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Abstract: In this paper, we study a food chain chemostat model with Michaelis-Menten function
response and double delays. Applying the stability theory of functional differential equations, we
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1. Introduction

Continuous culture technology is necessary for microbial physiology and biochemistry research,
and the chemostat is a continuous culture device that enables microorganisms to grow and reproduce
under conditions lower than their maximum growth rate. Typically, it consists of three vessels. The
first vessel contains a nutrient substrate that allows the microorganisms to grow sufficiently, and the
nutrient substrate is pumped into the second vessel at a constant rate. The second vessel is called the
culture vessel, and the mixture of nutrient substrates and microorganisms inside are pumped into the
third vessel at the same rate to maintain its capacity.

Since the chemostat model can scientifically describe the continuous culture process of
microorganisms, it is widely used to theoretically study the growth of microorganisms in ecological
environments, such as rivers and lakes in nature [1–3]. In addition, there is a biological treatment
method in waste-water treatment, which usually uses specific microorganisms to decompose harmful
substances in waste-water, and the microbe is a bait for another microbe. To this end, some biologists

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022676


12155

have taken advantage of the chemostat model, which can reasonably describe the complex interactions
between biological populations, and have applied it to control the biological waste-water treatment
processes, resulting in economic benefits (see [4–6]). Therefore, the study of the chemostat model in
waste-water treatment will have crucial academic value and practical significance.

The research on the mathematical model of chemostat can be traced back to the work of Novick and
Szilard in reference [7]. Since then, various studies on chemostat models have sprung up (see [8–12]).
Generally, a deterministic chemostat model can be expressed by the following differential equations
[13],  ds

dt = Q
(
s0 − s(t)

)
− x(t)p(s(t)),

dx
dt = x(t)(p(s(t)) − Q),

where s(t) represents the concentration of nutrient substrate; x(t) indicates the density of
microorganisms in the chemostat; s0 stands for the initial concentration of the substrate in the first
vessel; Q is the dilution rate; p(s(t)) denotes the functional response function of microorganisms from
absorbing nutrients to transforming into their own growth rate. One of the most famous functional
responses is the Michaelis-Menten functional response [14], which is fully used to describe single-
substrate enzymatic reactions. The specific form is as follows,

p(s) =
µms

Km + s
,

where Km is Michaelis constant, µm indicates the reaction speed of the enzyme when the substrate is
saturated, and s represents the concentration of substrate.

On the one hand, various organisms in the waste-water treatment ecosystem can generally be
divided into three categories: bacteria, algae, and protozoa. Among them, bacteria are the main force
of waste-water biological treatment, mainly responsible for the degradation of pollutants; protozoa can
prey on free bacteria and reduce the density of bacteria in water [15]. Furthermore, these organisms
often have a simple food chain relationship in waste-water treatment systems: organic matter-bacteria-
algae-protozoa. Since the waste-water treatment processes mainly rely on such interactions between
organisms, it is necessary to consider a chemostat model with a food chain. Recently, a large number
of scholars have devoted themselves to studying the chemostat models with a food chain. For example,
Li [16] analyzed a predator-prey chemostat model with a general response function under different
removal rates and studied the stability and persistence of the population. Wang [17] discussed a
stochastic predator-prey chemostat model driven by Markov mechanism conversion and introduced
sufficient conditions for the existence of a stable distribution. In particular, Ali [18] made a pretty
representative work, which considered a predator-prey food chain chemostat model with Michaelis-
Menten functional response. They analyzed the mechanism of chaos in the following model, deduced
the mathematical conditions for the existence of periodic orbits, and discussed the microbial dynamics
of the system under different conditions. The differential expression is as follows,

dx(t)
dt =

m1 s(t)x(t)
a1+s(t) − Qx(t) − m2 x(t)y(t)

a2+x(t) ,
dy(t)

dt =
m2 x(t)y(t)
a2+x(t) − Qy(t),

ds(t)
dt = Q

(
s0 − s(t)

)
−

m1 s(t)x(t)
a1+s(t) ,

(1.1)

where s(t) indicates the concentration of nutrient substrate; x(t) represents the density of prey-type
microorganisms in the chemostat; y(t) stands for the density of predator-type microorganisms in the
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chemostat; ai(i = 1, 2) denotes the half-saturation coefficient; m1 and m2 show the maximum absorption
rate of nutrient s(t) by microorganism x(t) and the maximum growth rate of prey x(t) by predator y(t),
respectively.

On the other hand, time delays always exist in the real world. For example, due to the limited
switching speed and communication time, there is a time delay in the artificial neural network. Another
example is the incubation period between infecting an infectious disease and developing symptoms.
Likewise, organisms’ uptake and conversion of nutrients are not instantaneous but with a time delay and
so on (see [19–23]). Many scholars have studied the effect of these time delays on the dynamic behavior
of systems, and the results show that the time delays can lead to stability changes, Hopf bifurcations,
and even periodic oscillations, which can help us control and solve practical problems. For example,
Zhao [24], Song [25], and Huang [26] established neural network models with time delays and
discussed the stability of the system with the time delay as a parameter. Xiao [27], Zhang [28], and
Zhu [29] considered time delays in the model with infectious diseases and proved that a more extended
time delay would destroy the stability of the system. Song [30], Li [31], and Jiang [32] analyzed the
effect of time delays in systems with predator-prey relationships and mainly investigated the stability
of periodic solutions for Hopf bifurcations. In particular, Jiang [32] proposed an efficient delayed
feedback control scheme for Hopf bifurcation. Similarly, the biological time delay in chemostats has
also attracted the attention of biologists and mathematicians. In the ecosystem, there are two types
of time delays: One is the time interval between the absorption of nutrients and the consumption of
nutrients, which is called discrete delay; the other is that the growth of biological population density
is not only related to the density at the current stage, but also related to the population density in the
past historical period, which is called the distributed delay. Ruan [33] and Wolkowicz [34] studied
a chemostat model with distributed delay and discrete delay, respectively. Tian [35]considered the
chemostat model with impulse effects and distributed delays and obtained the conditions for the global
asymptotic stability of the system. Sun [36] discussed a chemostat model with a general monotonic
response function and two discrete delays. Yu [37] analyzed a stochastic chemostat model with two
distributed delays and nonlinear disturbances and obtained the existence, uniqueness, and stability of
the positive global solution.

Inspired by the above research background, considering the discrete delay between the absorption
and utilization of nutrients by populations with food chain relationships in biological wastewater
treatment, based on Ali [18], we further include discrete delays in the modeling. Therefore, compared
with other studies with only one delay, we propose a food chain chemostat model with Michaelis-
Menten functional response and double delays. Both the delayed effect of prey-type organisms in
nutrient decomposition and absorption and the delayed effect of predation are considered, which is
novel and valuable. The scheme can be as follows,

dx(t)
dt =

m1 s(t)x(t−τ1)
a1+s(t) − Qx(t) − m2 x(t−τ2)y(t−τ2)

a2+x(t−τ2) ,
dy(t)

dt =
m2 x(t−τ2)y(t−τ2)

a2+x(t−τ2) − Qy(t),
ds(t)

dt = Q
(
s0 − s(t)

)
−

m1 s(t)x(t−τ1)
a1+s(t) ,

(1.2)

where all parameters are positive constants. Especially, τ1 indicates the time delay for the conversion
of nutrient bases into prey energy, and τ2 represents the time delay for the conversion of prey into
predator energy.

For the convenience of discussion, we make dimensionless processing on some parameters of
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model (1.2),
x̄ =

x
s0 , ȳ =

y
s0 , s̄ =

s
s0 , t̄ = Qt, m̄ =

m
Q
, ā =

a
s0 .

Let x(t), y(t), s(t) instead of x̄(t), ȳ(t), s̄(t), and the model we finally studied is as follows,
dx(t)

dt =
m1 s(t)x(t−τ1)

a1+s(t) − x(t) − m2 x(t−τ2)y(t−τ2)
a2+x(t−τ2) ,

dy(t)
dt =

m2 x(t−τ2)y(t−τ2)
a2+x(t−τ2) − y(t),

ds(t)
dt = 1 − s(t) − m1 s(t)x(t−τ1)

a1+s(t) .

(1.3)

Next, in Section 2, we will prove the existence of three equilibria in system (1.3). In Section 3, we
will discuss the stability of each equilibrium, respectively. In addition, we will analyze the condition for
the Hopf bifurcation at the positive equilibrium. In Section 4, we will give some numerical examples to
verify the correctness of the theoretical analysis. Finally, combining the results of theoretical analysis
and numerical simulation, we will make some conclusions and discussions.

2. Existence of equilibria

Since model (1.3) is a system of delay differential equations, the initial conditions of system (1.3)
can be shown as follows.

(ψ1(t), ψ2(t), ψ3(t)) ∈ C+ = C
[
(−τ, 0],R3

+

)
, ψi(0) > 0, i = 1, 2, 3, (2.1)

where τ = max {τ1, τ2} ,R3
+ =

{
(x(t), y(t), s(t)) ∈ R3 | x(t) > 0, y(t) > 0, s(t) > 0

}
, ψi(t) is the initial value

function, and C is the Banach space.
Lemma 2.1. For the initial conditions Eq (2.1), there is a unique positive solution (x(t), y(t), s(t)) for
system (1.3) on t ≥ 0.

Proof. Since model (1.3) is continuous and the coefficients of system (1.3) satisfy the locally Lipschitz
condition, according to Theorem 2.3 in reference [38], we deduce that system (1.3) has a unique
solution (x(t), y(t), s(t)) for all t ≥ 0. Moreover, for the initial conditions Eq (2.1), it is easy to obtain
that all solutions of system (1.3) are defined on (0,+∞) and remain positive on t ≥ 0.

Thus, there is a unique positive solution (x(t), y(t), s(t)) for system (1.3) on t ≥ 0. �

Theorem 2.1. When m1 > a1 + 1, m2 > 1 and 0 < a1 < 1, system (1.3) have three equilibria,

E0(0, 0, 1), E1

(
a1

m1 − 1
, 0,

m1 − (a1 + 1)
m1 − 1

)
, E2(x∗, y∗, s∗),

where,

x∗ =
a2

m2 − 1
, y∗ =

(m2 − 1)(1 + a1) + a2(m1 − 2) −
√

∆

2(m2 − 1)
,

s∗ =
(1 − a1)(m2 − 1) − m1a2 +

√
∆

2(m2 − 1)
,

∆ = (m2 − a1m2 − a2m1 + a1 − 1)2 + 4a1(1 − m2)2 > 0.
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Proof. For system (1.3), setting the right side equal to 0, we get the corresponding algebraic equations,
x
(

m1 s
a1+s −

m2y
a2+x − 1

)
= 0,

y
(

m2 x
a2+x − 1

)
= 0,

1 − s − m1 s
a1+s x = 0.

(2.2)

Obviously, there is a boundary equilibrium E0(0, 0, 1) in system (1.3). In addition, when m1 > a1+1,
we easily calculate anothor boundary equilibrium E1

(
m1−a1−1

m1−1 , 0, a1
m1−1

)
.

Moreover, when m1 > a1 + 1 and m2 > 1, the predator and prey species will coexist, then we obtain

x∗ =
a2

m2 − 1
. (2.3)

Substituting Eq (2.3) into Eq (2.2), we have

(1 − m2)s∗2 + (m2 − a1m2 − a2m1 + a1 − 1)s∗ − a1(1 − m2) = 0. (2.4)

Since 0 < a1 < 1, according to the relationship between the roots and coefficients of quadratic
equations in one variable, we have s∗1s∗2 = −a1 < 0, then we get the unique positive root of Eq (2.4),

s∗ =
(1 − a1)(m2 − 1) − m1a2 +

√
∆

2(m2 − 1)
.

Owing to x∗ + y∗ + s∗ = 1 , we get

y∗ = 1 − s∗ − x∗ =
(m2 − 1)(1 + a1) + a2(m1 − 2) −

√
∆

2(m2 − 1)
> 0.

Therefore, when m1 > a1 + 1, m2 > 1 and 0 < a1 < 1, system (1.3) always has three equilibria,

E0(0, 0, 1), E1

(
a1

m1 − 1
, 0,

m1 − (a1 + 1)
m1 − 1

)
, E2(x∗, y∗, s∗),

where,

x∗ =
a2

m2 − 1
, y∗ =

(m2 − 1)(1 + a1) + a2(m1 − 2) −
√

∆

2(m2 − 1)
,

s∗ =
(1 − a1)(m2 − 1) − m1a2 +

√
∆

2(m2 − 1)
.

�

3. Stability and Hopf bifurcation

3.1. The equilibrium E0(0, 0, 1)

Firstly, we will focus on the stability of equilibrium E0(0, 0, 1).
Theorem 3.1.

1) When m1 < a1 + 1, the equilibrium E0(0, 0, 1) is locally asymptotically stable.
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2) When m1 > a1 + 1, the equilibrium E0(0, 0, 1) is unstable.

Proof. Let x1 = x, y1 = y and s1 = s − 1, and we can get the linearized system of system (1.3) at the
equilibrium E0(0, 0, 1), 

dx1(t)
dt =

m1 x1(t−τ1)
a1+1 − x1(t),

dy1(t)
dt = −y1(t),

ds1(t)
dt = −s1(t) − m1 x1(t−τ1)

a1+1 .

(3.1)

Then, we obtain the characteristic equation of system (3.1) at the equilibrium E0(0, 0, 1),

J(E0) =

∣∣∣∣∣∣∣∣∣
λ + 1 − m1

a1+1e−λτ1 0 0
0 λ + 1 0

m1
a1+1e−λτ1 0 λ + 1

∣∣∣∣∣∣∣∣∣ = (λ + 1)2[λ + 1 −
m1

a1 + 1
e−λτ1]. (3.2)

Obviously, λ1, 2 = −1 and λ3 satisfies the following equation,

f (λ3) = λ3 + 1 −
m1

a1 + 1
e−λ3τ1 = 0. (3.3)

On the one hand, when m1 < a1 + 1, we claim that Re(λ3) < 0. Otherwise, if Re(λ3) ≥ 0, we obtain

Re(λ3) = −1 +
m1

a1 + 1
e−Re(λ3)τ1 cos(Im(λ3)τ1) ≤

m1

a1 + 1
− 1 < 0,

which leads to a contradiction. Thus, all solutions of Eq (3.3) have negative real parts.
On the other hand, when m1 > a1 + 1, we have

f (0) = 1 −
m1

a1 + 1
< 0, lim

λ3→+∞
f (λ3) = +∞ > 0.

Hence, there is a λ∗3 > 0 such that f (λ∗3) = 0, then Eq (3.3) must have a positive root.
Therefore, we conclude that when m1 < a1 + 1, all solutions of Eq.(3.2) have negative real parts,

then the equilibrium E0(0, 0, 1) is locally asymptotically stable; when m1 > a1 + 1, the solutions of
Eq (3.2) will have a positive root, then the equilibrium E0(0, 0, 1) is unstable. �

3.2. The equilibrium E1

(
a1

m1−1 , 0,
m1−(a1+1)

m1−1

)
Secondly, we will discuss the stability of equilibrium E1

(
a1

m1−1 , 0,
m1−(a1+1)

m1−1

)
.

Define,

x∗1 =
a1

m1 − 1
, s∗1 =

m1 − (a1 + 1)
m1 − 1

, θ1 =
m1a1x∗1

(a1 + s∗1)2 ,

θ2 =
m2x∗1

a2 + x∗1
=

m2(m1 − a1 − 1)
a2(m1 − 1) + m2(m1 − a1 − 1)

.

Theorem 3.2. When m1 > a1 + 1, the equilibrium E1(x∗1, 0, s
∗
1) is locally asymptotically stable.

Proof. Let x1 = x− x∗1, y1 = y− 0 and s1 = s− s∗1, by variable substitution and m1 s∗1
a1+s∗1

= 1, and we obtain
dx1(t)

dt = −x1(t) + x1(t − τ1) +
a1 x∗1

m1(s∗1)2 s1(t) − m2 x∗1
a2+x∗1

y1 (t − τ2) ,
dy1(t)

dt =
m2 x∗1
a2+x∗1

y1 (t − τ2) − y1(t),
ds1(t)

dt = −

(
1 +

a1 x∗1
m1(s∗1)2

)
s1(t) − x1 (t − τ1) .

(3.4)
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Then, we get the characteristic equation of system (3.4) at the equilibrium E1

(
x∗1, 0, s

∗
1

)
,

J(E1) =

∣∣∣∣∣∣∣∣∣
λ + 1 − e−λτ1 θ2e−λτ2 −θ1

0 λ + 1 − θ2e−λτ2 0
e−λτ1 0 λ + 1 + θ1

∣∣∣∣∣∣∣∣∣
= (λ + 1)(λ + 1 − θ2e−λτ2)(λ + 1 + θ1 − e−λτ1).

(3.5)

Obviously, λa = −1 is a negative eigenvalue.
On the one hand, the second eigenvalue satisfies the following equation,

λb = θ2e−λbτ2 − 1. (3.6)

When m1 > a1 + 1, we obtain Re(λb) < 0. On the contrary, if Re(λb) ≥ 0, we get

Re(λb) = −1 + θ2e−Re(λb)τ2 cos(Im(λb)τ2) ≤ θ2 − 1 < 0,

which leads to a contradiction. Thus, all eigenvalues of Eq (3.6) have negative real parts.
On the other hand, the third eigenvalue satisfies the following equation,

λc = e−λcτ1 − θ1 − 1. (3.7)

When m1 > a1 + 1, we claim that Re(λc) < 0. Otherwise, if Re(λc) ≥ 0, we have

Re(λc) = −1 − θ1 + e−Re(λc)τ1 cos(Im(λc)τ1) ≤ −θ1 = −
m1(a1)2

(m1 − 1)(a1 + s∗1)2 < 0,

which leads to a contradiction. Thus, all eigenvalues of Eq (3.7) have negative real parts.
Therefore, we conclude that when m1 > a1 + 1, all solutions of Eq (3.5) have negative real parts,

then the equilibrium E1

(
x∗1, 0, s

∗
1

)
is locally asymptotically stable. �

3.3. The positive equilibrium E2(x∗, y∗, s∗)

Next, we will analyze the stability of the positive equilibrium E2(x∗, y∗, s∗).
Define,

θ3 =
m1s∗

a1 + s∗
, θ4 =

m1a1x∗

(a1 + s∗)2 , θ5 =
−a2y∗

m2(x∗)2 =
−(m1 − 1)(m2 − 1)

m2
+

a1m1(m2 − 1)
m2(a1 + s)

,

β1 = θ4 + 3, β2 = 2θ4 + 3, β3 = θ4 + 1, β4 = −θ3, β5 = −2θ3, β6 = −θ3,

β7 = −θ5 − 1, β8 = −θ4θ5 − 2θ5 − θ4 − 2, β9 = −θ4θ5 − θ4 − θ5 − 1, β10 = β11 = θ3.

Let x1 = x − x∗, y1 = y − y∗ and s1 = s − s∗, by variable substitution and m2 x∗

a2+x∗ = 1, and we obtain the
following system,

dx1(t)
dt = −x1(t) + m1 s∗

a1+s∗ x1(τ − τ1) − y∗a2
m2(x∗)2 x1(τ − τ2) − y1(τ − τ2) + m1a1 x∗

(a1+s∗)2 s1(t),
dy1(t)

dt =
y∗a2

m2(x∗)2 x1(τ − τ2) − y1(t) + y1(τ − τ2),
ds1(t)

dt = − m1 s∗

a1+s∗ x1(τ − τ1) − s1(t) − m1a1 x∗

(a1+s∗)2 s1(t).
(3.8)
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Then, we get the characteristic equation of system (3.8) at the positive equilibrium E2(x∗, y∗, s∗),

J(E2) =

∣∣∣∣∣∣∣∣∣
λ + 1 − θ3e−λτ1 − θ5e−λτ2 e−λτ2 −θ4

θ5e−λτ2 λ + 1 − e−λτ2 0
θ3e−λτ1 0 λ + 1 + θ4

∣∣∣∣∣∣∣∣∣
= H0(λ) + H1(λ)e−λτ1 + H2(λ)e−λτ2 + H3(λ)e−λτ1e−λτ2 ,

(3.9)

where,
H0(λ) = λ3 + β1λ

2 + β2λ + β3, H1(λ) = β4λ
2 + β5λ + β6,

H2(λ) = β7λ
2 + β8λ + β9, H3(λ) = β10λ + β11.

3.3.1. The case τ1 = τ2 = 0

Theorem 3.3. When τ1 = τ2 = 0, m1 > a1 + 1, m2 > 1, 0 < a1 < 1, β1 + β4 + β7 > 0, β3 + β9 > 0
and (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9), the positive equilibrium E2(x∗, y∗, s∗) is locally
asymptotically stable.

Proof. Let τ1 = τ2 = 0, based on Eq (3.9), and we obtain

f (λ) = λ3 + (β1 + β4 + β7) λ2 + (β2 + β5 + β8 + β10) λ + (β3 + β9) = 0. (3.10)

Since β1 + β4 + β7 > 0, β3 + β9 > 0 and (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9), we get

A1 = (β1 + β4 + β7) > 0,

A2 =

∣∣∣∣∣∣ (β1 + β4 + β7) 1
(β3 + β9) (β2 + β5 + β8 + β10)

∣∣∣∣∣∣
= (β1 + β4 + β7) (β2 + β5 + β8 + β10) − (β3 + β9) > 0,

A3 =

∣∣∣∣∣∣∣∣∣
(β1 + β4 + β7) 1 0

(β3 + β9) (β2 + β5 + β8 + β10) (β1 + β4 + β7)
0 0 (β3 + β9)

∣∣∣∣∣∣∣∣∣
= (β3 + β9) ((β1 + β4 + β7) (β2 + β5 + β8 + β10) − (β3 + β9))

= (β3 + β9)A2 > 0.

(3.11)

Utilizing Routh-Hurwitz criterion [39], we conclude that when τ1 = τ2 = 0, all roots of Eq (3.10)
have negative real parts. Therefore, when τ1 = τ2 = 0 and the parameters satisfy the conditions of
Theorem 3.3, the positive equilibrium E2(x∗, y∗, s∗) is locally asymptotically stable. �

3.3.2. The case τ1 > 0 and τ2 = 0

When τ1 > 0, τ2 = 0, based on Eq (3.9), we obtain

f (λ) = H4(λ) + H5(λ)e−λτ1 = 0, (3.12)

where,
H4(λ) = λ3 + (β1 + β7)λ2 + (β2 + β8)λ + β3 + β9, H5(λ) = β4λ

2 + (β5 + β10)λ.
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Let λ = iω, and we get
E1 + iF1 + (E2 + iF2)(cosωτ1 − isinωτ1) = 0,

where,
E1 = −(β1 + β7)ω2 + β3 + β9, F1 = −ω3 + (β2 + β8)ω,

E2 = −β4ω
2, F2 = (β5 + β10)ω.

Separating the real and imaginary parts, we have{
E2 cosωτ1 + F2 sinωτ1 = −E1,

F2 cosωτ1 − E2 sinωτ1 = −F1.
(3.13)

Adding the squares of two equations, we obtain

(−β4ω
2)2 + ((β5 + β10)ω)2 = (−(β1 + β7)ω2 + β3 + β9)2 + (−ω3 + (β2 + β8)ω)2. (3.14)

Let z = ω2, and we get
h(z) = z3 + pz2 + qz + r = 0, (3.15)

and h
′

(z) = 3z2 + 2pz + q, h
′′

(z) = 6z + 2p,
where,

p = (β1 + β7)2 − β4
2 − 2β2 − 2β8, q = (β2 + β8)2 − (β5 + β10)2 − 2(β1 + β7)(β3 + β9),

r = (β3 + β9)2 > 0.

For convenience, we let ∆1 = p2 − 3q, then two roots of the equation h
′

(z) = 0 can be expressed as
z∗1 =

−p−
√

∆1
3 , z∗2 =

−p+
√

∆1
3 .

Theorem 3.4. When τ1 > 0, τ2 = 0, m1 > a1 + 1, m2 > 1 and 0 < a1 < 1, we can get the following
conclusions.

1) If β1 + β4 + β7 > 0, β3 + β9 > 0, (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9) and p2 − 3q ≤ 0, for
any τ1 > 0, τ2 = 0, the positive equilibrium E2(x∗, y∗, s∗) is locally asymptotically stable.

2) If the system parameters do not satisfy the conditions of Theorem 3.3, q < 0 and h(z∗2) ≤ 0, as
τ1 increases, the stability of the positive equilibrium E2(x∗, y∗, s∗) will change a finite number of
times and eventually become unstable. Especially, there is a τ∗1 > 0.

• When 0 ≤ τ1 < τ
∗
1 and τ2 = 0, the positive equilibrium E2(x∗, y∗, s∗) is unstable.

• When τ1 = τ∗1 and τ2 = 0, system (1.3) will undergo a Hopf bifurcation for the first time.
• When τ1 > τ

∗
1 and τ2 = 0, the positive equilibrium E2(x∗, y∗, s∗) is stable.

Proof. (1) Since ∆1 = p2 − 3q ≤ 0, we obtain h
′

( z∗1+z∗2
2 ) ≥ 0 and h

′

(z) > 0(z , z∗1+z∗2
2 ), which indicates

that h(z) is monotone increasing. In addition, combining with h(0) = r > 0, we obtain Eq (3.15) does
not have real roots. Then Eq (3.14) does not have real roots, and Eq (3.12) does not have a root that
can cross the imaginary axis.

Moreover, as a result of Corollary 2.4 from reference [40], we know that when τ1 > 0, the sum of
the positive real parts of the roots of Eq (3.10) and Eq (3.12) is equal. Since β1 +β4 +β7 > 0, β3 +β9 > 0
and (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9), based on the analysis of Theorem 3.3, we can obtain
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that the sum of positive real parts of the roots of Eq (3.10) is equal to 0, then all the roots of Eq (3.12)
only have negative real parts.

Therefore, we can conclude that when m1 > a1 +1,m2 > 1, 0 < a1 < 1, β1 +β4 +β7 > 0, β3 +β9 > 0,
(β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9) and p2 − 3q ≤ 0, for any τ1 > 0 and τ2 = 0, the positive
equilibrium E2(x∗, y∗, s∗) is locally asymptotically stable.

(2) Since the parameters of system (1.3) do not satisfy the conditions of Theorem 3.3, by the first
case of Theorem 3.4, we get E2(x∗, y∗, s∗) is unstable. In addition, when q < 0, we obtain ∆1 =

p2 − 3q > 0, then the equation h
′

(z) = 0 has two real roots and z∗2 > 0. Moreover, we can easily get
h
′′

(z∗1) = −2
√

∆1 < 0, h
′′

(z∗2) = 2
√

∆1 > 0. Thus, z∗1 and z∗2 are the maximum and minimum points of
the equation h

′

(z) = 0, respectively.
If h(z∗2) = 0, z∗2 > 0 is the positive real root of Eq (3.15); if h(z∗2) < 0, there must exist z∗ > 0

such that h(z∗) = 0. Thus, when q < 0 and h(z∗2) ≤ 0, Eq (3.15) always has positive real roots. Then,
Eq (3.14) has at least a pair of real roots that are opposite to each other, and Eq (3.12) has at least a
pair of conjugate imaginary roots ±iω0 (ω0 =

√
z∗).

Furthermore, based on Eq (3.13), we obtain

cosωτ1 =
−E1E2 − F1F2

E2
2 + F2

2

, sinωτ1 =
F1E2 − E1F2

E2
2 + F2

2

.

Hence,

τ
j
1 =

1
ω0

[
arccos

(
−E1E2 − F1F2

E2
2 + F2

2

)
+ 2 jπ

]
, j = 0, 1, 2...

According to Hopf bifurcation theory [41], we can describe the bifurcation point as τ∗1 = min
(
τ

j
1

)
, j =

0, 1, 2...
When τ1 = τ∗1, we get

dλ
dτ1

=
λH5(λ)e−λτ1

H′4(λ) + H′5(λ)e−λτ1 − τ1H5(λ)e−λτ1
=

Φ

Ψ
.

Let λ = iω, and we obtain

Re
[
dλ
dτ

]τ1=τ∗1

ω=ω0

=
Φ1Ψ1 + Φ1Ψ2

Ψ2
1 + Ψ2

2

, 0,

where,
Φ1 = ω0E2 sinω0τ

∗
1 − ω0F2 cosω0τ

∗
1, Φ2 = ω0F2 sinω0τ

∗
1 + ω0E2 cosω0τ

∗
1,

Ψ1 = E′1 − (E′2 + τ∗1F2) sinω0τ
∗
1 + (F′2 − τ

∗
1E2) cosω0τ

∗
1,

Ψ2 = F′1 − (F′2 − τ
∗
1E2) sinω0τ

∗
1 − (E′2 − τ

∗
1F2) cosω0τ

∗
1,

E′1 = −2ω0(β1 + β7), F′1 = −3ω0
2 + β2 + β8, , E′2 = −2β4, F′2 = β5 + β10.

Therefore, making use of Hopf bifurcation theory [41], we obtain when q < 0, h(z∗2) ≤ 0 and
the system parameters do not satisfy the conditions of Theorem 3.3, as τ1 increases, the stability of the
positive equilibrium E2(x∗, y∗, s∗) will change at most a limited number of times and eventually become
unstable [42]. Especially, there is a τ1

∗ such that when 0 ≤ τ1 < τ
∗
1 and τ2 = 0, the positive equilibrium

E2(x∗, y∗, s∗) is unstable; when τ1 = τ∗1 and τ2 = 0, system (1.3) will undergo a Hopf bifurcation for the
first time; when τ1 > τ

∗
1 and τ2 = 0, the positive equilibrium E2(x∗, y∗, s∗) is stable. �
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3.3.3. The case τ1 = 0 and τ2 > 0

When τ1 = 0, τ2 > 0, based on Eq (3.9), we have

f (λ) = H6(λ) + H7(λ)e−λτ2 = 0, (3.16)

where,

H6(λ) = λ3 + (β1 + β4)λ2 + (β2 + β5)λ + β3 + β6, H7(λ) = β7λ
2 + (β8 + β10)λ + β9 + β11.

Let λ = iω, and we get

E3 + iF3 + (E4 + iF4) (cosωτ2 − i sinωτ2) = 0,

where,
E3 = −(β1 + β4)ω2 + β3 + β6, F3 = −ω3 + (β2 + β5)ω,

E4 = −β7ω
2 + β9 + β11, F4 = (β8 + β10)ω.

Separating the real and imaginary parts, we obtain{
E4 cosωτ2 + F4 sinωτ2 = −E3,

F4 cosωτ2 − E4 sinωτ2 = −F3.
(3.17)

Adding the squares of two equations, we have

(−β7ω
2 + β9 + β11)2 + ((β8 + β10)ω)2 = (−(β1 + β4)ω2 + β3 + β6)2 + (−ω3 + (β2 + β5)ω)2. (3.18)

Let n = ω2, and we obtain
h(n) = n3 + un2 + vn + m, (3.19)

and h
′

(n) = 3n2 + 2un + v, h
′′

(n) = 6n + 2u,
where,

u = (β1 + β4)2 − β7
2 − 2β2 − 2β5,

v = (β2 + β5)2 − (β8 + β10)2 + 2β7(β9 + β11) − 2(β1 + β4)(β3 + β6),

m = (β3 + β6)2 − (β9 + β11)2 = −θ5(θ4 + 1)(−2θ3 + (1 + θ4)(θ5 + 2)).

For convenience, we let ∆2 = u2 − 3v, then two roots of the equation h
′

(n) = 0 can be expressed as
n∗1 =

−u−
√

∆2
3 , n∗2 =

−u+
√

∆2
3 .

Theorem 3.5. When τ1 = 0, τ2 > 0, m1 > a1 + 1, m2 > 1 and 0 < a1 < 1, we have the following
conclusions.

1) If v < 0, h(n∗2) ≤ 0 and the parameters of system (1.3) do not satisfy the conditions of Theorem 3.3,
for any τ1 = 0, τ2 > 0, the positive equilibrium E2(x∗, y∗, s∗) is unstable.

2) If β1 + β4 + β7 > 0, β3 + β9 > 0, (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9), v < 0 and h(n∗2) ≤ 0,
there is a τ∗2 > 0.

• When τ1 = 0 and 0 ≤ τ2 < τ
∗
2, the positive equilibrium E2(x∗, y∗, s∗) is locally asymptotically

stable.
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• When τ1 = 0 and τ2 = τ∗2, system (1.3) will undergo a Hopf bifurcation.
• When τ1 = 0 and τ2 > τ

∗
2, the positive equilibrium E2(x∗, y∗, s∗) is unstable.

Proof. (1) Since v < 0 and h(n∗2) ≤ 0, similar to Theorem 3.4.(2), we obtain that Eq (3.19) always has
positive real roots. Then, Eq (3.18) has at least a pair of real roots which are opposite to each other, and
Eq (3.16) has at least a pair of conjugate imaginary roots. In addition, since the parameters of system
(1.3) do not satisfy the conditions of Theorem 3.3, by the Corollary 2.4 from reference [40], we obtain
when τ1 = 0 and τ2 > 0, the sum of the positive real parts of the roots of Eq (3.16) and Eq (3.10) is
equal. Moreover, by the analysis of Theorem 3.3, we know that when the parameters of system (1.3)
do not satisfy the conditions of Theorem 3.3, all roots of Eq (3.10) must have positive real parts, then
all roots of Eq (3.16) have positive real part.

Therefore, we conclude that when v < 0, h(n∗2) ≤ 0 and the parameters of system (1.3) do not
satisfy the conditions of Theorem 3.3, for any τ1 = 0, τ2 > 0, the positive equilibrium E2(x∗, y∗, s∗) is
unstable.

Furthermore, based on Eq (3.17), we obtain

cosωτ2 =
−E3E4 − F3F4

E2
4 + F2

4

, sinωτ2 =
F3E4 − E3F4

E2
4 + F2

4

.

Hence,

τ
j
2 =

1
ω0

[
arccos

(
−E3E4 − F3F4

E2
4 + F2

4

)
+ 2 jπ

]
, j = 0, 1, 2... (3.20)

Similarly, according to Hopf bifurcation theory [41], we can describe the bifurcation point as τ∗2 =

min(τ j
2), j = 0, 1, 2...

When τ2 = τ∗2 > 0, we obtain

dλ
dτ2

=
λH7(λ)e−λτ2

H′6(λ) + H′7(λ)e−λτ2 − τ2H7(λ)e−λτ2
=

Λ

Θ
.

Let λ = iω, and we obtain

Re
[

dλ
dτ2

]τ2=τ2
∗

ω=ω0

=
Λ1Θ1 + Λ2Θ2

Λ2
1 + Λ2

2

, 0,

where,
Λ1 = ω0E4 sinω0τ

∗
2 − ω0F4 cosω0τ

∗
2, Λ2 = ω0F4 sinω0τ

∗
2 + ω0E4 cosω0τ

∗
2,

Θ1 = E′3 − (E′4 + τ∗2F4) sinω0τ
∗
2 + (F′4 − τ

∗
2E4) cosω0τ

∗
2,

Θ2 = F′3 − (F′4 − τ
∗
2E4) sinω0τ

∗
2 − (E′4 + τ∗2F4) cosω0τ

∗
2,

E′3 = −2ω0(β1 + β4), F′3 = −3ω0
2 + β2 + β5, E′4 = −2ω0β7, F′4 = β8 + β10.

(2) When τ1 = 0 and 0 ≤ τ2 < τ∗2, based on the above analysis, we know that when v < 0 and
h(n∗2) ≤ 0, Eq (3.19) has at least a pair of conjugate imaginary roots. In addition, since β1 + β4 + β7 >

0, β3 + β9 > 0 and (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9), by Theorem 3.3 and the Corollary 2.4
from reference [40], we obtain when τ1 = 0 and 0 ≤ τ2 < τ∗2, the sum of the positive real parts of
the roots of Eq (3.16) and Eq (3.10) is equal to 0, then all the roots of Eq (3.16) only have negative
real parts. Thus, when τ1 = 0, 0 ≤ τ2 < τ∗2, v < 0, h(n∗2) ≤ 0, β1 + β4 + β7 > 0, β3 + β9 > 0 and
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(β1+β4+β7)(β2+β5+β8+β10) > (β3+β9), the positive equilibrium E2(x∗, y∗, s∗) is locally asymptotically
stable.

When τ1 = 0 and τ2 = τ∗2, utilizing the conclusion of reference [43], we obtain signRe( dλ
dτ2

)
∣∣∣∣∣
λ=±iω0

=

sign(h
′

(z)) = sign(h
′

(ω2)). Since v < 0 and h(n∗2) ≤ 0, there must exist n∗ > 0 such that h
′

(n∗2) = 0.

Thus, when 0 < n∗2 < n, we get h
′

(n) > 0, then signRe( dλ
dτ2

)
∣∣∣∣∣
λ=±iω0

= 1 > 0. Thus, when τ1 = 0, τ2 = τ∗2,

v < 0, h(n∗2) ≤ 0, β1 + β4 + β7 > 0, β3 + β9 > 0 and (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9),
system (1.3) will undergo a Hopf bifurcation.

In addition, when delay parameter τ2 increases from τ∗2, the characteristic root of characteristic
Eq (3.16) will cross the imaginary axis [44]. It means system (1.3) eventually become unstable. Thus,
when τ1 = 0, τ2 > τ

∗
2, v < 0, h(n∗2) ≤ 0, β1 +β4 +β7 > 0, β3 +β9 > 0 and (β1 +β4 +β7)(β2 +β5 +β8 +β10) >

(β3 + β9), the positive equilibrium E2(x∗, y∗, s∗) is unstable.
Therefore, according to the Hopf bifurcation theory [41], when m1 > a1 + 1,m2 > 1, 0 < a1 < 1,

v < 0, h(n∗2) ≤ 0, β1 + β4 + β7 > 0, β3 + β9 > 0 and (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9),
there exists a τ∗2 > 0. When τ1 = 0 and 0 ≤ τ2 < τ∗2, the positive equilibrium E2(x∗, y∗, s∗) is locally
asymptotically stable; when τ1 = 0 and τ2 = τ∗2, system (1.3) will undergo a Hopf bifurcation; when
τ1 = 0 and τ2 > τ

∗
2, the positive equilibrium E2(x∗, y∗, s∗) is unstable. �

3.3.4. The case of τ1 > 0 and τ2 > 0

Theorem 3.6. If τ1 > 0, τ2 > 0, m1 > a1 + 1,m2 > 1, 0 < a1 < 1, v < 0, h(n∗2) ≤ 0, β1 + β4 + β7 >

0, β3 + β9 > 0, (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9) and 0 < τ2 < τ
∗
2, for any τ1 > 0, the positive

equilibrium E2(x∗, y∗, s∗) is always locally asymptotically stable.

Proof. When τ1 > 0, τ2 > 0, based on Eq.(3.10), we obtain the characteristic equation of system (1.3),

f (λ) = H0(λ) + H1(λ)e−λτ1 + H2(λ)e−λτ2 + H3(λ)e−λτ1e−λτ2 = 0, (3.21)

where,
H0(λ) = λ3 + β1λ

2 + β2λ + β3, H1(λ) = β4λ
2 + β5λ + β6,

H2(λ) = β7λ
2 + β8λ + β9, H3(λ) = β10λ + β11.

Since v < 0, h(n∗2) ≤ 0, β1 + β4 + β7 > 0, β3 + β9 > 0, (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9)
and 0 ≤ τ2 < τ∗2, we obtain that τ2 is the parameter that satisfies the asymptotic stability condition of
the positive equilibrium E2(x∗, y∗, s∗) in Theorem 3.5.(2).

If we regard τ1 as a branch parameter and let λ = iω be an eigenvalue of Eq (3.21), we can obtain

E5 cosωτ1 + F5 sinωτ1 − E6 + i(F5 cosωτ1 − E5 sinωτ1 − F6) = 0,

where,

E5 = −β4ω
2 + β6 + β10ω sinωτ2 + β11 cosωτ2, F5 = β5 + β10ω cosωτ2 − β11 sinωτ2,

E6 = β1ω
2 − β3 − (−β7ω

2 + β9) cosωτ2 − β8ω sinωτ2,

F6 = ω3 − β2ω + (−β7ω
2 + β9) sinωτ2 − β8ω cosωτ2.
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Separating the real and imaginary parts, we get{
E5 cosωτ1 + F5 sinωτ1 = E6,

−E5 sinωτ1 + F5 cosωτ1 = F6.

Applying sin2 ωτ1 + cos2 ωτ1 = 1, we obtain a transcendental equation,

f (ω, τ2) = E5
2 + F5

2 − E6
2 − F6

2 = 0. (3.22)

It is well known that transcendental equations usually do not have exact solutions, and generally
the roots of the equations can not be directly determined. Thus, for Eq (3.22), we use numerical
calculations and drawing methods to discuss the root situation.

0 1 2 3 4 5 6 7 8 9 10
τ

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

Figure 1. Show the numerical calculation diagram of Eq (3.22) in the interval [0,10] with
m1 = 8, a1 = 0.85,m2 = 3.5, a2 = 0.95.

It can be seen from Figure 1 that when m1 > a1 + 1,m2 > 1, 0 < a1 < 1, v < 0, h(n∗2) ≤ 0,
β1 + β4 + β7 > 0, β3 + β9 > 0, (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9) and 0 < τ2 < τ

∗
2, the image

of Eq (3.22) is always above the horizontal axis. Thus, Eq (3.22) does not have positive roots. At the
same time, by the conclusion of Theorem 3.5.(2), we obtain all the roots of Eq (3.21) have negative
real parts.

Therefore, when τ1 > 0, τ2 > 0, m1 > a1 + 1,m2 > 1, 0 < a1 < 1, v < 0, h(n∗2) ≤ 0, β1 + β4 + β7 >

0, β3 + β9 > 0, (β1 + β4 + β7)(β2 + β5 + β8 + β10) > (β3 + β9) and 0 ≤ τ2 < τ
∗
2, for any τ1 > 0, the positive

equilibrium E2(x∗, y∗, s∗) is always locally asymptotically stable. �

4. Numerical simulation

In this section, we will give several numerical examples to further verify the correctness of the
theoretical analysis in Section 3, which can intuitively show that our proposed control strategy is
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effective. To this end, we select the delays τ1 and τ2 as the bifurcation parameters, fix s0 = 1, x0 = 0.5
and y0 = 0.5 as the initial value conditions and use MATLAB to numerically fit system (1.3). Since the
two boundary equilibria are special cases of the positive equilibrium, we will omit it and only discuss
the stability and Hopf bifurcation of system (1.3) at the positive equilibrium E2(x∗, y∗, s∗).

Next, we will provide numerical simulations for each of the four cases in Section 3.3. For the
convenience of comparison, the system with delays is represented by a solid line, and the system
without delays is represented by a dashed line.
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Figure 2. Show the time-series diagram, the time trajectory diagram and the phase diagram
of system (1.3) in Case (I) with τ1 = 0 and τ2 = 0, where m1 = 6, a1 = 0.35,m2 = 3.5, a2 =

0.5(top) and m1 = 3.5, a1 = 0.35,m2 = 3.5, a2 = 0.5(bottom).

Case (I). When τ1 = 0 and τ2 = 0, we fix m1 = 6, a1 = 0.35, m2 = 3.5 and a2 = 0.5, then we
calculate A1 ≈ 1.1901 > 0, β3 + β9 ≈ 2.7073 > 0, A2 ≈ 0.7408 > 0 and E2(0.2000, 0.4226, 0.3774).
It is easy to verify that all system parameters satisfy the conditions of Theorem 3.3. From Figure 2(a)
and (b), we see that the time-series graphs of x, y and s and the time trajectory diagram of x and
y gradually change from fluctuations to a straight line. In addition, from Figure 2(c), we see that the
phase diagrams of x, y and s gradually converge to the positive equilibrium E2(0.2000, 0.4226, 0.3774).
Thus, when the system parameters satisfy the conditions of Theorem 3.3, the positive equilibrium
E2(0.2000, 0.4226, 0.3774) is stable.

On the contrary, if we choose m1 = 3.5, a1 = 0.35, m2 = 3.5 and a2 = 0.5, we calculate that
A1 ≈ 0.9586 > 0, β3 + β9 ≈ 1.0739 > 0, A2 ≈ −0.0841 < 0 and E2(0.2000, 0.2329, 0.5671). It
is easy to verify that the parameters of system (1.3) do not satisfy the conditions of Theorem 3.3.
From Figure 2(d), we see that the time-series graphs of x, y and s are in periodic oscillation; from
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Figure 2(e), we see that the time trajectories of x and y are spiral; from Figure 2(f), we see that the
phase diagrams of x, y and s are in a circle shape and will not converge to the positive equilibrium
E2(0.2000, 0.2329, 0.5671). Thus, when the system parameters do not satisfy the conditions of
Theorem 3.3, the positive equilibrium E2(0.2000, 0.2329, 0.5671) is unstable.
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Figure 3. Show the time-series diagram, the time trajectory diagram and the phase diagram
of system (1.3) in Case (II) with m1 = 3, a1 = 0.3, m2 = 2 and a2 = 0.4, where τ1 = 2, τ2 =

0(top) and τ1 = 10, τ2 = 0(bottom).

Case (II). (i) If we fix m1 = 3, a1 = 0.3, m2 = 2 and a2 = 0.4, we calculate that A1 ≈ 1.5367 > 0,
β3 + β9 ≈ 0.5723 > 0, A2 ≈ 1.1320 > 0 and E2(0.4000, 0.2479, 0.3521). It is easy to verify
that the parameters satisfy the conditions of Theorem 3.3. As q = 1.2099 > 0 and p2 − 3q =

−0.0863 < 0, we know that ω0 does not have real roots. From Figure 3, we know that no matter
choose τ1 = 2 > 0, τ2 = 0 or τ1 = 10 > 0, τ2 = 0, the time-series graphs of x, y and s and
the time trajectories of x and y all gradually tend to a straight line, and the phase diagrams of x, y
and s in system (1.3) and its corresponding system without delays always converge to the positive
equilibrium E2(0.4000, 0.2479, 0.3521). Thus, when the system parameters satisfy the conditions of
Theorem 3.4.(1), for all τ1 > 0, τ2 = 0, the positive equilibrium E2(0.4000, 0.2479, 0.3521) is stable.

(ii) If we fix m1 = 4.5, a1 = 0.45, m2 = 2.5 and a2 = 0.15, we calculate that A1 ≈ 0.4380 > 0,
β3 + β9 ≈ 1.2206 > 0, A2 ≈ −0.9321 < 0 and E2 = (0.1000, 0.1773, 0.7227), then it is easy to verify
that the parameters do not satisfy the conditions of Theorem 3.3. Moreover, as q = −3.7527 < 0 and
h(z∗2) = −3.2171 < 0, we know that ω0 ≈ 0.5491 and τ∗1 ≈ 1.1800. If we choose τ1 = 0.8 < τ∗1 and
τ2 = 0, from Figure 4(a), we see that the time-series graphs of x, y and s are in periodic oscillation;
from Figure 4(b), we see that the time trajectories of x and y are spiral; from Figure 4(c), we see that
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the phase diagrams of x, y and s in system (1.3) and its corresponding system without delays are in
a circle shape and will not converge to the positive equilibrium E2 = (0.1000, 0.1773, 0.7227). Thus,
when τ1 < τ

∗
1, τ2 = 0 and the system parameters satisfy the conditions of Theorem 3.4.(2), the positive

equilibrium E2 = (0.1000, 0.1773, 0.7227) is unstable.
On the contrary, if we choose τ1 = 2 > τ∗1 and τ2 = 0, from Figure 4(d) and (e), we see that the time-

series graphs of x, y and s and the time trajectories of x and y tend to a straight line; from Figure 4(f),
contrary to the phase diagram of the system without delays, we see that the phase diagrams of x, y
and s in system (1.3) gradually converge to the positive equilibrium E2(0.1000, 0.1773, 0.7227). Thus,
when τ1 > τ

∗
1, τ2 = 0 and the system parameters satisfy the conditions of Theorem 3.4.(2), the positive

equilibrium E2(0.1000, 0.1773, 0.7227) is stable.
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Figure 4. Show the time-series diagram, the time trajectory diagram and the phase diagram
of system (1.3) in Case (II) with m1 = 4.5, a1 = 0.45, m2 = 2.5 and a2 = 0.15, where
τ1 = 0.8, τ2 = 0(top) and τ1 = 2, τ2 = 0(bottom).

Case (III). When τ1 = 0 and τ2 > 0, we fix m1 = 8, a1 = 0.85, m2 = 6 and a2 = 0.95, then we obtain
that A1 ≈ 1.4449 > 0, β3 + β9 ≈ 2.6571 > 0, A2 ≈ 1.8250 > 0 and E2 = (0.1900, 0.3464, 0.4636). It
satisfies the conditions of Theorem 3.3. Furthermore, as v = −10.8856 < 0 and h(n∗2) = −7.1856 < 0,
we getω0 ≈ 1.6593 and τ∗2 ≈ 0.1173. If we choose τ1 = 0 and τ2 = 0.05 < τ∗2, from Figure 5(a) and (b),
we see that the time-series graphs of x, y and s and the time trajectories of x and y all tend to a straight
line; from Figure 5(c), we see that the phase diagrams of x, y and s in system (1.3) and its corresponding
system without delays gradually converge to the positive equilibrium E2 = (0.1900, 0.3464, 0.4636).
Thus, when τ1 = 0, 0 < τ2 < τ∗2 and the system parameters satisfy the conditions of Theorem 3.5.(2),
the positive equilibrium E2 = (0.1900, 0.3464, 0.4636) is stable.
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On the contrary, if we choose τ1 = 0 and τ2 = 0.15 > τ∗2, from Figure 5(d), we see that the time-
series graphs of x, y and s are in periodic oscillation; from Figure 5(e), we see that the time trajectories
of x and y are spiral; from Figure 5(f), contrary to the phase diagram of the system without delays,
we see that the phase diagrams of x, y and s are in a circle shape and will not converge to the positive
equilibrium E2 = (0.1900, 0.3464, 0.4636). Thus, when τ1 = 0, τ2 > τ∗2 and the system parameters
satisfy the conditions of Theorem 3.5.(2), the positive equilibrium E2 = (0.1900, 0.3464, 0.4636) is
unstable.
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Figure 5. Show the time-series diagram, the time trajectory diagram and the phase diagram
of system (1.3) in Case (III) with m1 = 8, a1 = 0.85, m2 = 6 and a2 = 0.95, where τ1 =

0, τ2 = 0.05 < τ2
∗ = 0.1173(top) and τ1 = 0, τ2 = 0.15 > τ2

∗ = 0.1173(bottom).

Case (IV). When τ1 > 0 and τ2 > 0, we fix m1 = 8, a1 = 0.85, m2 = 3.5 and a2 =

0.95, then we calculate that A1 ≈ 2.7995 > 0, β3 + β9 ≈ 2.0208 > 0, A2 ≈ 8.6742 > 0
and E2(0.3800, 0.3509, 0.2691). It is easy to verify that the parameters satisfy the conditions of
Theorem 3.6. Moreover, by the numerical results of Theorem 3.5.(ii), we let τ∗2 ≈ 0.7751. From
Figure 6, we see that whether we choose τ1 = 0.6, τ2 = 0.7 < τ∗2 or τ1 = 1, τ2 = 0.7 < τ∗2, the
time-series graphs of x, y and s and the time trajectories of x and y all tend to a straight line, and the
phase diagrams of x, y and s gradually converge to the positive equilibrium. Thus, when the system
parameters satisfy the conditions of Theorem 3.6, the positive equilibrium E2(0.3800, 0.3509, 0.2691)
is always stable.

AIMS Mathematics Volume 7, Issue 7, 12154–12176.



12172

0 50 100 150 200 250 300
Time/t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
pu

at
io

n/
si

ze

x(t) y(t) s(t)

a

0
0.8

0.1

0.2

0.6 300

0.3y

250

0.4

x

0.4 200

0.5

t

150

0.6

0.2 100
50

0 0

b

0
0.6

0.2

0.8

0.4s

0.4
0.6

0.6

y x

0.4

0.8

0.2
0.2

0 0

τ
1
=0.6,τ

2
=0.7

E
2

c

0 50 100 150 200 250 300
Time/t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
pu

at
io

n/
si

ze

x(t) y(t) s(t)

d

0.1
0.6

0.2

0.3

300

0.4y

0.4 250

0.5

x

200

0.6

t

150

0.7

0.2
100

50
0 0

e

0.1
0.8

0.2

0.3

0.6 0.6

s

0.4

0.5

y

0.5

0.4 0.4

x

0.6

0.30.2
0.2

0 0.1

τ
1
=1,τ

2
=0.7

E
2

f

Figure 6. Show the time-series diagram, the time trajectory diagram and the phase diagram
of system (1.3) in Case (IV) with m1 = 8, a1 = 0.85, m2 = 3.5 and a2 = 0.95, where
τ1 = 0.6, τ2 = 0.7(top) and τ1 = 1, τ2 = 0.7(bottom).

5. Conclusions and discussion

When modeling and analyzing the wastewater biological treatment system, it is more significant to
consider time delay models than traditional models without delay. In this paper, we propose a food
chain chemostat model with Michaelis-Menten functional response and double delays. Firstly, we
analyze the existence conditions of three equilibria in the chemostat model (1.3) and prove the stability
conditions of three equilibria E0(0, 0, 1), E1(x∗1, 0, s

∗
1) and E2(x∗, y∗, s∗), respectively. In addition,

we obtain the sufficient conditions for system (1.3) to undergo the Hopf bifurcation at the positive
equilibrium. In particular, in the numerical simulation, we compare the chemostat model with delays
and its corresponding chemostat model without delays.

The results show that time delays will affect the stability of system (1.3) and even lead to Hopf
bifurcation. When m1 > a1 + 1, m2 > 1 and 0 < a1 < 1, there are three equilibria E0(0, 0, 1),
E1(x∗1, 0, s

∗
1) and E2(x∗, y∗, s∗) in system (1.3), and E1(x∗1, 0, s

∗
1) is always locally asymptotically stable.

As the delays τ1 and τ2 change, the stability of the positive equilibrium will undergo stability switches.
Especially, when the delays τ1 and τ2 are close to the fixed delay τ∗i (i = 1, 2), system (1.3) will undergo
the Hopf bifurcation; when the delays τ1 and τ2 are away from the fixed delay τ∗i (i = 1, 2), system (1.3)
will become unstable from stable at the positive equilibrium.

It is known that the chemostat has the advantages of measurable experimental parameters,
convenient data collection and reasonable experiments. Based on the discussion of Theorem 3.3
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to Theorem 3.6, we have obtained sufficient conditions for the stability of the chemostat system at
the positive equilibrium, which shows that we can control the cultivation of microorganisms through
scientific strategies. If the two different microorganisms in the culture vessel can eventually tend to a
stable constant, the culture of the microorganism is successful. If the extinction equilibrium is stable,
which means that the cultured microorganisms finally tend to 0, the culture of the microorganism fails.
Therefore, in the actual microbial culture, we should try our best to control a1, a2, m1 and m2 so that
they do not satisfy the stability conditions of the extinction equilibrium, which is helpful to cultivate
the microorganisms effectively.

There is still much interesting work worthy of our attention on the study of chemostat models
in biological wastewater treatment systems, such as the global asymptotic stability of the system,
the extinction and persistence of organisms, and the stochastic effects of the environment on
microorganisms in wastewater treatment. Especially, fractional-order models with time delay are novel
and valuable. It can be applied to describe the memory and genetic properties inherent in various
processes that exist in most biological systems and can enable established ecological models with
greater spatial and temporal freedom. Thus, inspired by the reference [45], we will extend model (1.3)
to the following chemostat model with fractional-order delay,

Dαx(t) =
m1 s(t)x(t−τ1)

a1+s(t) − x(t) − m2y(t−τ2)x(t−τ2)
a2+x(t−τ2) ,

Dαy(t) =
m2 x(t−τ2)y(t−τ2)

a2+x(t−τ2) − y(t),
Dαs(t) = 1 − s(t) − m1 s(t)x(t−τ1)

a1+s(t) .

(5.1)

If α = 1, model (5.1) can further derive the results of model (1.3) studied in this paper. The related
discussions are in progress.
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