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Abstract: The purpose of this research is to present, study, and prove numerous features of soft 𝛾-

open (𝒮𝛾o) and soft 𝛾-closed (𝒮𝛾c) sets in soft topological structure (𝒮𝜏𝑠). Also, we show that the 

collection of 𝒮𝛾o sets is a soft supra topology (𝒮𝑠𝜏) by stating and proving the conditions. Finally, we 

study soft 𝛾-continuous functions and soft 𝛾-irresolute functions. Some related properties of these new 

soft of discussed with help of some examples. 
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1. Introduction 

Uncertainty is a part of many real-world challenges in various sectors like economics, social 

science, medicine, etc. A variety of theoretical frameworks, such as probability theory and the theory of 

fuzzy sets [8], can be used to cope with these uncertainties because typical mathematical techniques 

are inadequate, theory of intuitionistic fuzzy sets [10], theory of vague sets [5], theory of interval 

mathematics [6], and theory of rough sets [4]. However, as pointed out in [2] that all these theories 

have their own difficulties. 

Molodtsov [9] pioneered the theory of soft set (𝒮-set) which is a new way to deal with 

uncertainties that cannot be captured by more traditional mathematical techniques. He demonstrated 
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numerous applications of this theory in the fields of economics, engineering, social science, and 

medicine, among others. In the recent years, a paper about 𝒮-sets theory and their applications in many 

fields. 𝒮-sets and its applications had seen significant advancements during the last few years with new 

developments occurring at fast rate. The concept of 𝒮𝜏 spaces was defined by Shabir and Naz (2011) 

who defined them as existing in an initial universe with a fixed set of parameters. Soft open (𝒮o) sets, 

soft closed (𝒮c) sets, soft interior and soft closure were defined by [10]. Chen  [4] introduced the 

concept of soft semi open (𝒮𝑠o) sets and their attributes. Soft continuous functions defined by [1]. 

Mahanta and Das [7] defined and investigated many forms of soft functions, Like soft semi-continuous 

and soft irresolute. Also, soft 𝑔𝑏-closed sets and soft 𝑔𝑠𝛽-closed sets in 𝒮τ structures defined by [2]. 

Al-shami [12] studied Soft 𝛼-sets. The main contribution of this paper introduces the class of 𝒮γo sets 

as generalization to each of soft semi open and soft preopen soft. Also, we construct a group of related 

topics like soft 𝛾-continuity, 𝒮γ-irresolute and soft 𝛾-homeomorphism. Some related properties of these 

new soft of discussed with help of some examples. In our study, firstly, we have focused 𝒮𝛾o and 𝒮𝛾c 

sets over the 𝒮𝜏𝑠 and have studied some of their properties. Secondly, we are introduced soft 𝛾-

continuity, soft 𝛾-irresolute (𝒮𝛾𝑟) and soft 𝛾-homeomorphism (𝒮𝛾-ℎ) on 𝒮τ structures. Finally, we’ve 

gotten some properties of these functions. 

2. Preliminaries 

Unless otherwise indicated, the spaces U and W denoted 𝒮𝜏 spaces with (U, , E) and (W,, T). 

Additionally, a soft mapping f: U→W denotes a mapping, where f: (U, , E)→(W, , T),  u: U→W and 

p: E→T denote assumed mappings. 

Definition 2.1. [8] A 𝒮-set (𝐹1, H) is called: 

1) Null 𝒮-set and represented by ∅̃ if 𝐹1(e)=∅, ∀𝑒∈𝐻. 

2) Absolute 𝒮-set, written as 𝑈 ̃if 𝐹1(e)=U, ∀𝑒∈𝐻. 

Definition 2.2. [5,8] If (𝐹1, 𝐻), (𝐹2, D) are two a 𝒮-sets, then (𝐹1, 𝐻)∪̃(𝐹2, D)=(V, J) is a 𝒮-set, since 

J=H∪̃D and for all s∈J. 

𝑉(𝑠) = {

𝐹1(s)                      if s ∈ H − D,

𝐹2(s)                       if s ∈ D − H,

𝐹1(s) ∪ 𝐹2(s)        if s ∈ H ∩ ̃D.

 

And (𝐹1, 𝐻)∩̃(𝐹2, D)=(V, J) is a 𝒮-sets defined as J=H∩̃D, and V(s)=𝐹1(s)∩̃𝐹2(s), ∀s∈J. 

Definition 2.3. [10] The relative complement of 𝒮-set (𝐹1, E) is written as (𝐹1, E)𝑐, (𝐹1, E)𝑐=(𝐹1
𝑐, 𝐸) 

and 𝐹1
𝑐: 𝐸→𝑝(𝑈), 𝐹1

𝑐(𝑒)=𝑈𝐹1(𝑒), ∀ 𝑒∈𝐸. 

Definition 2.4. Let (U, τ, E) be a 𝒮τ space and (𝐹2, H) be a 𝒮-set. Then 

(1) A soft interior [6] of (𝐹2, H) defined as sint(𝐹2, H)=∪̃{(D, H): (D, H) is 𝒮o set and (D, H)⊆ ̃(𝐹2, 

H)}. 

(2) A soft closure [10] of (𝐹2, H) defined as s᷈ cl(𝐹2, H)=∩̃{(D, H): (D, H) is 𝒮c set and (𝐹2, H)⊆ ̃(D, 

H)}. 

 



12146 

AIMS Mathematics  Volume 7, Issue 7, 12144–12153. 

Definition 2.5. A 𝒮-set (𝐹1, H) in a 𝒮𝜏 structure (U, τ, E) is called: 

(1) Soft semi-open (𝒮𝑠o) [4] if (𝐹1, H)⊆𝑐(𝑖𝑛𝑡(𝐹1, H)). 

(2) Soft preopen (𝒮𝑝o) [2] if (𝐹1, H)⊆𝑖𝑛(𝑐𝑙(𝐹1, H)). 

(3) Soft α-open (𝒮αo) [2] if (𝐹1, H)⊆𝑖𝑛(𝑐𝑙(𝑖𝑛𝑡(𝐹1, H))). 

(4) Soft β-open (𝒮βo) [2] if (𝐹1, H)⊆𝑐(𝑖𝑛𝑡(𝑐𝑙(𝐹1, H))). 

(5) Soft regular closed (𝒮𝑟c) [2] if (𝐹1, H)=𝑐(𝑖𝑛𝑡(𝐹1, H)). 

Definition 2.6. [3] The 𝒮-set (𝐹1, H) is called a soft point, write as (𝑈𝑒, 𝐻), if 𝑒∈𝐻, 𝐹1(𝑒)={𝑥} and 

𝐹1(𝑒𝑐)=∅, ∀𝑒𝑐∈𝐻−{𝑒}. 

Definition 2.7. Let (U, 𝜏, 𝑆) and (Y, 𝜎, 𝑆) be two 𝒮𝜏 spaces. A function 𝑓: (U, τ, S)→(Y, 𝜎, 𝑆) is called: 

(1) Soft semi-continuous [7] if 𝑓−1((𝐺, 𝑆)) is 𝒮𝑠o in (U, τ, S), for each 𝒮𝑜 set (G, S) of (Y, 𝜎, 𝑆). 

(2) Soft precontinuous [11] if 𝑓−1((𝐺, 𝑆)) is 𝒮𝑝o in (U, 𝜏, 𝑆), for each 𝒮𝑜 set (G, S) of (Y, 𝜎, 𝑆). 

(3) Soft α-continuous [11] if 𝑓−1((𝐺, 𝑆)) is 𝒮αo in (U, τ, S), for each 𝒮𝑜 set (G, S) of (Y, 𝜎, 𝑆). 

(4) Soft β-continuous [11] if 𝑓−1((𝐺, 𝑆)) is 𝒮βo in (U, τ, S), for each 𝒮𝑜 set (G, S) of (Y, 𝜎, 𝑆). 

(5) Soft β-irresolute [11] if 𝑓−1((𝐺, 𝑆)) is 𝒮βo in (U, τ, S), for each 𝒮βo set (G, S) of (Y, 𝜎, 𝑆). 

3. Soft γ-open sets and soft γ-closed sets  

We define 𝒮γo and 𝒮γc sets in 𝒮𝜏 𝑠pace and study some of their characteristics in this section. 

Definition 3.1. A 𝒮-set (𝐹1, H) in a 𝒮𝜏 (U, τ, S) is called: 

(1) 𝒮𝛾o if (𝐹1, H) ⊆̃ cl(𝑖𝑛𝑡(𝐹1, H)) ⋃̃   𝑖𝑛𝑡(𝑐𝑙((𝐹1, H)). 

(2) 𝒮𝛾c if its soft complement is 𝒮𝛾o. 

The family of all 𝒮𝛾o sets (resp. 𝒮𝛾c sets) in a 𝒮𝜏 structure (U, τ, S) will be written as 𝒮𝛾𝑂(𝑈) 

(resp. 𝒮𝛾𝐶(𝑈)). 

Remark 3.2. The family of 𝒮𝛾O(𝑈) contains each of 𝒮O(U), 𝒮αO(U), 𝒮PO(U), 𝒮SO(U) and contained 

in 𝒮βO(U), as the following implication. 

𝒮𝑜 set⇒𝒮αo set⇒𝒮𝑝o set 

⇓  ⇓ 

𝒮𝑠o set⇒𝒮𝛾o set⇒𝒮βo set 

In the following example, we will prove that the converses may not always have to be true. 

Example 3.3. Assume that 𝑈={𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝐸={𝑢1, 𝑢2} and 𝜏={∅, 𝑈̃,  (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸)} such 

that (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸) are 𝒮-sets, which defined as: 

(i) 𝐾1(𝑢1)={𝑥1}, 𝐾1(𝑢2)={𝑥1}, 𝐾2(𝑢1)={𝑥1, 𝑥3}, 𝐾2(𝑢2)={𝑥2, 𝑥3}, 𝐾3(𝑢1)={𝑥1, 𝑥2, 𝑥3}, 𝐾3(𝑢2)={𝑥1, 𝑥2, 

𝑥3}. Then, the 𝒮-set (S, E) defines as: (𝑢1)={𝑥2}, 𝑆(𝑢2)={𝑥2} is a 𝒮βo set but not 𝒮𝛾o. 

(ii) 𝐾1(𝑢1)={𝑥1}, 𝐾1(𝑢2)=𝑥1}, 𝐾2(𝑢1) ={𝑥2}, 𝐾2(𝑢2)={𝑥2 }, 𝐾3(𝑢1)={𝑥1, 𝑥2}, 𝐾3(𝑢2)={𝑥1, 𝑥2}. Hence, 

the 𝒮-set (S, E) defined as: 𝑆(𝑢1)={𝑥2, 𝑥3}, 𝑆(𝑢2)={𝑥2, 𝑥3} is 𝑎 𝒮𝛾o set but not 𝒮𝑝o. 

(𝑖𝑖𝑖) 𝐾1(𝑢1)={𝑥1}, 𝐾1(𝑢2)={𝑥2}, 𝐾2(𝑢1)={𝑥1}, 𝐾2(𝑢2)=𝑈, 𝐾3(𝑢1)=𝑈, 𝐾3(𝑢2)={𝑥2}. Then the 𝒮-set (S, E) 

defined as: 𝑆(𝑢1)={𝑥2}, 𝑆(𝑢2)=𝑈 is a 𝒮𝛾o set but not 𝒮𝑠o. 
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Proposition 3.4. A collection of 𝒮γO(U) of all 𝒮-sets of (U, 𝜏, 𝐸) forms a 𝒮sτ. 

Proof. Suppose that (𝐹𝑖, 𝐸)∈𝒮γO(𝑈), ∀𝑖∈𝐼={1,2,3….}. Then 

∀𝑖∈I, (𝐹𝑖, 𝐸)⊆ ̃𝑖𝑛𝑡(𝑐𝑙(𝐹𝑖, 𝐸))⋃̃𝑐𝑙(𝑖𝑛𝑡(𝐹𝑖,E)), 

so 

⋃̃(𝐹𝑖, 𝐸)⊆ ̃⋃̃[𝑖𝑛𝑡(𝑐𝑙(𝐹𝑖, 𝐸))⋃̃𝑐𝑙(𝑖𝑛𝑡(𝐹𝑖, 𝐸))] 

={⋃̃[ 𝑖𝑛𝑡(𝑐𝑙(𝐹𝑖, 𝐸))]}⋃̃{ ⋃̃𝑐𝑙(𝑖𝑛𝑡(𝐹𝑖, 𝐸))} 

⊆ ̃𝑖𝑛𝑡(𝑐𝑙)⋃̃(𝐹𝑖, 𝐸)))⋃ ̃𝑐𝑙(𝑖𝑛𝑡(⋃̃(𝐹𝑖, 𝐸))). 

Then ⋃̃   (𝐹𝑖, 𝐸) is 𝒮γO(U). 

In the following example, we will prove that the intersection of two 𝒮𝛾o sets is not 𝒮𝛾o. 

Example 3.5. Assume that (U, 𝜏, 𝐸) is a 𝒮𝜏𝑠 as shows in Example 3.3 and (G, E), (H, E) are 𝒮𝛾o sets. 

Then, (G, E)∩̃ (H, E)={{𝑥2}, ∅}=(𝐾, 𝐸) and 𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐸))∩̃ 𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐸))=∅. Thus, (K, E) is not 

𝒮𝛾o. 

Proposition 3.6. Any intersection of 𝒮𝛾c sets is 𝒮𝛾c. 

Proof. Suppose that (𝐹𝑖, 𝐸)∈𝑆𝛾O(𝑈), ∀𝑖∈𝐼={1,2,3,…}. Then, 

∀𝑖∈𝐼, (𝐹𝑖, 𝐸) ⊆̃ 𝑛𝑡(𝑐𝑙((𝐹𝑖, 𝐸))) ⋃̃   𝑐𝑙(𝑖𝑛𝑡((𝐹𝑖, 𝐸))) 

and 

∩̃ (𝐹𝑖, 𝐸) ⊆̃ ∩̃ [𝑖𝑛𝑡(𝑐𝑙((𝐹𝑖, 𝐸))) ⋃̃   𝑐𝑙(𝑖𝑛𝑡((𝐹𝑖, 𝐸)))] 

={∩[̃𝑖𝑛𝑡 (𝑐𝑙((𝐹𝑖, 𝐸)))]} ⋃̃   {∩̃ [𝑐𝑙(𝑖𝑛𝑡((𝐹𝑖, 𝐸))]) 

⊆̃ 𝑖𝑛𝑡(𝑐𝑙(∩̃ (𝐹𝑖, 𝐸))) ⋃̃   𝑐𝑙(𝑖𝑛𝑡(∩̃ (𝐹𝑖, 𝐸))). 

Then      ∩̃ (𝐹𝑖, 𝐸) is 𝒮𝛾c. 

In this example, we will prove that the union of two 𝒮𝛾c sets need not be 𝒮𝛾c set. 

Example 3.7. Assume that (U, 𝜏, 𝐸) is a 𝒮𝜏 structure as shows in Example 3.3 and (G, E), (H, E) which 

defined as: 𝐺(𝑒1)={𝑥1}, 𝐺(𝑒2)={𝑥1}, 𝐻(𝑒1)=∅, 𝐻(𝑒2)={𝑥2}. Then (G, E), (H, E) are 𝒮𝛾c sets, thus, 

(G, E) ⋃̃   (H, E)={{𝑥1}, 𝑈}=(𝐾, 𝐸) 

is not 𝒮𝛾c. 

Proposition 3.8. For each proper soft subset of a soft indiscrete structure (U, 𝜏, 𝐸), the following 

statement are holds. 
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(1) Each proper soft subset of U is 𝒮γO(U) but not 𝒮SO(U), 

(2) 𝒮PO(U)=𝒮γO(U)=𝒮βO(U). 

Proof. (1) Consider (F, E) is proper soft subset on a soft indiscrete structure (U, 𝜏, 𝐸). Thus, 

cl(int(F,E))=∅ and int(cl(F, E))=𝑈̃ .  Therefore each proper soft subset on U is 𝒮γO(U) but not 𝒮SO(U). 

Since for each proper soft subset of a soft indiscrete structure (U, 𝜏, 𝐸), int(cl(F, E))=𝑈̃  and 

cl(int(cl(F,E)))=𝑈̃ . Then 𝒮PO(U)=𝒮γO(U)=𝒮βO(U). 

Theorem 3.9. For any 𝒮γO(U) (L, E), the following statements are holds. 

(1) If (G, E)∈𝒮O(U), then (L,  E) ∩̃ (G, E)∈𝒮γO(U). 

(2) If (𝐿, 𝐸)∈𝒮𝑂(𝑈), then (𝐿, 𝐸)∈𝒮𝑆𝑂(𝑈). 

Proof. (1) Assume that (L, E)∈𝒮γO(U), (G, E)∈𝒮O(U). Hence, 

(L, E) ∩̃ (G, E) ⊆̃ [𝑖𝑛𝑡 (𝑐𝑙((𝐿, 𝐸))) ⋃̃   𝑐𝑙 (𝑖𝑛𝑡((𝐿, 𝐸)))] ∩̃ (𝐺, 𝐸) 

=[𝑖𝑛𝑡(𝑐𝑙((L, E))) ∩̃ (G, E)] ⋃̃   [𝑐𝑙 (𝑖𝑛𝑡((𝐿, 𝐸))) ∩̃ (𝐺, 𝐸)] 

⊆̃ 𝑖𝑛𝑡[𝑐𝑙((𝐿, 𝐸)) ∩̃ (𝐺, 𝐸)] ⋃̃   𝑐𝑙[(𝑖𝑛𝑡(𝐿, 𝐸)) ∩̃ (𝐺, 𝐸)] 

⊆̃ 𝑖𝑛𝑡(𝑐𝑙[(𝐿, 𝐸) ∩̃ (𝐺, 𝐸)]) ⋃̃   𝑐𝑙(𝑖𝑛𝑡[(𝐿, 𝐸) ∩̃ (𝐺, 𝐸)]). 

Therefore, (L, E)∩̃ (G, E) is a 𝒮𝛾o set. 

(2) Since (L, E) is a 𝒮𝛾o set and 𝒮c set, therefore 

(L, E)⊆̃ 𝑐𝑙(𝑖𝑛𝑡(𝐿, 𝐸)) ⋃̃   𝑖𝑛𝑡(𝑐𝑙(𝐿, 𝐸))= 𝑐𝑙(𝑖𝑛𝑡(𝐿, 𝐸)) ⋃̃   𝑖𝑛𝑡(𝐿, 𝐸)=𝑐𝑙(𝑖𝑛𝑡(𝐿, 𝐸)). 

Thus (L, E) ⊆̃ 𝑐𝑙(𝑖𝑛𝑡(𝐿, 𝐸)) and so (L, E) is 𝒮so. 

Corollary 3.10. For any 𝒮γC(U) (T, E), the following statements are hold: 

(1) If (G, E)∈𝒮C(U), then (T,  E) ∩̃ (G, E)∈𝒮γC(U). 

(2) If (𝑇, 𝐸)∈𝒮O(𝑈), then (𝑇, 𝐸)∈𝒮𝑆𝐶(𝑈). 

Theorem 3.11. Each of 𝒮γO(U) and 𝒮αC(U) set is 𝒮rc (where 𝒮rc denotes of soft regular closed). 

Proof. Assume that (T, E)∈𝒮γO(U), (G, E)∈𝒮αO(U) set. Then 

𝑐𝑙 (𝑖𝑛𝑡(cl(𝑇, 𝐸))) ⊆̃ (𝑇, 𝐸) ⊆̃ 𝑐𝑙(𝑖𝑛𝑡(𝑇, 𝐸)) ⋃̃     𝑖𝑛𝑡(𝑐𝑙(𝑇, 𝐸)) ⊆̃ 𝑐𝑙 (𝑖𝑛𝑡(𝑐𝑙(𝑇, 𝐸))), 

hence (T, E)=cl(int(cl(T,E))) which is 𝒮C(U), therefore (T, E) is 𝒮rc. 

Corollary 3.12. Every 𝒮γC(U) and 𝒮αO(U) set is soft regular open. 

Theorem 3.13. In a 𝒮𝜏 space (U, 𝜏, 𝐸) over U, if (V, E) is 𝒮γO(U) and 𝒮αC(U), then   
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(V, E)=𝑐𝑙(𝑖𝑛𝑡(V, E)) ⋃̃     𝑖𝑛𝑡(𝑐𝑙(V, E)). 

Proof. Since, (V, E) is 𝒮γO(U), hence 

(V, E)⊆ ̃𝑐𝑙(𝑖𝑛𝑡(V, E))∪̃𝑖𝑛𝑡(𝑐𝑙(V, E)). 

The other inclusion (V, E) is 𝒮PC(U) and 𝒮 SC(U), then 

𝑐𝑙(𝑖𝑛𝑡(V, E)) ⊆̃ (V, E), 𝑖𝑛(𝑐𝑙(V, E)) ⊆̃ (V, E), 

respectively. Therefore 

𝑐l(𝑖𝑛𝑡(V, E)) ⋃̃     𝑖𝑛𝑡(𝑐𝑙(V, E)) ⊆̃ (V, E). 

Then 

(V, E)= 𝑐𝑙(𝑖𝑛𝑡(V, E)) ⋃̃     𝑖𝑛𝑡(𝑐𝑙(V, E)). 

Definition 3.14. A 𝒮-set (T, E) in a 𝒮𝜏 space (U, 𝜏, 𝐸) is called: 

(1) A soft nowhere dense if int(cl(T, E))=∅. 

(2) A soft dense (𝒮𝑑) set if cl(T, E))=𝑈. 

Definition 3.15.A 𝒮𝜏 structure (U, 𝜏, 𝐸) is called: 

(1) Soft submaximal if all 𝒮𝑑 subset over U are 𝒮o. 

(2) Soft extremely disconnected (𝒮ED) if the soft closure of each 𝒮o set is 𝒮o. 

Example 3.16. Let U={𝑥1, 𝑥2}, 𝐸={𝑒1, 𝑒2} and 

𝜏={∅, 𝑈̃,  (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸), (𝐾4, 𝐸), (𝐾5, 𝐸), (𝐾6, 𝐸), (𝐾7, 𝐸), (𝐾8, 𝐸)}, 

such that (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸), (𝐾4, 𝐸), (𝐾5, 𝐸), (𝐾6, 𝐸), (𝐾7, 𝐸), (𝐾8, 𝐸) are 𝒮-sets over U, which 

defined as: 𝐾1(𝑒1)=∅, 𝐾1(𝑒2)=∅, 𝐾2(𝑒1)=∅, 𝐾2(𝑒2)={𝑥1}, 𝐾3(𝑒1)=∅, 𝐾3(𝑒2)={𝑥2}, 𝐾4(𝑒1)=∅, 𝐾4(𝑒2)=𝑈, 

𝐾5(𝑒1)={𝑥1}, 𝐾5(𝑒2)=∅, 𝐾6(𝑒1)={𝑥1}, 𝐾6(𝑒2)={𝑥1}, 𝐾7(𝑒1)={𝑥1}, 𝐾7(𝑒2)={𝑥2}, 𝐾8(𝑒1)={𝑥1}, 𝐾8(𝑒2)=𝑈. 

Thus, the 𝒮𝜏 structure (U, 𝜏, 𝐸) is soft submaximal and soft extremely disconnected. 

Proposition 3.17. In a 𝒮𝜏 space (U, 𝜏, 𝐸), we have 

(1) If each 𝒮-set (F, E) of 𝒮𝜏 structure (U, 𝜏, 𝐸) is a soft nowhere dense, then 𝒮SO(U)=𝒮γO(U). 

(2) If (U, 𝜏, 𝐸) is soft submaximal and 𝒮ED space, then 𝒮αO(U)=𝒮γO(U). 

Proof. Obvious. 

Theorem3.18. In a 𝒮𝜏 structure (U, 𝜏, 𝐸) over U, then any (F, H)∈𝒮γO(U) is 𝒮PO(U) if one of the 

following conditions hold: 

(1) (U, 𝜏, 𝐸) is SED. 

(2) (𝐹, 𝐻) is soft dense over U. 

Proof. (1) Since, (F, H)∈𝒮γO(U) and (U, 𝜏, 𝐸) is 𝒮ED, therefore 

(𝐹, 𝐻) ⊆̃ 𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐻)) ⋃̃   𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐻)) ⊆̃ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐻))) ⋃̃     𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐻)), 
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then (F, H)∈𝒮PO(U). 

(2) Since, (F, H)∈𝒮γO(U) and (𝐹, 𝐻)𝑐 is soft dense, therefore int(F, H)=∅ and 

(𝐹, 𝐻) ⊆̃ 𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐻)) ⋃̃     𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐻))=𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐻)). 

Hence (F, H) is 𝒮PO(U). 

4. Soft γ-continuous mappings 

We define soft γ-continuous and soft γ-irresolute mappings. We also study some of their properties 

with the help of 𝒮γo sets in this section. 

Definition 4.1. Let (U, τ, E), (Y, 𝜎, 𝐸) be two 𝒮𝜏 structures. A mapping 𝑓: (U, τ, E)→(Y, 𝜎, 𝐸) is called 

a soft γ-continuous if 𝑓−1(𝐺, 𝐸) is 𝒮𝛾o in (U, τ, E), for every 𝒮o set (G,E) of (Y, 𝜎, 𝐸). 

According to Definition 4.1, we have 

soft continuity⇒𝒮α-continuity⇒𝒮𝑠o-continuity 

⇓    ⇓ 

Soft precontinuity⇒𝒮γ-continuity⇒𝒮β-continuity. 

In the following examples, we will prove that the converses may not always have to be true. 

Example 4.2. Let 𝑈={𝑥1, 𝑥2, 𝑥3}, 𝐸={𝑒1, 𝑒2} and 𝜏={∅, 𝑈̃,  (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸)}, 𝜎={∅, 𝑈̃,  (𝐾1, 𝐸), 

(𝐾3, 𝐸)}, where (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸) are 𝒮-sets which defined as: 𝐾1(𝑒1)={𝑥1}, 𝐾1(𝑒2)={𝑥1}, 

𝐾2(𝑒1)={𝑥2}, 𝐾2(𝑒2)={𝑥2}, 𝐾3(𝑒1)={𝑥1, 𝑥2}, 𝐾3(𝑒2)={𝑥1, 𝑥2}. And the mapping 𝑓: (U, τ, E))→(Y, 𝜎, 𝐸), 

which defined as follows: 𝑓(𝑥1)=𝑥1, 𝑓(𝑥2)=𝑥3, (𝑥3)=𝑥2. Hence 𝑓 is 𝒮γ -continuous but not soft 

precontinuous. 

Example 4.3. Assume that 𝑈=𝑌={𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝐸={𝑒1, 𝑒2}. Then 

(1) The identity mapping from soft indiscrete space (U, τ, E) onto a soft discrete space (Y, 𝜎, 𝐸) is 𝒮γ-

continuous but not 𝒮𝑠-continuous. 

(2) The identity mapping from 𝒮𝜏 structure (U, τ, E) onto a soft discrete space (Y, 𝜎, 𝐸) is 𝒮β-

continuous but not 𝒮γ-continuous, where 

𝜏={∅, 𝑈̃,  (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸)} and (𝐾1, 𝐸), (𝐾2, 𝐸), (𝐾3, 𝐸) 

are 𝒮-sets which defined as follows: 𝐾1(𝑒1)={𝑥1}, 𝐾1(𝑒2)={𝑥1}, 𝐾2(𝑒1)={𝑥2, 𝑥3}, 𝐾2(𝑒2)={𝑥2, 𝑥3}, 

𝐾3(𝑒1)={𝑥1, 𝑥2, 𝑥3}, 𝐾3(𝑒2)={𝑥1, 𝑥2, 𝑥3}. 

Theorem 4.4. For a soft mapping 𝑓: (U, τ, E)→(Y, 𝜎, 𝐸), the statements that follow are equivalent: 

(1) 𝑓 is 𝒮γ-continuous. 

(2) For each soft point (𝑢𝑒, 𝐸) over U and every 𝒮o (G, E) containing 𝑓(𝑢𝑒, 𝐸)=(𝑓(𝑢)𝑒, 𝐸) over Y, 

there exists a 𝒮𝛾o set (F, E) over U containing (𝑢𝑒, 𝐸), where 𝑓(𝐹, 𝐸) ⊆̃ (𝐺, 𝐸). 

(3) The inverse image of every 𝒮c set in Y is 𝒮𝛾c in U. 

(4) 𝑖𝑛𝑡 (𝑐l(𝑓−1(𝐺, 𝐸))) ∩̃ 𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝐺, 𝐸))) ⊆̃ 𝑓−1(𝑐𝑙(𝐺, 𝐸)) for every 𝒮-set (G, E) over Y. 

(5) 𝑓−1(𝑖𝑛𝑡(𝐹, 𝐸)) ⊆̃ 𝑖𝑛𝑡 (𝑐𝑙(𝑓−1(𝐹, 𝐸))) ⋃̃   𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝐹, 𝐸))) for every 𝒮-set (F, E) over U. 

(6) If 𝑓 is bijective, then 𝑖𝑛𝑡(𝑓(𝐹, 𝐸))⊆ ̃𝑓(𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐸)))∪ ̃𝑓(𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐸))) for every 𝒮-set (F, E) 



12151 

AIMS Mathematics  Volume 7, Issue 7, 12144–12153. 

over U. 

(7) If 𝑓 is bijective, then 𝑓(𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐸))) ∩̃ 𝑓(𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐸))) ⊆̃ 𝑐𝑙(𝑓(𝐹, 𝐸)) for every 𝒮-set (F, E) over U. 

Proof. (1)⟹(2): Suppose that (G, E) is a 𝒮o set over Y containing 𝑓(𝑢𝑒, 𝐸)=(𝑓(𝑢)𝑒, 𝐸), therefore 

𝑓−1(𝐺, 𝐸)∈𝒮𝛾𝑂(𝑈). Take a 𝒮-set (𝐹, 𝐸)=𝑓−1(𝐺, 𝐸) which containing (𝑢𝑒, 𝐸). Therefore (𝐹, 𝐸) ⊆̃ (𝐺, 𝐸). 

(2)⇒(3): Assume that (G, E)∈𝒮C(Y). Then (𝑌 ̃−(𝐺, 𝐸))∈𝒮𝑆(𝑌). Since 𝑓 is soft γ-continuous, 

𝑓−1(𝑌 ̃−(𝐺, 𝐸))∈𝒮𝛾𝑂(𝑈). Hence [ 𝑈̌−𝑓−1(𝐺, 𝐸)]∈𝒮𝛾𝑂(𝑈). Therefore 𝑓−1(𝐺, 𝐸)]∈𝒮𝛾𝐶(𝑈). 

(3)⇒(4): Consider (G, E) is a 𝒮-set over Y, therefore 𝑓−1(𝑐𝑙(𝐺, 𝐸)) 𝒮𝛾𝐶(𝑈), and 

𝑓−1(𝑐𝑙(𝐺, 𝐸)) ⊆̃ 𝑖𝑛𝑡(𝑐𝑙(𝑓−1(𝑐𝑙(𝐺, 𝐸)))) ∩̃ 𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝑐𝑙(𝐺, 𝐸)))) 

⊆̃ 𝑖𝑛(𝑐𝑙(𝑓−1(𝐺, 𝐸))) ∩̃ 𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝐺, 𝐸))). 

(4)⇒(5): By replacing 𝑌̃ −(𝐺, 𝐸) instead of (G, E) in (4), we have 

𝑖𝑛𝑡(𝑐𝑙(𝑓−1((𝑌̃ −(𝐺, 𝐸)))) ∩̃ 𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝑌̃ −(𝐺, 𝐸)))) ⊆̃ 𝑓−1(𝑐𝑙(𝑌̃ −(𝐺, 𝐸))) 

and therefore 

𝑓−1(𝑖𝑛𝑡(𝐺, 𝐸)) ⊆̃ 𝑖𝑛𝑡(𝑐𝑙(𝑓−1(𝐺, 𝐸))) ∩̃ 𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝐺, 𝐸))). 

(5)⇒(6): Follows directly by replacing (F, E) instead of 𝑓−1(𝐺, 𝐸) in (5) and applying the bijection 

of 𝑓. 

(6)⇒(7): By the complementation of (6) and applying the bijective of 𝑓, we have 

𝑓(𝑖𝑛𝑡(𝑐𝑙(𝐹, 𝐸)𝑐)) ∩̃ 𝑓(𝑐𝑙(𝑖𝑛𝑡(𝐹, 𝐸)𝑐)) ⊆̃ 𝑐𝑙(𝑓(𝐹, 𝐸)𝑐), 

we obtain the replacing (F, E) instead of (𝐹, 𝐸)𝑐. 

(7)⇒(1): Assume that (G, E) is a 𝒮-set over Y, put (W, E)=(𝑊, 𝐸)𝑐 by (7), we have 

𝑓(𝑓−1(𝑖𝑛𝑡(𝑐𝑙(𝑊, 𝐸)))) ∩̃ 𝑓(𝑓−1(𝑐𝑙(𝑖𝑛𝑡(𝑊, 𝐸)))) ⊆̃ 𝑐𝑙(𝑓(𝑓−1(𝑊, 𝐸)))) ⊆̃ 𝑐𝑙(𝑊, 𝐸) =̃ (𝑊, 𝐸). 

So, 𝑖𝑛(𝑐𝑙(𝑓−1(𝑊, 𝐸))) ∩̃ 𝑐𝑙(𝑖𝑛𝑡(𝑓−1(𝑊, 𝐸))) implies 𝑓−1(𝑊, 𝐸) is a 𝒮𝛾c over U and therefore, 𝑓−1(𝑊, 

𝐸) is a 𝒮𝛾o set over U. 

Theorem 4.5. For a 𝒮γ-continuous mapping 𝑓: (U, 𝜏, 𝐸)→(Y, 𝜎, 𝐸), the following statements are hold: 

(1) If each 𝒮-set (F, E) over U is 𝒮αC(U), then 𝑓−1(𝐹, 𝐸)=𝑐l(𝑖𝑛𝑡(𝑓−1(𝐹, 𝐸))) ⋃̃   𝑖𝑛𝑡(𝑐𝑙(𝑓−1(𝐹, 𝐸))), 

(2) If each 𝒮-set over U is a soft nowhere dense, then 𝑓 is a 𝒮𝑠-continuous function, 

(3) If (U, 𝜏, 𝐸) is SED, then 𝑓 is a soft precontinuous function. 

Proof. (1) Consider 𝑓: (U, τ, E)→(Y, 𝜎, 𝐸) is a 𝒮γ-continuous mapping and (G, E) is 𝒮o set over Y, then 

𝑓−1(𝐺, 𝐸) is 𝒮𝛾𝑂(𝑈). Since (U, τ, E) is 𝒮ED, by Theorem 3.18, 𝑓−1(𝐺, 𝐸) is 𝒮𝑃𝑂(𝑈). (2) and (3) are 

obvious. 

In the following example, we will prove that the composition of two 𝒮γ-continuous functions may 

not always have to be 𝒮γ-continuous. 

Example 4.6. Suppose that 𝑈=𝑍={𝑢1, 𝑢2, 𝑢3}, 𝑌={𝑢1, 𝑢2, 𝑢3, 𝑢4} and 𝐸={𝑒1, 𝑒2}. Then τ𝑈={∅, 𝑈̃, (𝐹, 𝐸)} 

is a 𝒮𝜏 structure over U, τ𝑌={∅, 𝑌̃,  (𝐺, 𝐸)} is a 𝒮𝜏 structure over Y and τ𝑍={∅, 𝑍̃,  (𝐻1, 𝐸), (𝐻2, 𝐸)} 

is a 𝒮𝜏 structure over Z, where (𝐹, 𝐸) is a 𝒮-set over U, (𝐺, 𝐸) is a 𝒮-set over Y and (𝐾1, 𝐸), (𝐾2, 𝐸) 
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are 𝒮-sets over Z which defined as: 𝐹(𝑒1)={𝑢1}, 𝐹(𝑒2)={𝑢1}, (𝑒1)={𝑢1, 𝑢3}, 𝐺(𝑒2)={𝑢1, 𝑢3}, 

𝐾1(𝑒1)={𝑢3}, 𝐾1(𝑒2)={𝑢3}, 𝐾2(𝑒1)={𝑢1, 𝑢2}, 𝐾2(𝑒2)={𝑢1, 𝑢2}. If the identity function 𝐼: (U, 𝜏𝑈, 

𝐸)→(Y, 𝜏𝑌, 𝐸) and 𝑓: (Y, 𝜏𝑌, 𝐸)→(Z, 𝜏𝑍, 𝐸), which defines as follows: 𝑓(𝑢1)=𝑢1, 𝑓(𝑢2)=𝑓(𝑢4)=𝑢2, 

𝑓(𝑢3)=𝑢3, since I and 𝑓 are 𝒮γ-continuous, but (𝑓𝜊𝐼) is not 𝒮γ-continuous, since (𝑓𝜊𝐼)−1(𝐾1, 𝐸)={{𝑢3}, 

{𝑢3}} is not a 𝒮𝛾𝑜 set over U. 

Janki and Sreeja define a homomorphism in soft topological structure in [13]. 

Definition 4.7. A bijection function f: (U, τ, E)→(Y, 𝜎, 𝐸) is called soft γ-homeomorphism (resp. 𝒮γ-

homeomorphism) if 𝑓 is a 𝒮γ -continuous (resp. 𝒮γ-irresolute) and 𝑓−1: (U, 𝜏, 𝐸)→(Y, 𝜎, 𝐸) is 𝒮γ-

continuous (resp. 𝒮γ-irresolute). 

Definition 4.8. For a 𝒮𝜏 structure (U, τ𝑈, 𝐸), we define: 

(1) 𝒮γ-h(U, τ𝑈, 𝐸)={f: f: (𝑈, τ𝑈, 𝐸)→(U, τ𝑈, 𝐸) is a bijection soft γ-continuous, 𝑓−1: (U, τ𝑈, 𝐸)→(U, 

τ𝑈, 𝐸) is soft γ-continuous}. 

(2) 𝒮γr-h(U, τ𝑈, 𝐸)={f: f: (𝑈, τ𝑈, 𝐸)→(U, τ𝑈, 𝐸) is a bijection soft γ-irresolute, 𝑓−1: (U, τ𝑈, 𝐸)→(U, 

τ𝑈, 𝐸) is soft γ-irresolute}. 

Theorem 4.9. For a 𝒮𝜏𝑠(U, τ𝑈, 𝐸), 𝒮-h(U, τ𝑈, 𝐸 ) ⊆̃ 𝒮γr-h(U, τ𝑈, 𝐸) ⊆̃ 𝒮γ-h(Uτ𝑈, 𝐸), such that 𝒮-

h(U, τ𝑈, 𝐸)={f: f: (𝑈, τ𝑈, 𝐸)→(U, τ𝑈, 𝐸) is a soft -homeomorphism}. 

Proof. First, we prove that each soft-homeomorphism 𝑓: (U, 𝜏, 𝐸)→(Y, 𝜎, 𝐸) is 𝒮γr-

homeomorphism. Assume that (G, E)∈𝑆𝛾𝑂(𝑌). Then 

(G, E) ⊆̃ 𝑐𝑙(𝑖𝑛𝑡(𝐺, 𝐸)) ⋃̃   𝑖𝑛𝑡(𝑐𝑙(𝐺, 𝐸)), 

hence, 

𝑓−1(𝐺, 𝐸) ⊆̃ 𝑓−1(𝑐𝑙(𝑖𝑛𝑡(𝐺, 𝐸)) ⋃̃   𝑖𝑛𝑡(𝑐𝑙(𝐺, 𝐸 ) ))⊆̃ 𝑐𝑙(𝑖𝑛𝑡𝑓−1(𝐺, 𝐸)) ⋃̃   𝑖𝑛𝑡(𝑐𝑙(𝑓−1(𝐺, 𝐸))), 

and so 𝑓−1(𝐺, 𝐸)∈𝑆𝛾𝑂(𝑈). Thus, 𝑓 is soft γ-irresolute. 

By the similar way, 𝑓−1 is soft γ-irresolute. Thus, 𝒮h(U, 𝜏𝑈, 𝐸 ) ⊆̃ 𝒮γr-h(U, 𝜏𝑈, 𝐸). Finally, it is 

obvious that 𝒮γr-h(U, 𝜏𝑈, 𝐸 ) ⊆̃ 𝒮γ-h(U, 𝜏𝑈, 𝐸). Since every 𝒮γ-irresolute function is 𝒮γ-continuous. 

5. Conclusions 

The 𝒮-set model has been applied to many fields from the theoretical point of view of 𝒮-sets is 

discussed and investigated again. Here, we introduce the class of 𝒮γo sets as generalization to each of 

soft semi open and soft preopen soft. 

Also, we construct a group of related topics like soft 𝛾-continuity, 𝒮γ-irresolute and soft 𝛾-

homeomorphism. Some related properties of these new soft of discussed with help of some examples. 

Moreover, the classes proposed in this paper, can be extended in the field of fuzzy 𝒮-sets. 
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