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Abstract: In this article, we extract stochastic solutions for the perturbed chiral nonlinear Schrödinger
equation (PCNLSE) forced by multiplicative noise in Itô sense with the aid of exp[−ϕ(ξ)]-expansion
and unified solver methods. The PCNLSE meditate on the quantum behaviour, like quantum features
are closely related to its particular features. The proposed techniques introduce the closed form
structure of waves in explicit form. The behaviour of the gained solutions are of qualitatively different
nature, based on the physical parameters. The acquired solutions are extremely viable in nonlinear
optics, superfluid, plasma physics, electromagnetism, nuclear physics, industrial studies and in many
other applied sciences. We also illustrate the profile pictures of some acquired solutions to show the
physical dynamical representation of them, utilizing Matlab release. The proposed techniques in this
article can be implemented to other complex equations arising in applied sciences.
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1. Introduction

The theory of solitons plays a crucial role in different fields of natural sciences, such as superfluid,
biology, nuclear physics, solid state physics, quantum mechanics, engineering, plasma physics, optical
physics, super conductivity, industrial studies, and in various other physical and natural sciences [1–5].
Solitons are of great significant in biological sciences in the filed of neurosciences [6, 7]. Solitons
have gained much attention on account of their sturdy nature and vital applications in optical
communications and all long-distance [8–14]. The nonlinear Schrödinger’s equations with their huge
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number of vital applications are the most commonly use nonlinear models in field of nonlinear wave
propagation in natural sciences [15–24]. There are many scientists introduced and developed some
standing wave stabilities for nonlinear Schrödinger’s equations and related topics; such as Hartree,
spatio-temporal dispersion, inter-modal dispersion, Choquard, perturbed and their fractional forms
[25–28].

Recently, more and more attentiveness has been gone recently to the influence of a noise on the
propagation of the travelling wave solutions. This influence is so important in order to describe various
vital phenomena in many fields in natural sciences, such as quantum mechanics, fluid mechanics,
molecular biology, chemical engineering, plasma physics, electromagnetic theory, bio science, nano-
fibers, optoelectronics and photonics [29–33]. The dynamics of optical pulses in fibers communications
with birefringence, randomly varied, may be reflected to coupled of nonlinear Schrödinger’s equations
with random coefficients [34]. The nonlinear Schrödinger’s equations with multiplicative noise
proposed as a model of energy transfer in a monolayer molecular aggregate in the existence of
thermal fluctuations [35, 36]. Abdelrahman and Sohaly in [37] implemented Riccati-Bernoulli sub-
ODE approach to extract stochastic solutions via probability distribution function, where the stochastic
terms are the random variables. With fast evolution of symbolic computation approaches, the seeking
of stochastic solutions for the stochastic nonlinear partial differential equations have attracted a lot of
attention.

Obviously, the chiral solitons are of great important in the evolution of practical quantum Hall effect,
where chiral excitations are known to become visible. The chiral nonlinear Schrödinger equation,
was considered earlier where bright and dark soliton waves were given [38]. Thereafter in 2004,
Bohm potential was introduced via many scientific researches were done with PNLSE where Bohm
potential was taken as perturbation term [39, 40]. This paper is concerned with the PNLSE forced by
multiplicative noise in Itô sense given by:

i ut + a uxx + i b (uu∗x − u∗ ux)u + σ u Wt = iα u
| u |xx

| u |
, i =

√
−1 (1.1)

u is a complex function, ∗ denotes complex conjugate. The 1st term denotes the evolution term and
a represents the coefficient of dispersion and b represents a nonlinear coupling constant. The noise
in time Wt = d W

dt is the distributional derivative of the Brownian motion. Whereas, the right side,
represents the perturbation term; α is named Bohm potential. The solutions of PCNLSE have valuable
applications in the development of quantum mechanics. Hence it is so significant to gain solutions of
PCNLSE.

Our work is motivated to extract new solutions for the PCNLSE in the presence of noise term,
utilizing exp[−ϕ(ξ)]-expansion technique [41, 42] and unified solver technique [43–45]. These
approaches present various classes of solutions via free physical parameters. These solutions are
very profitable in various fields of natural sciences, like, superfluid, optical fibers, plasma physics,
nano-technology, nuclear physics, quantum mechanics. The proposed techniques are direct, robust,
adequate and efficacious.

This paper is organized as follows. Section 3 presents the solutions for the PCNLSE, utilizing
exp[−ϕ(ξ)]-expansion and unified solver techniques. Section 4 presents physical interpretation for the
acquired solutions. Conclusions are reported in section 5.
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2. Description of the methods

Here, we briefly introduce the exp[−ϕ(ξ)]-expansion method [41,42,46] and unified solver method
[43].

Consider the following nonlinear partial differential equations (NPDEs):

G(Ξ,Ξx,Ξt,Ξxx,Ξxt,Ξtt, ...) = 0. (2.1)

Using the wave transformation:

Ξ(x, t) = Ξ(ζ), ζ = x − w t, (2.2)

where w is the speed of the travelling wave, Eq (2.1) reduced to the following ODE:

H(Ξ,Ξ′,Ξ′′,Ξ′′′, ...) = 0. (2.3)

Various NPDEs in applied science reduced to the following ODE:

Γ1 Ξ′′ + Γ2 Ξ3 + Γ3 Ξ = 0, (2.4)

where Γ1,Γ2 and Γ3 are constants depend on the constants of the proposed equation and the velocity
speed of the wave transformations.

2.1. The exp[−ϕ(ξ)]-expansion method

According to the exp[−ϕ(ξ)]-expansion technique [41,42,46], the solution of Eq (2.4) can be written
in a polynomial form of exp[−ϕ(ξ)] as follows

Ξ(ξ) = B0 + B1exp[−ϕ(ξ)] (2.5)

B0 and B1 , 0 are constants and ϕ(ξ) obeys the following ODE

ϕ′(ξ) = exp[−ϕ(ξ)] + ν exp[ϕ(ξ)] + λ . (2.6)

Equation (2.6) has the following solutions:

1) For ν , 0, λ2 − 4ν > 0,

ϕ(ξ) = ln


−
√
λ2 − 4ν tanh

( √
λ2−4ν

2 (ξ + K)
)
− λ

2ν

 , (2.7)

2) For ν , 0, λ2 − 4ν < 0,

ϕ(ξ) = ln


√

4ν − λ2 tan
( √

4ν−λ2

2 (ξ + K)
)
− λ

2ν

 , (2.8)
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3) For ν = 0, λ , 0, λ2 − 4ν > 0

ϕ(ξ) = −ln
(

λ

exp
[
λ (ξ + K)

]
− 1

)
, (2.9)

4) For ν , 0, λ , 0, λ2 − 4ν = 0,

ϕ(ξ) = ln
(
−

2 (λ (ξ + C) + 2)
λ2 (ξ + K)

)
, (2.10)

5) For ν = 0, λ = 0, λ2 − 4ν = 0,
ϕ(ξ) = ln (ξ + K) . (2.11)

Here K is an arbitrary constant.
Finally, putting Eq (2.5) and (2.6) into Eq (2.4) and aggregating all terms of the same power

exp
[
−mϕ(ξ)

]
, m = 0, 1, 2, 3. After that equating them to zero, gives an algebraic equations. Solving

these equations by Mathematica, gives the values of ai. Then, we get the solutions (2.5), which give
the exact solutions of Eq (2.3).

2.2. Unified solver method

In view of the unified solver approach [43], the solutions of Eq (2.4) are:
(i) Rational function solutions: (at Γ3 = 0)

Ξ1,2(x, t) =

∓√
−Γ2

2Γ1
(ξ + ς)

−1

. (2.12)

(ii) Trigonometric function solutions: (at Γ3
Γ1
< 0)

Ξ3,4(x, t) = ±

√
Γ3

Γ2
tan

√−Γ3

2Γ1
(η + %)

 (2.13)

and

Ξ5,6(x, t) = ±

√
Γ3

Γ2
cot

√−Γ3

2Γ1
(η + %)

 . (2.14)

(iii) Hyperbolic function solutions: (at Γ3
Γ1
> 0)

Ξ7,8(x, t) = ±

√
−Γ3

Γ2
tanh

√ Γ3

2Γ1
(η + %)

 (2.15)

and

Ξ9,10(x, t) = ±

√
−Γ3

Γ2
coth

√ Γ3

2Γ1
(η + %)

 . (2.16)

Here % is an arbitrary constant.
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3. Mathematical analysis

Here, we implement the exp[−ϕ(ξ)]-expansion and unified solver techniques, to introduce the chiral
solitons for the PCNLSE in the presence of noise term. Using the following wave transformation [47]:

u(x, t) = ei[−rx+w t+ϑ+σW(t)]U(ξ), ξ = x + c t, (3.1)

r, w and ϑ are, respectively, wave number, frequency of solitons and phase constant.
Superseding Eq (3.1) into Eq (1.1), the real and imaginary parts, yields

a
∂2U(ξ)
∂ξ2 − 2r bU3(ξ) − (w + r2 a)U(ξ) = 0 , (3.2)

(c − 2ra)
(
∂U(ξ)
∂ξ

)
− α

(
∂2 U(ξ)
∂ξ2

)
= 0. (3.3)

Hence, Eq (3.2) can be reformulated as follows

Γ1
∂2 U(ξ)
∂ξ2 + Γ2U3(ξ) + Γ3U(ξ) = 0 , (3.4)

where Γ1 = a,Γ2 = −2rb,Γ3 = −(w + r2 a).

3.1. Solutions of Eq (1.1) via exp[−ϕ(ξ)]-expansion method

In light of the above exp[−ϕ(ξ)]-expansion approach, the solutions are:

U = B0 + B1exp[−ϕ(ξ)], ϕ′ = e−ϕ + µ eϕ + λ , (3.5)

B0 and B1 , 0 are constants. Superseding U, U′′, U3 into Eq (3.4) and setting all coefficients of
exp[−ϕ] equal to zero, yields a system of algebraic equations. Solving this system gives:

U(ξ) = ±

√
a

2
√

kb

(
λ + 2exp[−ϕ(ξ)]

)
. (3.6)

Then the solutions of Eq (3.4) [41, 42, 46] are
Family 1: When λ2 − 4µ > 0 & µ , 0

U1,2(x, t) = ±

√
aλ

2
√

rb

λ −
4µ√

λ2 − 4µ tanh
( √

λ2−4µ
2 (x + c t + K)

)
+ λ

 , (3.7)

U3,4(x, t) = ±

√
aλ

2
√

rb

λ −
4µ√

λ2 − 4µ coth
( √

λ2−4µ
2 (x + c t + K)

)
+ λ

 . (3.8)
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As a result, Eq (1.1) has solutions

u1,2(x, t) = ±

√
aλ

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

λ −
4µ√

λ2 − 4µ tanh
( √

λ2−4µ
2 (x + c t + K)

)
+ λ

 . (3.9)

u3,4(x, t) = ±

√
aλ

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

λ −
4µ√

λ2 − 4µ coth
( √

λ2−4µ
2 (x + c t + K)

)
+ λ

 . (3.10)

Family 2: When λ2 − 4µ < 0 & µ , 0

U5,6(x, t) = ±

√
a

2
√

rb

λ +
4µ√

4µ − λ2 tan
( √

4µ−λ2

2 (x + c t + K)
)
− λ

 . (3.11)

U7,8(x, t) = ±

√
a

2
√

rb

λ +
4µ√

4µ − λ2 cot
( √

4µ−λ2

2 (x + c t + K)
)
− λ

 . (3.12)

As a result, Eq (1.1) has solutions

u5,6(x, t) = ±

√
a

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

λ +
4µ√

4µ − λ2 tan
( √

4µ−λ2

2 (x + c t + K)
)
− λ

 . (3.13)

u7,8(x, t) = ±

√
a

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

λ +
4µ√

4µ − λ2 cot
( √

4µ−λ2

2 (x + c t + K)
)
− λ

 . (3.14)

Family 3: When λ2 − 4µ > 0 & λ , 0 & µ = 0

U9,10(x, t) = ±

√
a

2
√

rb

(
λ +

2λ
exp [λ (x + c t + K)] − 1

)
. (3.15)

As a result, Eq (1.1) has solutions

ψ̃9,10(x, t) = ±

√
a

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

(
λ +

2λ
exp [λ (x + c t + K)] − 1

)
. (3.16)

Family 4: When λ2 − 4µ = 0 & λ , 0 & µ , 0

U11,12(x, t) = ±

√
a

2
√

rb

(
λ −

λ2 (ξ + C)
λ (x + c t + K) + 2

)
. (3.17)

AIMS Mathematics Volume 7, Issue 7, 12289–12302.



12295

As a result, Eq (1.1) has solutions

u11,12(x, t) = ±

√
a

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

(
λ −

λ2 (ξ + C)
λ (x + c t + K) + 2

)
. (3.18)

Family 5: When λ2 − 4µ = 0 & λ = 0 & µ = 0

U13,14(x, t) = ±

√
a

2
√

rb

(
1

x + c t + K

)
. (3.19)

As a result, Eq (1.1) has solutions

u13,14(x, t) = ±

√
a

2
√

rb
ei[−rx+w t+ϑ+σW(t)]

(
1

x + c t + K

)
. (3.20)

3.2. Solutions of Eq (1.1) via unified solver method

In light of the the above unified solver technique, the solutions of Eq (1.1) are:
Rational function solutions:

Ũ1,2(x, t) =

∓√
rb
a

(x + c t + %)

−1

. (3.21)

As a result, Eq (1.1) has solutions

ũ1,2(x, t) = ei[−rx+w t+ϑ+σW(t)]

∓√
rb
a

(x + c t + %)

−1

. (3.22)

Trigonometric function solutions:

Ũ3,4(x, t) = ±

√
w + r2 a

2rb
tan


√

w + r2 a
2a

(x + c t + ς)

 (3.23)

and

Ũ5,6(x, t) = ±

√
w + r2 a

2rb
cot


√

w + r2 a
2a

(x + c t + ς)

 . (3.24)

As a result, Eq (1.1) has solutions

ũ3,4(x, t) = ±

√
w + r2 a

2rb
ei[−rx+w t+ϑ+σW(t)] tan


√

w + r2 a
2a

(x + c t + ς)

 (3.25)

and

ũ5,6(x, t) = ±

√
w + r2 a

2kb
ei[−rx+w t+ϑ+σW(t)] cot


√

w + r2 a
2a

(x + c t + ς)

 . (3.26)

Hyperbolic function solutions:
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Ũ7,8(x, t) = ±

√
−(w + r2 a)

2rb
tanh


√
−(w + r2 a)

2a
(x + c t + ς)

 (3.27)

and

Ũ9,10(x, t) = ±

√
−(w + r2 a)

2rb
coth


√
−(w + r2 a)

2a
(x + c t + ς)

 . (3.28)

As a result, Eq (1.1) has solutions

ũ7,8(x, t) = ±

√
−(w + r2 a)

2rb
ei[−kx+w t+ϑ+σW(t)] tanh


√
−(w + r2 a)

2a
(x + c t + ς)

 (3.29)

and

ũ9,10(x, t) = ±

√
−(w + r2 a)

2rb
ei[−kx+w t+ϑ+σW(t)] coth


√
−(w + r2 a)

2a
(x + c t + ς)

 . (3.30)

4. Results and discussion

In this work we consider the PCNLSE with multiplicative noise term, where the noise has a
rather complex spectrum. In crystals this kind of noise related to scattering of excitons by phonons
fields, as a result of thermal vibrations of the molecules. We have constructed some new stochastic
solutions to PCNLSE in the presence of noise term, utilizing the exp[−ϕ(ξ)]-expansion and unified
solver techniques. These solutions are presented in explicit form. The acquired chiral solitons play
an important role in the development of the practical quantum Hall effect, where chiral excitations are
known to emerge [48, 49].

The behavior of these chiral solutions being solitons, shock, dissipative, rough, periodic, explosive,
etc., is depend on the physical parameters given in the PCNLSE. For example the profile picture
of wave changes from compressive to rarefactive at critical points and stability regions changed to
unstable regions at some critical values [50, 51]. The obtained new solutions in this study are play a
crucial role in nuclear physics, plasma physics, nano-technology, nonlinear optics, superfluid. Our
study shows that the proposed techniques are direct, simple, sturdy and functional. Furthermore,
these approaches are so vital to solve other complicated nonlinear partial differential equations in the
presence of noise term, which arising in natural sciences. We give some profile pictures of some
selected solutions for the PCNLSE in the presence of noise term. These pictures depict the effect of
noise term in Itô sense on the presented solutions.

The amplitude (height) of the wave is the half the distance from trough to crest. Amplitude can
be determined for sound wave traveling through water waves, air or for any other kind of wave along
a gas or a liquid. Even waves traveling via a solid have an amplitude, as in waves fluctuating the
earth because of an earthquake. One of the main feature of the multiplicative noise term in Itô sense,
is the effect of this noise on the amplitude of the waves. By controlling the value of the noise term,
the disastrous power of some massive natural disasters can be decreasing or turn them into beneficial
energy sources.

Figures 1–4 illustrate the behaviour of solution u1, ũ7 via various values of noise term. These figure
show the variation of the attitude of the waves.
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Remark 1. The two presented techniques in this study can be implemented for solving the nonlinear
fractional differential equations [52–54].

Figure 1. Profile picture of u1 for σ = 0.

Figure 2. Profile picture of u1 for σ = 1.

Figure 3. Profile picture of ũ7 for σ = 0.
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Figure 4. Profile picture of ũ7 for σ = 1.

5. Conclusions

We have given a rich variety of classes of solutions with physical parameters to PCNLSE, using
the unified solver and exp(−ϕ(ξ))-expansion methods. Indeed, the proposed methods are not only
direct and simple but also succinct and give vital new results. The presented Chiral solitons are so
important in evolution of quantum mechanics, specifically, in quantum hall effect complete computer
industry, nano-science and nuclear medicine. We have illustrated graphical structures for some selected
solutions utilizing Matlab 18, that are beneficial to understand more obviously about the dynamics of
solutions. Finally, the proposed two techniques can be implemented for further physical equations
arising in applied sciences.
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