllability problem has been
transformed into a fixed point problem. The existence of a subset on which the operator is invariant
is shown to be a sufficient condition for controllability using Schauder’s fixed point theorem. It is
also shown that the problem admits at least one optimal pair of state-control under some natural
assumptions. Several examples are provided to demonstrate the efficacy of the results. In the future,
the above work could be extended to a multi-term time-fractional impulsive system using the same
technique or the Picard iterative technique.
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