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Abstract: In this article we use one-dimensional, monoenergetic diffusion kinetic equation with 
one delayed neutron precursor concentration in Cartesian geometry to reconstruct the neutron flux 
of a reactor from the nuclear parameters, boundary, and initial conditions. The mathematical model 
is governed by a system of linear partial differential equations with prescribed boundary and initial 
conditions. As a matter of fact, the exact solution for any physical problem, if available, is of great 
importance which inevitably leads to a better understanding of the behavior of the involved 
physical phenomena. The present work represents an attempt for doing so, where the flux and 
precursor equations are solved by the help of Laplace transform in both spatial and time variables 
and consequently the exact expressions for the flux and concentration in space and time are 
established. We report numerical simulations as well study of numerical convergence of the 
obtained results. 
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1. Introduction  

The numerical methods [1] and the analytical approximations [2–4] for the solution of the 
kinetic neutron diffusion equations with delayed neutron precursor concentrations in the nuclear 
reactor have been of interest in both nuclear physics and reactor design for many safety 
considerations. In the last few years special attention to analytical solutions of linear and nonlinear 
problems by the scientific community. In addition to the mathematical elegance, the analytical 
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solution and the explicit dependence on the parameters in their analytical expressions possess an 
adequate way to generate benchmark solutions to validate computational code results. Moreover, 
the analytical solution in some sense eliminates mathematical effort of the error evaluation 
required by various numerical techniques. In addition to computing effort required in numerical 
techniques. Obviously, The External and scattering slowing down terms are neglected due to the 
assumption of one energy group, but the fission and the absorption term are included in Eq (1). 
Moreover, we clarify the following: 

Analytical solutions of the coupled three-dimensional multi-group time-dependent neutron 
transport equation with thermal-hydraulics feedback including generalized neutron diffusion 
source terms, scattering source term, absorption source term, external source term, and fission 
source are prohibitively difficult. So approximate methods are employed. This article is concerned 
with the most common approximation to the time-dependent transport equation i.e., the time 
dependent neutron diffusion equation.  

Moreover, some simplifications to the physical problem are essential to be made to get the 
required analytical solution, namely, one dimensional, one delayed neutron precursor 
concentration with no source term as in the current article. Otherwise, numerical approximate 
methods are to be employed to solve more generalized and realistic reactor dynamics equations 
with thermal hydraulics feedback although it needs too much calculations effort to achieve the 
required accuracy [5,6]. Also, many attempts for illustrating the benchmark results for 
computational codes validation for the analytical solutions neutron diffusion kinetic equations can 
be found in reference [7].  

In this work, keeping us in the tracking of searching analytical solution, we apply the Laplace 
transform technique to solve the one-dimensional neutron diffusion kinetics equation in Cartesian 
coordinates. The Laplace transform technique is a well-established methodology to solve 
analytically linear differential equations for a broad class of problems in the field of physics and 
engineering [8–10]. As a matter of fact, analytical solutions assure that no approximation is done 
along the solution derivation. 

The main idea of this approach relies on the transformation of partial differential equations 
of the original physical problem into ordinary differential equation which can be solved exactly 
then by applying inverse Laplace transform we can get the solution of the original physical 
problem. In this work, keeping us in the line of searching analytical solutions we present an exact 
closed form solution for the neutron diffusion kinetic equation in Cartesian geometry. In this article 
we specialize the application, without losing generality, to the one-dimensional, monoenergetic 
diffusion kinetic equation with one delayed neutron precursor. The solution of the current article 
affirms that the methodology can be considered as cornerstone and straightforward manner for 
more realistic physical problems. This is means that later we can consider a six delayed neutron 
precursor and several energy groups as well as dealing with multidimensional problems. Some 
numerical results have been given to complete and validate the solution obtained. 

2. The physical problem 

Assuming monoenergetic neutrons and only one delayed neutron concentration we can write 
the one-dimensional neutron diffusion equation in cartesian geometry is given by  
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ଵ

௏

డథሺ௫,௧ሻ

డ௧
ൌ 𝐷 డమథሺ௫,௧ሻ

డ௫మ ൅ ൫െ𝛴௔ ൅ ሺ1 െ 𝛽ሻ𝜈𝛴௙൯𝜙ሺ𝑥, 𝑡ሻ ൅ 𝜆𝐶ሺ𝑥, 𝑡ሻ    (1) 

డ஼ሺ௫,௧ሻ

డ௧
ൌ 𝛽𝑣𝛴௙𝜙ሺ𝑥, 𝑡ሻ െ 𝜆𝐶ሺ𝑥, 𝑡ሻ       (2) 

For 𝑡 ൐ 0 and 0 ൏  𝑥 ൏  𝐿 , subjected to the vacuum boundary condition 𝜙ሺ0, 𝑡ሻ ൌ 𝜙ሺ𝐿, 𝑡ሻ ൌ 0 and the 
initial conditions: 

𝜙ሺ𝑥, 0ሻ ൌ 𝜙௢ 

𝐶ሺ𝑥, 0ሻ ൌ
ఉఔఀ೑

ఒ
𝜙௢         (3) 

Here 𝜙ሺ𝑥, 𝑡ሻ denotes the neutron flux, 𝜙௢ is the neutron flux at the initial time ሺ𝑡 ൌ 0ሻ, 𝐶ሺ𝑥, 𝑡ሻ is 
the delayed neutron concentration and , 𝑉 ,𝐷,  Σ௔ 𝛽, 𝜈,  Σ௙ and 𝜆 are the standard neutron parameters. 
Normally, the flux and delayed neutron precursor concentrations in space-time dynamics problems 
calculate their initial state values by solving the corresponding neutron diffusion steady-state model. 
Although in the current calculations we assume that they are simply given by the definitions initial 
conditions appeared in Eq (3). This is obvious because we are focused on getting a new explicit 
mathematical solution to the physical problem. 

3. The exact solution 

For convenience let us rewrite Eqs (1) and (2) as follow:  

డథሺ௫,௧ሻ

డ௧
ൌ 𝑉𝐷 డమథሺ௫,௧ሻ

డ௫మ ൅ 𝜇𝜙ሺ𝑥, 𝑡ሻ ൅ 𝑉𝜆𝐶ሺ𝑥, 𝑡ሻ.      ሺ4ሻ 

பେሺ୶,୲ሻ

ப୲
ൌ σϕሺx, tሻ െ λCሺx, tሻ.        (5) 

Where for simplicity we put  

μ ൌ VሺെΣୟ ൅ ሺ1 െ βሻνΣ୤ሻ, σ ൌ βvΣ୤.        (6) 

The neutron flux Eq (4) can be solved exactly by the help of Laplace transform as follow. Taking 
Laplace transform to both sides of the partial differential Equation (4) with help of Eq (6), we get  

𝑠𝜙෨ሺ𝑥, 𝑠ሻ െ 𝜙෨ሺ𝑥, 0ሻ ൌ 𝑉𝐷 ௗమథ෩ ሺ௫,௦ሻ

ௗ௫మ ൅ 𝜇 𝜙෨ሺ𝑥, 𝑠ሻ ൅ 𝑉𝜆𝐶ሚሺ𝑥, 𝑠ሻ.      (7) 

Rearranging and making use of initial condition (3), 

VD ୢమம෩ሺ୶,ୱሻ

ୢ୶మ ൅ ሺμ െ sሻ ϕ෩ሺx, sሻ ൅ ϕ୭ ൅ VλC෨ሺx, sሻ.       (8) 

Again, using Laplace transform for the Precursor concentration Eq (5) with help of Eq (6) yields  

𝑠𝐶ሚሺ𝑥, 𝑠ሻ െ 𝐶ሺ𝑥, 0ሻ ൌ 𝜎𝜙෨ሺ𝑥, 𝑠ሻ െ 𝜆𝐶ሚሺ𝑥, 𝑠ሻ.       (9) 

Rearranging and making use of initial condition (3)  
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C෨ሺx, sሻ ൌ ஔம౥

ୱା஛
൅ ஢

ୱା஛
ϕ෩ሺx, sሻ.        (10) 

Where 

𝛿 ൌ
ఉఔఀ೑

ఒ
.          (11) 

Now, substituting Eq (10) into Eq (8) and rearranging we get, 

ୢమம෩ሺ୶,ୱሻ

ୢ୶మ െ ଵ

୚ୈ
ቂୱమିሺஜି஛ሻୱି஛ሺஜା୴஢ሻ

ୱା஛
ቃ ϕ෩ሺx, sሻ ൌ ିம౥

୚ୈ
ቂୱା஛ሺଵା୴ஔሻ

ୱା஛
ቃ.    (12) 

Which equivalent to the known differential equation of the form, 

ௗమథ෩ ሺ௫,௦ሻ

ௗ௫మ െ 𝜔ଶሺ𝑠ሻ𝜙෨ሺ𝑥, 𝑠ሻ ൌ െ𝑔ሺ𝑠ሻ.       (13) 

Where 

𝜔ሺ𝑠ሻ ൌ ଵ

√௏஽
ට௦మିሺఓିఒሻ௦ିఒሺఓା௩ఙሻ

௦ାఒ
       (14) 

gሺsሻ ൌ ம౥

୚ୈ
ቂୱା஛ሺଵା୴ஔሻ

ୱା஛
ቃ         (15) 

The general solution of Eq (13) is as follow 

𝜙෨ሺ𝑥, 𝑠ሻ ൌ ℎଵሺ𝑠ሻ 𝑐𝑜𝑠ℎሺ 𝜔ሺ𝑠ሻ𝑥ሻ ൅ ℎଶሺ𝑠ሻ 𝑠𝑖𝑛ℎሺ 𝜔ሺ𝑠ሻ𝑥ሻ ൅ ௚ሺ௦ሻ

ఠమሺ௦ሻ
 .    (16) 

Substituting the boundary conditions appearing in Eq (3) after subjected to Laplace transformation we 
get the following forms for the unknown functions ℎଵሺ𝑠ሻ, ℎଶሺ𝑠ሻ 

ℎଵሺ𝑠ሻ ൌ ି௚ሺ௦ሻ

ఠమሺ௦ሻ
, ℎଶሺ𝑠ሻ ൌ ି௚ሺ௦ሻሾଵି௖௢௦௛ሺఠሺ௦ሻ௅ሻ

ఠమሺ௦ሻ ௦௜௡௛ሺఠሺ௦ሻ௅ሻ
 .     (17) 

Now, substituting unknown functions ℎଵሺ𝑠ሻ,  ℎଶሺ𝑠ሻ from Eq (17) and, 𝑔ሺ𝑠ሻ, 𝜔ሺ𝑠ሻ from Eqs (14), (15) 
into Eq (16) yields 

𝜙෨ሺ𝑥, 𝑠ሻ ൌ 𝜙௢ ቈ
ଶሺ௦ାఒሺଵା௏ఋሻሻ ௦௜௡௛ഘሺೞሻೣ

మ
௦௜௡௛ഘሺೞሻሺಽషೣሻ

మ

ሺ௦మିሺఓିఒሻ௦ିఓሺఓା௏஽ሻሻ ௖௢௦௛ሺഘሺೞሻಽ
మ

ሻ
቉ .     (18) 

Now to make a possible apply for the inverse Laplace transform to Eq (18) we have to find first the 
poles and residues of Eq (18) as follow: 

3.1. Poles calculations of 𝜙෩ ሺ𝑥, 𝑠ሻ 

From Eq (18) we first have to find poles by setting, 

𝑠ଶ െ ሺ𝜇 െ 𝜆ሻ𝑠 െ 𝜇ሺ𝜇 ൅ 𝑉𝐷ሻ ൌ 0 .       (19) 
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Using definition of 𝜔ሺ𝑠ሻ  from Eq (14) to find the first order poles of the  
Eq (19) yields 𝜔ଶሺ𝑠ሻ ൌ 0, consequently 𝜔ሺ𝑠ଵሻ ൌ 𝜔ሺ𝑠ଶሻ ൌ 0, 
where 

𝑠ଵ ൌ
1
2

ቂ𝜇 െ 𝜆 ൅ ඥሺ𝜇 െ 𝜆ሻଶ ൅ 4𝜆ሺ𝜇 ൅ 𝑉𝜎ሻቃ 

 𝑠ଶ ൌ ଵ

ଶ
ൣ𝜇 െ 𝜆 െ ඥሺ𝜇 െ 𝜆ሻଶ ൅ 4𝜆ሺ𝜇 ൅ 𝑉𝜎ሻ൧.      (20) 

Also setting, 

𝑐𝑜𝑠ℎሺ ఠሺ௦ሻ௅

ଶ
ሻ ൌ 0 .        (21) 

Consequently,  

𝜔ሺ𝑠ሻ ൌ െ𝑖ሺ2𝑛 ൅ 1ሻ గ

௅
, 𝑛 ൌ 0, 1, 2, . ..        (22) 

Substituting 𝜔ሺ𝑠ሻ from Eq (22) into Eq (14) and solving for s yields, 

sଷ,ସሺnሻ ൌ ଵ

ଶ
ቀA୬ േ ඥA୬

ଶ ൅ 4B୬ ቁ.        (23) 

Where 

𝐴௡ ൌ 𝜇 െ 𝜆 െ ሺ2𝑛 ൅ 1ሻଶ𝑉𝐷 గమ

௅మ , 𝐵௡ ൌ 𝜆 ቂ𝜇 ൅ 𝑉𝜎 െ ሺ2𝑛 ൅ 1ሻଶ𝑉𝐷 గమ

௅మ ቃ .   (24) 

3.2. Residues calculation of 𝜙෨ሺ𝑥, 𝑠ሻ 

Noting that 𝜔ሺ𝑠ଵሻ ൌ 𝜔ሺ𝑠ଶሻ ൌ 0 it can be easily checked that, 

𝑅𝑒𝑠ሺ𝜙෨ሺ𝑥, 𝑠ሻ𝑒௦௧; 𝑠ଵሻ ൌ 0,         (25) 

Similarly, 

𝑅𝑒𝑠ሺ𝜙෨ሺ𝑥, 𝑠ሻ𝑒௦௧; 𝑠ଶሻ ൌ 0.          (26) 

Now for 𝑠 ൌ 𝑠ଷ 𝑎𝑛𝑑 𝑠 ൌ 𝑠ସ let us reform 𝜙෨ሺ𝑥, 𝑠ሻ by substituting from Eqs (14) and (22) into (18) to 
get the following  

𝜙෨ሺ𝑥, 𝑠ሻ ൌ ଶథ೚௅మ

ሺଶ௡ାଵሻమ௏஽గమ 𝑠𝑖𝑛 ቂቀ𝑛 ൅ ଵ

ଶ
ቁ 𝜋 ௫

ଶ
ቃ 𝑠𝑖𝑛 ቂሺ𝑛 ൅ ଵ

ଶ
ሻ𝜋 ቀ1 െ ௫

௅
ቁቃ ቈ

ሺ௦ାఒሺଵା௩ఋሻሻ

ሺ௦ାఒሻ ௖௢௦௛ሺഘሺೞሻಽ
మ

ሻ
቉.    (27) 

Using the last form of 𝜙෨ሺ𝑥, 𝑠ሻ appearing in Eq (27) and use of definition of 𝜔ሺ𝑠ሻ from Eq (22) we get  

Res൫𝜙෨ሺ𝑥, 𝑠ሻ𝑒௦௧; 𝑠ଷ൯ ൌ 𝜂 𝑒௦య௧ ሺ௦యାఒሻ൫௦యାఒሺଵା௩ఋሻ൯

ሺ௦యାఒሻమାఒ௩ఙ
.       (28) 

Similarly, 
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𝑅𝑒𝑠൫𝜙෨ሺ𝑥, 𝑠ሻ𝑒௦௧; 𝑠ସ൯ ൌ ଼థ೚

గ
𝜂ሺ𝑛, 𝑥ሻ𝑒௦ర௧ ሺ௦రାఒሻ൫௦రାఒሺଵା௩ఋሻ൯

ሺ௦రାఒሻమାఒ௩ఙ
.       (29) 

Where 

 𝜂ሺ𝑛, 𝑥ሻ ൌ ሺିଵሻ೙

ሺଶ௡ାଵሻ
 𝑠𝑖𝑛 ቂሺ𝑛 ൅ ଵ

ଶ
ሻ𝜋 ௫

௅
ቃ . 𝑠𝑖𝑛 ቂሺ𝑛 ൅ ଵ

ଶ
ሻ𝜋ሺ1 െ ௫

௅
ሻቃ      (30) 

and 𝑠ଷ ൌ 𝑠ଷሺ𝑛ሻ, 𝑠ସ ൌ 𝑠ସሺ𝑛ሻ. 
Applying the residue theorem method and using Eqs (25), (26), (28) and (29) we finally get,  

𝜙ሺ𝑥, 𝑡ሻ ൌ ଼థ೚ఙ

గ
∑ 𝜂ሺ𝑛, 𝑥ሻஶ

௡ୀ଴ . ൛𝜀ଵሺ𝑛ሻ𝑒௦యሺ௡ሻ௧ ൅ 𝜀ଶሺ𝑛ሻ𝑒௦రሺ௡ሻ௧ൟ.     (31) 

Where 

𝜀ଵሺ𝑛ሻ ൌ
ሺ௦యାఒሻ൫௦యାఒሺଵା௩ఋሻ൯

ሺ௦యାఒሻమାఒ௩ఙ
.         (32) 

𝜀ଶሺ𝑛ሻ ൌ
ሺ௦రାఒሻ൫௦రାఒሺଵା௩ఋሻ൯

ሺ௦రାఒሻమାఒ௩ఙ
.         (33) 

Now using the convolution theorem to find inverse Laplace transform of Eq (10) we finally get: 

𝐶ሺ𝑥, 𝑡ሻ ൌ 𝜌𝜙௢𝑒ିఒ௧ ൅
8𝜙௢𝜎

𝜋
෍ 𝜂ሺ𝑛, 𝑥ሻ

ஶ

௡ୀ଴

. ൜
𝜀ଵሺ𝑛ሻ

𝜆 ൅ 𝑠ଷሺ𝑛ሻ
𝑒௦యሺ௡ሻ௧ ൅

𝜀ଶሺ𝑛ሻ
𝜆 ൅ 𝑠ସሺ𝑛ሻ

𝑒௦రሺ௡ሻ௧ 

െ ቀఌభሺ௡ሻ

ఒା௦య
൅ ఌమሺ௡ሻ

ఒା௦ర
ቁ 𝑒ିఒ௧ቅ.        (34) 

Where, 𝑠ଷ and 𝑠ସ as defined in Eq (23). 
Concluding, we must observe that the solution of the problem (1) is well determined by the 

Eqs (31) and (34) where all coefficients and functions appeared in these Equations are well defined in 
the previous discussion. 

4. Numerical results 

In order to demonstrate the feasibility of methodology to handle the diffusion kinetic equation, 
we apply the proposed method to solve the problem with the following parameters [2]: 
𝐷  = 0.96343, 𝑉  = 1.103497×107,  Σ௔ = 1.58430×10−2, 𝜈𝛴௙ = 3.33029×10−2, L= 22.9,  
𝛽 = 0.0045 and, 𝜆 ൌ 0.08. We begin presenting the convergence of the results encountered for the 
kinetic equation to the proposed exact solution. In Table 1 we display the results attained by this 
methodology for the neutron flux. We vary the number of terms of the proposed Laplace transform 
method. In order to compare the number of terms needed to achieve the desired precision of the 
solution in literature, Table 1 presents the values of the neutron flux by increasing the number N of 
terms of the expanded series in both spatial and time variables at position 𝑥 ൌ 11.45 𝑐𝑚, 
 𝑡 ൌ 1 𝑠𝑒𝑐. From a simple inspection of the displayed results, we promptly figure out a coincidence of 
eight significant digits between the values for the neutron flux. Therefore, we may say that the fictitious 
problem solved converges to the exact solution of the diffusion kinetic equation. 
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Table 1. Neutron flux simulations for, 𝑥 ൌ 11.45 𝑐𝑚, 𝑡 ൌ 1 𝑠𝑒𝑐. 

N 𝜙 [cm-2s-1] N 𝜙 [cm-2s-1] 

5 0.17001884 60 0.17002098 
10 0.17002132 65 0.17002097 
15 0.17002085 70 0.17002100 
20 0.17002103 75 0.17002099 
25 0.17002095 80 0.17002100 
30 0.17002098 85 0.17002099 
35 0.17002094 90 0.17002100 
40 0.17002096 95 0.17002099 
45 0.17002095 100 0.17002097 
50 0.17002098 200 0.17002092 
55 0.17002097 300 0.17002092 

From the results presented in Table 1, one observes that with 200 terms one attains the same accuracy. 
A comment is in order here, it seems that the current calculations is more efficient than reference [3] 
since there are only 200 terms were required to get results stable up to the eight digits. We show the 
numerical convergence of the results obtained for the neutron flux increasing the number of terms in 
the series solution up to 200 terms. Given a closer look to Table 1, we readily realize that we reach an 
accuracy of eight significant digits, when we make the summation of two hundred terms in the series 
solution. This discussion gives us confidence to affirm that the results appearing in Table 1 for the neutron 
flux has an accuracy of eight significant digits. 

In Figures 1 and 2, we show the numerical results by plotting both neutron flux and precursor 
concentration flux as function of the spatial variable and time along the domain. Given a closer look 
to these figures, as expected, we promptly observe the asymptotic behavior of the neutron flux as time 
goes to infinity, we mean the time depending on solution tends to the stationary solution with the time 
increasing. It should be noted here that Figures 1 and 2 are actually plotted generated in the domain 
[0.0005, 30] for t , i.e., the behaviors of the flux and the precursor at the initial time t=0 are not included, 
however, MATHEMATICA generated these figures as starting with 0, may be because 
MATHEMATICA considered the value 0.0005 as a zero, for the fact that 0.0005 is very close to 0. 
These are the reasons that flux appears as a parabolic shape in Figure 1 because the flux is, naturally, 
not a constant at our starting point t=0.0005 (while the flux is only constant at t=0 which is not actually 
displayed in Figure 1). It should also note that when considering the domain of t starting with 0, 
MATHEMATICA generated the curve of the flux as a sharp decreasing function just after t=0 which 
is not physically acceptable. 

Another important notice here is that at t=0, the expressions 31 and 34 for the flux and precursor, 
respectively, become infinite series of functions of the spatial variable x, however, these infinite series 
can be easily summed to the corresponding constant initial conditions in Eq (3) (proofs can be easily 
accomplished using properties of Fourier series). But on the other hand, when calculating such infinite 
series (at t=0) of functions of the spatial variable x using MATHEMATICA one can easily observe 
that the results don’t give the right-hand side of the initial conditions in Eq (3), (really, some complex 
terms appeared in the results by MATHEMATICA). This was really an obstacle. This an additional 
reason behind our choice to plot the figures by avoiding the behaviors at the initial time. 
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Although considering the initial time as t=0 was really an obstacle for MATHEMATICA to 
generate the right curves, the change of the starting point for the time to be 0.0005 instead of 0 
overcome this difficulty. Accordingly, the curves of the flux and the precursor in Figures 1 and 2 
appeared as acceptable from the physical point of view. The author would like to reveal that there are 
many similar problems in physics have the same difficulties when considering boundary value 
problems (BVPs) consisting of PDEs having the same types of the present ICs and BCs [11].  

 

Figure 1. Profile of neutron flux 𝜙ሺ𝑥, 𝑡ሻ along the domain. 

 

Figure 2. Profile of precursor concentration 𝐶ሺ𝑥, 𝑡ሻ along the domain. 
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5. Conclusions 

In this work, we determined the one-dimensional, monoenergetic diffusion kinetic solutions with 
one delayed neutron precursor concentration in Cartesian geometry using the technique of Laplace 
Transform. Finally motivated by the promising results attained by the methodology, in a forthcoming 
paper we extend the present case to work out the diffusion kinetic equation in analytical fashion.  

Besides the elegance and the analytical feature of the proposed exact analytical solution, we 
bolster this affirmative recalling that this approach is quite general in the sense that it means this 
technique can be applied in a straightforward manner to more realistic physical problems, particularly 
the ones considering six delayed neutron group and also multigroup model with up two hundred groups 
of energy or to a multi-regions slab problem, each one with its distinct and specific physical parameters.  

Regarding the aptness of the current technique to generate benchmark solutions for computational 
codes validation. In fact, we claim that we can get exact results with a prescribed accuracy by 
increasing the number of terms summation in the series solution, paying attention to the expected 
observed oscillatory behavior of the convergence. This will open pathways to solve the global calculus 
of criticality of a nuclear reactor nucleus, applying continuity conditions for the flux and density of 
neutrons. 
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