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1. Introduction

Anderson and Dumitrescu defined commutative S -Noetherian rings in [2]. Many important and
valuable results of commutative S -Noetherian rings are published. Especially, one can see practical
results of commutative S -principal ideal rings in [2, Proposition 16], [3, Theorem 2.1], [11, Theorem
2.8] and [13, Theorem 3.2]. One-sided S -Noetherian rings were investigated independently in [4]
and [6], and the S -variant of the Hilbert basis theorem [4, Theorem 3.1] and the S -variant of Cohen’s
theorem [6, Theorem 2.2] were proven. Recently, the S -variant of the Eakin-Nagata-Eisenbud theorem
was also proven in [19].

Recall that a submodule N of a right module M over a ring R is called S -finite if Ns ⊆ F ⊆ N for
some s ∈ S and finitely generated R-submodule F of M. A right R-module M is called S -Noetherian
if every R-submodule is S -finite. A right ideal A of a ring R is S -finite if AR is S -finite, and R is right
S -Noetherian if RR is S -Noetherian. Clearly, finitely generated submodules of M are S -finite; thus,
the notion of right S -Noetherian modules is an extension of the notion of right Noetherian modules.

This concept of S -finite is highly relevant because for an infinitely generated submodule N of M,
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infinite generators of N (after multiplying s ∈ S ) can be controlled by finite generators of some finitely
generated submodule F. Surprisingly, many critical properties of one-sided Noetherian modules and
rings can be lifted up to one-sided S -Noetherian modules and rings. The readers can refer to [2, 3, 10,
11, 13, 16, 21, 22] for more details on commutative S -Noetherian rings and to [4, 6, 8] for more details
on one-sided S -Noetherian rings.

In this paper, we continue to study the S -Noetherian notion when the above finitely generated
submodule F is principal. Let us define the followings for rigor.

Definition 1.1. Let S be a multiplicative subset of a ring R and M be a unitary right R-module.

(1) An R-submodule N of M is called S -principal if there exist an element s ∈ S and a cyclic R-
submodule P of M such that Ns ⊆ P ⊆ N. A right ideal A of R is called S -principal if A is
S -principal as a right R-submodule.

(2) R is called an S -principal right ideal ring (S -PRIR) if every right ideal is S -principal. An S -
principal right ideal ring R is called an S -principal right ideal domain (S -PRID) if R is a domain.

An S -principal left ideal ring (S -PLIR) and domain (S -PLID) are defined symmetrically. A ring
R is called an S -principal ideal ring (S -PIR) if R is both an S -PLIR and an S -PRIR, and an S -PIR
R is called S -principal ideal domain (S -PID) if R is a domain. Of course, neither S -PIR nor S -PID
guarantees the commutative condition. Thus, for a commutative ring, we use the respective notations
commutative S -PIR and commutative S -PID.

In this paper, one studies various examples including several extensions, and the properties of S -
PRIRs. In Section 2, some examples and extensions of S -PRIRs are provided. Among other things,
an S -PRID which is not a principal right ideal domain is constructed (Example 2.7). After that,
one discover that the S -principal notion can be passed between given rings and some matrix rings
(Theorem 2.14), and find a specific condition under which the S -principal concept can be penetrated
into Ore localizations (Theorem 2.20). In Section 3, several valuable properties are presented. More
precisely, the S -variant of the Eakin-Nagata-Eisenbud theorem for S -PRIRs (Theorem 3.10) and the
S -variant of Cohen’s theorem for S -PRIRs (Theorem 3.12) are proven. Moreover, one can give some
examples and counterexamples for answers to questions that occur naturally in the process.

Throughout this paper, all rings are associative (not necessarily commutative) with unity, and all
modules are unitary right modules. A multiplicative (closed) subset of a given ring may not contain
the unity element. Without any particular mention, Z, Zn and Q means the integer ring, ring of integers
modulo n for a natural number n, and the rational field, respectively. For a fixed natural number n, we
denote the n× n full matrix ring over a ring R byMn(R) and the n× n upper triangular matrix ring over
a ring R by Tn(R). For a given ring R, Z(R) is used for the center of R. We assume that the readers
already know the definitions of the abbreviated terms PRIR, PIR, PRID, and PID.

2. Examples of S-principal right ideal rings

In this section, we provide various examples of S -PRIR. Clearly, every PRIR R is an S -PRIR for
any multiplicative subset S of R. However, the converse statement is not true in general, when S , {1}.
To show this easily, we begin with a trivial result demonstrating that the S -principal concept is natural
in ring theory. Recall that a right ideal A of a ring R is called essential if, for any nonzero right ideal B
of R, A ∩ B , {0} (see [17, Definition 3.26]).
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Proposition 2.1. (cf. [2, Proposition 2.(a)]). If a commutative ring R has an essential ideal A which
does not contain any zero-divisor element except 0, then R is an S -PIR where S = A \ {0}.

Proof. Let B be an ideal of R. Because A is essential, there exists an element s ∈ B∩S , {0}. Therefore
Bs ⊆ sR ⊆ B, confirming that R is an S -PIR. �

The next corollary is an immediate consequence of Proposition 2.1.

Corollary 2.2. If D is a commutative domain and S = D \ {0}, then D is an S -PID.

Remark 2.3. (1) We can use conveniently the result of Corollary 2.2. For instance, the ring R of [1,
Theorem 3.1] is a commutative S -PID, where S = R \ {0}.

(2) (cf. [4, Proposition 2.4]). Let S be a multiplicative subset of right invertible elements of a ring R. If
an R-submodule N of an R-module M is S -principal, then N must be principal. In particular, the class
of all S -principal right modules over a division ring D coincides with the class of all principal right
modules over D.

Commutative domains Z[x] and F[x, y] are not PIDs, where Z[x] is the polynomial ring with x over
Z and F[x, y] is the polynomial ring with two variables x, y over a field F. We provide a simple example
of a commutative S-PID that is not a PID.

Example 2.4. (see Remark 2.8(3)). Let D be a commutative domain that is not a PID. Clearly, the
polynomial ring D[x1, . . . , xn] is also a commutative domain but not a PID. Consider a multiplicative
subset S = D[x1, . . . , xn] \ {0} of D[x1, . . . , xn]. Then D[x1, . . . , xn] is a commutative S -PID by
Corollary 2.2.

Remark 2.5. (see [4, Example 2.12]). If S , D \ {0}, then Corollary 2.2 may not be true in general.
For instance, let D = Z[x] and S = {1}. Then the commutative domain D is not an S -PID.

As seen above, we can find easily an S -PIR by taking a large enough multiplicative subset S of
R. However, we must take an S that is as small as possible to control the ideals of S -PIRs efficiently.
Here, we provide an example of an S -PIR, but not a PIR, with the smallest multiplicative subset S .

Example 2.6. Let R = Z2〈a1, a2, s〉 be the free algebra with unity and commuting indeterminates
a1, a2, s over Z2. Set R = R/I where I is the ideal of R generated by the following relations:

a2
1 = a2

2 = 0, a1s = a2s, s2 = s.

We identify r = r + I for simplicity. Applying Bergman’s diamond lemma [5], we can write each
element r ∈ R uniquely in the following reduced form:

r = α + α1a1 + α2a2 + α3s + α4a1a2 + α5a1s,

where α, α1, · · · , α5 ∈ Z2. Clearly, an ideal of the commutative ring R, a1R+a2R is not principal and so
R is not a PIR. To show that R is an S -PIR, consider a multiplicative subset S = {s} of R, and let A be
a nontrivial ideal of R. If A is principal, then we are done. So we may assume that A is not principal.

If s ∈ A, then we obtain As ⊆ sR ⊆ A. If s < A, then from the two facts that (1 + s)Rs = a1a2Rs =

(a1 + a2)Rs = {0} and each element r with α , 0, α3 = 0 in the form is a unit element, we only need to

AIMS Mathematics Volume 7, Issue 7, 12106–12122.



12109

check the case A = a1R + a2R. Because a1s = a2s, we obtain As ⊆ a1sR ⊆ A. Thus, we can conclude
that As ⊆ P ⊆ A for any nonprincipal ideal A of R, where P is {0} or sR or a1sR, as needed.

We study S -PRIRs in earnest. First of all, we construct a noncommutative S -PRID that is not a
PRID, capitalizing on [4, Corollary 3.2(1)].

Example 2.7. Let D = Z2〈a, b〉 be the free algebra with unity and commuting indeterminates a, b, and
S = D\{0}. Then the commutative domain D is an S -PID by Corollary 2.2. Let σ be the automorphism
of D such that σ(a) = b, σ(b) = a. Obviously, the skew polynomial ring over D, R = D[x;σ] is a
noncommutative domain since ax , xa = σ(a)x = bx. Note that a right ideal of R, A = aR + xR is not
principal and so R is not a PRID. Now we claim that R is an S -PRID. If B is a nonprincipal right ideal
of R, then by [4, Corollary 3.2(1)], there exist an element s ∈ S and nonzero polynomials fi(x) ∈ R
such that

Bs ⊆
m∑

i=1

fi(x)R ⊆ B.

Let p(x) be the smallest degree nonzero polynomial in
∑m

i=1 fi(x)R. If p(x) = d ∈ D is a nonzero
constant, then we have

Bsdσ(d) ⊆

 m∑
i=1

fi(x)R

 dσ(d) ⊆ dσ(d)R ⊆ B

since dσ(d) ∈ Z(R). Therefore, we may assume that p(x) =
∑n

j=0 p jx j with deg(p(x)) = n ≥ 1. From
the usual Euclidean algorithm and the minimality of n, we can notice that for each fi(x), there exist
nonzero gi(x) ∈ R and ti ∈ S such that fi(x)ti = p(x)gi(x) + qi(x) with deg(qi(x)) = n or 0. Note that for
any polynomial q(x) =

∑n
k=0 qkxk ∈

∑m
i=1 fi(x)R with qn , 0, we have p(x)qn + q(x)pn = 0 (if n is even)

or p(x)σ(qn) + q(x)σ(pn) = 0 (if n is odd) by the minimality of n. Thus, we obtain

(p(x)R + q(x)R) pnqnσ(pn)σ(qn) ⊆ qn p(x)R = pnq(x)R ⊆ p(x)R + q(x)R

or

(p(x)R + q(x)R) pnqnσ(pn)σ(qn) ⊆ σ(qn)p(x)R = σ(pn)q(x)R ⊆ p(x)R + q(x)R.

This result implies that

Bst1 · · · tms′ ⊆

 m∑
i=1

fi(x)R

 t1 · · · tms′ ⊆ s′′p(x)R ⊆
m∑

i=1

fi(x)R ⊆ B

for some nonzero s′, s′′ ∈ S . Hence, B is S -principal as desired.

Remark 2.8. (1) (cf. [9, Theorem 2.8]). Based on [4, Theorem 3.1], one may suspect that the Ore
extension R[x;σ, δ] over an S -PRIR R is an S -PRIR. However, Z[x;σ, δ] = Z[x] eliminates the
possibility of the suspicion, where σ is the identity map of Z, δ is the zero map, and S = {1}.

(2) When S = {1}, [18, Example 1.25] confirms that there exists an S -PLID but not an S -PRID.
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(3) If D is a commutative domain and S = D \ {0}, then the polynomial ring D[x] is an S -PID. Using
a very similar argument to that in Example 2.7, one can easily show that if A is a nontrivial ideal of
D[x], then As ⊆ p(x)D[x] ⊆ A, where p(x) is the nonzero smallest degree polynomial in A and s is
the leading coefficient of p(x). Accordingly, one can find a commutative S -PID, but not a PID. In fact,
Z[x] is a commutative S -PID, but not a PID, where S = Z \ {0}.

To provide various examples of S -PRIRs, we observe several extensions of S -PRIRs. First, we
examine the following finite direct sums.

Proposition 2.9. (cf. [4, Proposition 2.8 and Example 2.9]). For each i ∈ {1, . . . , n}, let S i be a
multiplicative subset of a ring Ri, and Mi be an Ri-module. Then every Ri-submodule of Mi is S i-
principal for each i if and only if every

(⊕n
i=1 Ri

)
-submodule of

⊕n
i=1 Mi is

(⊕n
i=1 S i

)
-principal.

Proof. (⇒) Let R =
⊕n

i=1 Ri, M =
⊕n

i=1 Mi, and P be an R-submodule of M. Then, we can write
P =

⊕n
i=1 Pi, where each Pi is an Ri-submodule of Mi. By the hypothesis, there exist pi ∈ Pi and

si ∈ S i such that Pisi ⊆ piRi ⊆ Pi for each i. This implies that P (s1, . . . , sn) ⊆ (p1, . . . , pn)R ⊆ P,
showing that P is

(⊕n
i=1 S i

)
-principal.

(⇐) Let Pi be an Ri-submodule of Mi for each i, and P =
⊕n

i=1 Pi be the
(⊕n

i=1 Ri

)
-submodule of⊕n

i=1 Mi. Since P is
(⊕n

i=1 S i

)
-principal, there exist pi ∈ Pi and si ∈ S i such that P (s1, . . . , sn) ⊆

(p1, . . . , pn)
⊕n

i=1 Ri ⊆ P. This guarantees that Pisi ⊆ piRi ⊆ Pi for each i, completing the proof. �

Corollary 2.10. For each i ∈ {1, . . . , n}, let S i be a multiplicative subset of a ring Ri. Then each Ri is
an S i-PRIR if and only if the finite direct sum

⊕n
i=1 Ri is a

(⊕n
i=1 S i

)
-PRIR.

Proposition 2.11. Let S be a multiplicative subset of a ring R and Mi be an R-module for each i ∈
{1, . . . , n}. Then every R-submodule of Mi is S -principal for each i if and only if each R-submodule of
the R-module

⊕n
i=1 Mi is S -principal.

Proof. (⇒) Let P be an R-submodule ofM =
⊕n

i=1 Mi. For each i, we let Pi = P ∩Mi, whereMi is
the subset ofM containing only elements in which all entries are 0 except the i-th entry. Then, we can
identify each Pi as an R-submodule of Mi. Since every R-submodule of Mi is S -principal, there exist
pi ∈ Pi and si ∈ S such that Pisi ⊆ piR ⊆ Pi. Thus, we obtain that Ps1 · · · sn ⊆ (p1, . . . , pn)R ⊆ P.
Hence, P is S -principal.

(⇐) Let M =
⊕n

i=1 Mi, and Pi be an R-submodule of Mi for each i. Then P =
⊕n

i=1 Pi is an R-
submodule ofM. Since each R-submodule ofM is S -principal, there exist pi ∈ Pi and s ∈ S such that
Ps ⊆ (p1, . . . , pn)R ⊆ P. Consequently, Pis ⊆ piR ⊆ Pi for each i, completing the proof. �

Corollary 2.12. Let S be a multiplicative subset of a ring R. Then R is an S -PRIR if and only if each
R-submodule of the right R-module

⊕n
i=1 R is S -principal.

As a corollary of the previous two propositions, we yield the following.

Corollary 2.13. Let S be a multiplicative subset and e be a central idempotent of a ring R. If the
multiplicative subsets eS and (1 − e)S do not contain the zero element, then the following statements
are equivalent:

(1) R is an S -PRIR.
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(2) Every right R-submodule of each eR and (1 − e)R is S -principal.
(3) The ring eR is an eS -PRIR.
(4) The ring (1 − e)R is a (1 − e)S -PRIR.
(5) The corner ring eRe is an eS -PRIR.

For a multiplicative subset S of a ring R and a fixed positive integer n, we denote Hn(R) = {[ri, j] ∈
Tn(R) | r1,1 = · · · = rn,n} and Vn(R) = {[ri, j] ∈ Hn(R) | ru,v = r(u+1),(v+1) for u = 1, . . . , n − 2 and
v = 2, . . . , n − 1}. Then Hn(R) is a subring of Tn(R) and Vn(R) is a subring of Hn(R). For the identity
matrix In, In(S ) = {sIn | s ∈ S } means the multiplicative set of all n × n scalar matrices with entries in
S , and Ei, j means the matrix unit, which is the matrix with (i, j)-entry 1 and elsewhere 0.

Theorem 2.14. (cf. [4, Proposition 2.16, 2.17 and 2.19] and [23, Proposition 3.4.10]). Let S be a
multiplicative subset of R and fix n ∈ N. Then the following statements are equivalent:

(1) R is an S -PRIR.
(2) Mn(R) is an In(S )-PRIR.
(3) Tn(R) is an In(S )-PRIR.
(4) Hn(R) is an In(S )-PRIR.
(5) Vn(R) is an In(S )-PRIR.

Proof. (1)⇒(2) This proof is nearly identical to the proof of [23, Proposition 3.4.10].

(1)⇐(2) Let A be a right ideal of R and consider the right idealA =
∑n

i=1 AE1,i ofMn(R). BecauseMn(R)
is an S -PRIR, there exist

∑n
i=1 a1,iE1,i ∈ A and sIn ∈ In(S ) such that AsIn ⊆

(∑n
i=1 a1,iE1,i

)
Mn(R) ⊆ A.

Thus, we have As ⊆ a1,nR ⊆ A, confirming that A is S -principal.

(1)⇒(3) Let A be a right ideal of Tn(R). By the same argument in [18, Proposition 1.17(2)], A =

C1 ⊕ · · · ⊕ Cn, where C j =
(∑ j

i=1 REi, j

)
∩ A is an R-submodule of a right R-module

⊕ j
i=1 R for each

j ∈ {1, . . . , n}. By Corollary 2.12, each C j is S -principal. Therefore, there exist
(
c1, j, . . . , c j, j

)
∈ C j and

s j ∈ S such that C js j ⊆
(
c1, j, . . . , c j, j

)
R ⊆ C j for each j. Now let s be the product of all distinct elements

in {s1, . . . , sn}. Then for each C j, we have C js ⊆ C js j · · · sn ⊆
(
c1, j, . . . , c j, j

)
R · · · sn ⊆

(
c1, j, . . . , c j, j

)
R ⊆

C j. This implies that

AsIn ⊆


c1,1 c1,2 ··· c1,n
0 c2,2 ··· c2,n

...
...
...

...
0 0 ··· cn,n

Tn(R) ⊆ A.

Thus A is In(S )-principal.

(1)⇐(3) Let A be a right ideal of R and A = AE1,n. Since the right ideal A of Tn(R) is S -principal, there
exist aE1,n ∈ A and sIn ∈ In(S ) such that AsIn ⊆ aE1,nTn(R) ⊆ A. This guarantees that As ⊆ aR ⊆ A
and thus A is S -principal.

Each proof of (1)⇔(4) and (1)⇔(5) is nearly identical to the proof of (1)⇔(3). �

By Theorem 2.14, we can possess the followings.

Corollary 2.15. ( [23, Proposition 3.4.10] and [17, Theorem 17.24]). Fix n ∈ N. If R is either a PRIR
or a PRID, thenMn(R) is a PRIR.

Proof. It follows from Theorem 2.14, when S = {1}. �
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For a fixed positive integer n, let Dn(R) be the set of n × n diagonal matrices over a ring R. Then
Dn(R) is a Γ-semiring with Γ = Dn(R) under the ternary operation defined by ABC = ABTC where BT

is the transpose of B, for all A, B,C ∈ Dn(R) (see [14, Example 2]).

Corollary 2.16. Fix n ∈ N. Then R is an S -PRIR if and only if the Γ-semiring Dn(R) is an In(S )-PRIR.

According to [20], the map ρ : Vn(R) → R[x]/〈xn〉 defined by ρ(r1,1In + r1,2V + · · · + r1,nVn) =∑n
i=1 r1,i + 〈xn〉 is a ring isomorphism, where V =

∑n
i=1 Ei,i+1 and 〈xn〉 is the ideal of R[x] generated by

xn. Note that, for a multiplicative subset S of a ring R, ρ (In(S )) = S + 〈xn〉 is a multiplicative subset of
R[x]/〈xn〉.

Corollary 2.17. (cf. [4, Corollary 2.18]). Fix n ≥ 1. Then R is an S -PRIR if and only if R[x]/〈xn〉 is
an (S + 〈xn〉)-PRIR.

As stated in [4], for a ring R and an (R,R)-bimodule M, the trivial extension of R by M is the ring
T (R,M) = R ⊕ M with the usual addition and the following multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2)

for all (r1,m1), (r2,m2) ∈ T (R,M). It is easy to see that T (R,M) is (ring) isomorphic to the ring of
matrices of the form ( r m

0 r ), where r ∈ R and m ∈ M. In particular, T (R,R) = H2(R) = V2(R) and so
T (R,R) is an (S , 0)-PRIR. However, in general, T (R,M) need not be an (S , 0)-PRIR, even though R is
an S -PRIR (see [4, Example 2.22(1)]).

Proposition 2.18. (cf. [4, Proposition 2.21]). Let S be a multiplicative subset of a ring R and M an
(R,R)-bimodule. Then the following statements are equivalent:

(1) R is an S -PRIR, and every right R-submodule of M is S -principal.
(2) T (R,M) is an (S , 0)-PRIR.

Proof. (1)⇒(2) We first identify T (R,M) =
{
[ r m

0 r ]
∣∣∣ r ∈ R,m ∈ M

}
and (S , 0) =

{
sI2

∣∣∣ s ∈ S
}
. Let A be

a right ideal of T (R,M). By the same argument in [18, Proposition 1.17(2)], A = C1⊕C2, where C1 is a
right ideal of R, and C2 is a right R-submodule of M⊕R. By Proposition 2.11, C j is S -principal for each
j ∈ {1, 2}. Therefore there exist

(
c1, j, . . . , c j, j

)
∈ C j and s j ∈ S such that C js j ⊆

(
c1, j, . . . , c j, j

)
R ⊆ C j

for each j. Now let s = s1s2. Then we have C js ⊆
(
c1, j, . . . , c j, j

)
R ⊆ C j for each C j, and c1,1 = c2,2.

This implies that
AsI2 ⊆

[ c1,1 c1,2
0 c1,1

]
T (R,M) ⊆ A.

Thus A is (S , 0)-principal.

(1)⇐(2) We also identify T (R,M) =
{
[ r m

0 r ]
∣∣∣ r ∈ R,m ∈ M

}
and (S , 0) =

{
sI2

∣∣∣ s ∈ S
}
. Let A be a

right ideal of R, and consider the right ideal A =
{
[ a m

0 a ]
∣∣∣ a ∈ A,m ∈ M

}
of T (R,M). Then there exist[ p q

0 p

]
∈ A and sI2 ∈ (S , 0) such that AsI2 ⊆

[ p q
0 p

]
T (R,M) ⊆ A. This shows that As ⊆ pR ⊆ A.

Lastly, let N be a right R-submodule of M, and consider the right ideal B =
{[ 0 n

0 0
] ∣∣∣ n ∈ N

}
of T (R,M).

Then there exist
[

0 q′
0 0

]
∈ B and s′I2 ∈ (S , 0) such that As′I2 ⊆

[
0 q′
0 0

]
T (R,M) ⊆ B. This shows that

Ns ⊆ q′R ⊆ N, completing the proof. �

On the underlying set Z × R, the Dorroh extension of R, denoted by Z ∗ R, is the ring with the usual
addition and the following multiplication:
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(z1, r1) ∗ (z2, r2) = (z1z2, z1r2 + z2r1 + r1r2)

for all (z1, r1), (z2, r2) ∈ Z × R. This ring is associative with unity (1, 0) (see [7]). It was proven
by [7, Corollary 2.3] that Z ∗ R is (ring) isomorphic to Z × R, even though there exists a right ideal of
Z ∗ R that cannot be written of the form I ∗ J, where I is an ideal of Z and J is a right ideal of R.

Proposition 2.19. Let S be a multiplicative subset of a ring R. Then R is an S -PRIR if and only if the
Dorroh extension Z ∗ R is a (0, S )-PRIR.

Proof. (⇒) We first identify R = Z ∗ R = Z × R. Let A be a right ideal of R. Then we can write
A = B ×C for some ideal B of Z and right ideal C of R. Since R is an S -PRIR,

A(0, s) = (B ×C) (0, s) ⊆ (0, p)R ⊆ A

for some p ∈ C and s ∈ S , which forces thatA is (0, S )-principal.
(⇐) We also identify R = Z ∗ R = Z × R. Let A be a right ideal of R and consider the right ideal (0, A)
of R. By the hypothesis, there exist (0, a) ∈ (0, A) and (0, s) ∈ (0, S ) such that (0, A)(0, s) ⊆ (0, a)R ⊆
(0, A). This implies that As ⊆ aR ⊆ A as desired. �

Let T be a right denominator set of a ring R. Then a right ring of fractions with respect to T , RT−1

exists (see [17, Theorem 10.6]). We close this section with the Ore localizations of S -PRIRs.

Theorem 2.20. (cf. [19, Theorem 3.4]). Let S be a multiplicative subset of a ring R and T be a right
denominator set such that sT = T s for every s ∈ S . If R is an S -PRIR, then RT−1 is an S -PRIR.

Proof. We first identify S = {s/1 | s ∈ S }. Note that S is a multiplicative subset of RT−1. Let A be a
right ideal of RT−1. Then, A = A∩R is a right ideal of R andA = A(RT−1) = AT−1 by [23, Proposition
2.1.16(3)]. Because A is S -principal, there exist p ∈ A and s ∈ S such that As ⊆ pR ⊆ A. This implies
thatAs = AT−1s = AsT−1 ⊆ pRT−1 ⊆ A. Thus,A is S -principal. �

According to [17, (10.17)], a ring R is right Ore if and only if the classical right quotient ring of R,
Qr

cl(R) exists.

Corollary 2.21. Let R be a right Ore ring, S a multiplicative subset of R, and let T be the set of all
regular elements in R. If R is an S -PRIR, and sT = T s for every s ∈ S , then the classical right ring of
quotients of R, Qr

cl(R) is an S -PRIR.

Proof. Since R is right Ore, T is a right denominator set in R. Now, Theorem 2.20 will work. �

Corollary 2.22. Let T be a right denominator set of a ring R. If R is a PRIR, then RT−1 is a PRIR.

There exists a ring R that is not a PRIR, but RT−1 is a PRIR. For instance, let R = Z[x] be the
polynomial ring and T = R \ {0}. Clearly, T is a (right) denominator set of R, and the commutative
domain R has a nonprincipal ideal. However, the localization of R by T , RT = RT−1 is a field (see [12,
Theorem 3.4.3(3)]). Notice that R is an S -PRIR, where S = Z \ {0}. Motivated by this, we provide a
sufficient condition for the ring RT−1 to be a PRIR.

Theorem 2.23. (cf. [19, Theorem 3.6]). Let T be a right denominator set and S a multiplicative subset
of a ring R. If R is an S -PRIR, and S ⊆ T, then RT−1 is a PRIR.
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Proof. We first identify S = {s/1 | s ∈ S }. LetA be a right ideal of RT−1, and consider the right ideal
A = A ∩ R of R. Because A is S -principal, there exist p ∈ A and s ∈ S such that As ⊆ pR ⊆ A. Now,
let b ∈ A. Then, since A = A(RT−1) = AT−1 by [23, Proposition 2.1.16(3)], we can write b = a/t for
some a ∈ A and t ∈ T . Therefore, we obtain

b =
a
t

=
as
ts

=
pr
ts

= p
r
ts
∈ pRT−1,

for some r ∈ R. Thus,A ⊆ pRT−1 ⊆ A which shows thatA is principal. Hence, RT−1 is a PRIR. �

The condition “S ⊆ T” is not superfluous as depicted by the following explicit example.

Example 2.24. Let R = Z[x, y], T = Z \ {0} and S = R \ {0}. Clearly, R is a commutative S -PID and T
is a (right) denominator set of R. Note that RT−1 = RT = Q[x, y]. However, the ideal xQ[x, y]+yQ[x, y]
of Q[x, y] is not principal.

Corollary 2.25. (cf. [19, Corollary 3.9]). Let R be a right Ore ring, and S be the set of all regular
elements in R. If R is an S -PRIR, then Qr

cl(R) is a PRIR.

Proof. By identifying S = T , Theorem 2.23 applies. �

Goldie’s theorem states that R is a semiprime right Goldie ring if and only if there exists the
semisimple Artinian classical right ring of quotients of R (see [17]).

Corollary 2.26. Let R be a semiprime right Goldie ring and S be the set of all regular elements in R.
If R is an S -PRIR, then Qr

cl(R) is a PRIR.

3. Properties of S -principal right ideal rings

In this section, we study various properties of S -PRIRs. First, observe that the S -principal condition
cannot be passed between subrings and overrings. In Section 2, we already saw that Z and Z[x]T−1 are
S -PIRs but Z[x] is not an S -PIR, where S = {1} and T = Z[x]\{0}. Thus, our first goal is to prove the S -
variant of the Eakin-Nagata-Eisenbud theorem for S -PRIRs (see [19, Theorem 2.9] and [17, Theorem
3.98]). The proof of the next lemma is very similar to the proof of [19, Proposition 2.2], but we insert
it for the sake of completeness.

Lemma 3.1. (cf. [19, Proposition 2.2]). Let R be a ring, S a multiplicative subset of R, and M an
R-module. If R is an S -PRIR and M is S -principal, then every R-submodule of M is S -principal.

Proof. Suppose to the contrary that there is a non-S -principal R-submodule of M. Let F be the set
of non-S -principal submodules of M. Then F is a nonempty partially ordered set under inclusion.
Let {Lα}α∈Λ be a chain in F and let L =

⋃
α∈Λ Lα. We claim that L is not S -principal: Suppose that

L is S -principal. Then there exist an element s ∈ S and a principal submodule gR of L such that
Ls ⊆ gR. Since gR is principal, gR ⊆ Lβ for some β ∈ Λ; so Lβs ⊆ gR ⊆ Lβ. Thus Lβ is S -principal,
a contradiction, proving the claim. Clearly, L is an upper bound of the chain {Lα}α∈Λ. Thus by Zorn’s
lemma, we can find a maximal element in F , say N.

Let P = [N : M] = {r ∈ R |Mr ⊆ N}. Then by [19, Lemma 2.1], P is a completely prime ideal
of R which is disjoint from S . Since M is S -principal, there exist an element w ∈ S and a principal
submodule f R of M such that Mw ⊆ f R; so we have P = [N : M] ⊆ [N : f R] ⊆ [N : Mw] = (P : w),
where (P : w) := {r ∈ R |wr ∈ P}. Since w < P and P is completely prime, (P : w) = P; so we have
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P = [N : M] = [N : f R] = [N : Mw] = (P : w).

Since P is a proper ideal of R, f < N. By the maximality of N, N + f R is S -principal; so we can find
elements s1 ∈ S and n1 + f r1 ∈ N + f R such that (N + f R)s1 ⊆ (n1 + f r1)R ⊆ N + f R. Since R is an
S -PRIR, there exist s2 ∈ S and t ∈ R such that [N : f r1]s2 ⊆ tR ⊆ [N : f r1].

Now, let n ∈ N be arbitrary. Then we have ns1 = (n1 + f r1)x for some x ∈ R. Note that f r1x =

ns1 − n1x ∈ N; so x ∈ [N : f r1]. Therefore xs2 = ty for some y ∈ R. Hence we have

ns1s2 = (n1 + f r1)xs2 = (n1 + f r1)ty ∈ (n1t + f r1t)R.

Since n was arbitrarily chosen in N and f r1t ∈ N, we obtain

Ns1s2 ⊆ (n1t + f r1t)R ⊆ N,

which shows that N is S -principal, a contradiction to N ∈ F . Thus every R-submodule of M is S -
principal. �

In the followings, a ring E is called a ring extension of a ring R if R ⊆ E and 1E = 1R.

Theorem 3.2. (cf. [19, Theorem 2.3]). Let S be a multiplicative subset of a ring R, E a ring extension
of R, and let M be a right E-module. If every R-submodule of M is S -principal, then every E-submodule
of M is S -principal. In particular, if R is an S -PRIR and M is S -principal as a right R-module, then
every E-submodule of M is S -principal.

Proof. Let N be an E-submodule of M. Clearly, N is an R-submodule of M, and so N is S -principal
by the hypothesis. Thus, we obtain

Ns ⊆ nR ⊆ nE ⊆ N

for some s ∈ S and n ∈ N. This confirms that N is S -principal as a right E-module. The last statement
follows from Lemma 3.1. �

The following corollary leads to the conclusion that the one-sided direction of the S -variant of the
Eakin-Nagata-Eisenbud theorem for S -PRIRs holds.

Corollary 3.3. (cf. [19, Corollary 2.4]). Let E be a ring extension of a ring R, and S be a multiplicative
subset of R. If R is an S -PRIR and E is S -principal as a right R-module, then E is an S -PRIR.

Proof. It follows from the last statement of Theorem 3.2, by replacing M with E. �

We next consider the other side direction of the S -variant of the Eakin-Nagata-Eisenbud theorem
for S -PRIRs.

Theorem 3.4. (cf. [19, Theorem 2.6]). Let S be a multiplicative subset of a ring R and E be a ring
extension of R such that sE = Es ⊆ R for some s ∈ S . If E is an S -PRIR and M is an S -principal right
E-module, then every R-submodule of M is S -principal.

Proof. By Lemma 3.1, we first note that every E-submodule of M is S -principal. Let N be an R-
submodule of M, and consider the E-submodule of M, NE = {

∑finite
i=1 niei | ni ∈ N, ei ∈ E}. Since

NE is S -principal as an E-submodule, there exist s1 ∈ S and
∑p

j=1 n′je
′
j ∈ NE such that NEs1 ⊆(∑p

j=1 n′je
′
j

)
E ⊆ NE. Therefore, we have
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Ns1s2 ⊆ NEs1s2 ⊆

 p∑
j=1

n′je
′
j

 Es2 =

 p∑
j=1

n′je
′
j

 sEs ⊆

 p∑
j=1

n′jr
′
j

 R ⊆ N,

where r′j ∈ R with e′js = r′j for each j. Thus, we reach the conclusion. �

Corollary 3.5. (cf. [19, Corollary 2.7]). Let S be a multiplicative subset of a ring R and E be a ring
extension of R such that sE = Es ⊆ R for some s ∈ S . If E is an S -PRIR, then R is an S -PRIR.

Proof. By Theorem 3.4, every R-submodule of E is S -principal. If A is a right ideal of R, then A is
S -principal because A is an R-submodule of E. Thus, R is an S -PRIR. �

By Corollary 3.5, we can find a condition for which the converse of Theorem 2.20 holds.

Corollary 3.6. Let T be a right denominator set of a ring R and S be a multiplicative subset of R
with sT = T s for every s ∈ S . If RT−1 is an S -PRIR and RT−1(s/1) = (s/1)RT−1 ⊆ R/{1} for some
s/1 ∈ S/{1}, then R is an S -PRIR.

If we reduce the condition “sE = Es ⊆ R” to “Es ⊆ R” in Theorem 3.4 and Corollary 3.5, then we
immediately obtain that every R-submodule is S -finite by [19, Theorem 2.6]. However, we failed to
show that every S -finite R-module is S -principal. Thus, we leave the following as an open question:

Question 3.7. In Theorem 3.4 and Corollary 3.5, can we reduce the condition “sE = Es ⊆ R” to
“Es ⊆ R”?

Even though we failed to reduce the condition, we provide an interesting example to demonstrate
that Theorem 3.4 and Corollary 3.5 are still valid.

Example 3.8. Let E = Z2〈a, b, c, s〉 be the free algebra with unity and noncommuting indeterminates
a, b, c, s over Z2. Set E = E/I, where I is the ideal of E generated by the following relations:

a2 = ab = ac = ca = a, as = sa = bs = sb, ba = b2 = bc = cb = b, c2 = c, cs = sc = s2 = s.

We identify e = e + I for simplicity. Applying Bergman’s diamond lemma [5], we can write each
element e ∈ E uniquely in the following reduced form:

e = α + α1a + α2b + α3c + α4s + α5as,

where α, α1, . . . , α5 ∈ Z2. Clearly, E is noncommutative, and S = {s} is a multiplicative subset of E.
We first claim that E is an S -PRIR. Let A be a nonprincipal right ideal of E. If s ∈ A, then As ⊆ sR ⊆ A
because of s ∈ Z(E). So we may assume s < A. From

es = (α + α1a + α2b + α3c + α4s + α5as) s = (α + α3c + α4s) s + (α1a + α2b + α5as) s

for every e ∈ E, we obtain that if As , {0}, then A contains either as or (1 + a)s. Thus, A must satisfy
one of the following: As ⊆ {0} ⊆ A or As ⊆ asE ⊆ A or As ⊆ (1 + a)sE ⊆ A. Hence, A must be
S -principal, yielding that the first claim is true.

Now, let R be the set of all elements of the form r = α + α1a + α2b + α4s + α5as in E. Then, R is a
subring of E with the same unity. Note that sE = Es ⊆ R. Thus, R is an S -PRIR by Corollary 3.5.
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Remark 3.9. (1) In Example 3.8, the noncommutative rings E and R are both S -PRIRs, but not both
PRIRs. If we let T = {1} ⊂ R ⊂ E in Example 3.8, then ET−1 � E and RT−1 � R. Thus, we already
exemplified the result of Corollary 3.6.

(2) Let R′ = Z2〈a, b, s〉 be the free algebra with unity and noncommuting indeterminates a, b, s over
Z2. Set R′ = R′/J , where J is the ideal of R′ generated by the following relations:

a2 = ab = a, as = sa = bs = sb, ba = b2 = b, s2 = s.

We identify r′ = r′ + J for simplicity. Applying Bergman’s diamond lemma [5], we can write each
element r′ ∈ R′ uniquely in the following reduced form:

r′ = α′ + α′1a + α′2b + α′4s + α′5as,

where α′, α′1, . . . , α
′
5 ∈ Z2. Now consider the ring R in Example 3.8. One can easily show that R′ is

(ring) isomorphic to R. Thus, R′ is also an S ′-PRIR, where S ′ = {s}.

(3) As described previously, the ring E = Z[x]T−1 is an S -PIR, but the subring R = Z[x] � Z[x]/{1}
of E is not an S -PIR, where S = {1} and T = Z[x] \ {0}. Hence, we cannot drop the condition
“sE = Es ⊆ R” in Theorem 3.4, Corollary 3.5 and Corollary 3.6.

By combining Corollary 3.3 and Corollary 3.5, we obtain the S -variant of the Eakin-Nagata-
Eisenbud theorem for S -PRIRs.

Theorem 3.10. (cf. [19, Corollary 2.9]). Let S be a multiplicative subset of a ring R and E be a ring
extension of R such that sE = Es ⊆ R for some s ∈ S . Then R is an S -PRIR if and only if E is an
S -PRIR.

Next, we prove the S -variant of Cohen’s theorem for S -PRIRs. The S -variant of Cohen’s theorem
for right S -Noetherian rings was proven in [6, Theorem 2.2] and [19, Theorem 2.11]. According
to [15], a proper right ideal P of a ring R is prime if for any right ideals A, B of R, AB ⊆ P and AP ⊆ P
imply that either A ⊆ P or B ⊆ P. A completely prime right ideal of a ring is always a prime right ideal
(see [25, p.969]).

Lemma 3.11. (cf. [19, Lemma 2.10]). Let S be a multiplicative subset of a ring R. If P is maximal
among non-S -principal right ideals of R, then P is a prime right ideal of R.

Proof. Obviously, P is a proper right ideal of R. Suppose to the contrary that P is not a prime right
ideal. Then, there exist right ideals A and B of R such that AB ⊆ P and AP ⊆ P, but A * P and B * P.
Let a ∈ A \ P and b ∈ B \ P. Then, aRb ⊆ P and aRP ⊆ P. Because P + aR is S -principal by the
maximality of P, we can find s1 ∈ S and c = p1 + ar1 ∈ P + aR such that

(P + aR)s1 ⊆ cR ⊆ P + aR.

Set L = {r ∈ R | cr ∈ P}. Note that L is a right ideal of R containing b and P. Therefore, L is S -principal
by the maximality of P, and so there exist s2 ∈ S and ` ∈ L such that

Ls2 ⊆ `R ⊆ L.
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Now, let p ∈ P. Then, ps1 = (p1 + ar1)x ∈ P for some x ∈ R, which indicates that x ∈ L. Thus, we
have

ps1s2 = cxs2 = c`y ∈ P

for some y ∈ R. Accordingly, we obtain Ps1s2 ⊆ c`R ⊆ P, which is a contradiction. Hence, P must be
a prime right ideal of R. �

Theorem 3.12. (cf. [2, Proposition 16]). Let S be a multiplicative subset of a ring R. Then R is an
S -PRIR if (and only if) every prime right ideal of R is S -principal.

Proof. Suppose to the contrary that R is not an S -PRIR. Then, it is easy to show that the set F of
all non-S -principal right ideals of R is a nonempty partially ordered set under inclusion. By Zorn’s
lemma, there is a non-S -principal right ideal P which is maximal in F . By Lemma 3.11, P is a prime
right ideal of R, which contradicts to the hypothesis. Thus, R is an S -PRIR. �

Corollary 3.13. ( [15, Theorem 1]). A ring R is a PRIR if (and only if) every prime right ideal of R is
principal.

Proof. It follows from Theorem 3.12, when S = {1}. �

A ring R is called right duo if every right ideal of R is a two-sided ideal. Clearly, if R is a right duo
ring, then I is a prime right ideal of R if and only if I is a prime ideal. So we have:

Corollary 3.14. Let S be a multiplicative subset of a right duo ring R. Then, R is an S -PRIR if (and
only if) every prime ideal of R is S -principal.

In [25, Theorem 8.5], Reyes proved that a ring R is a PRIR if (and only if) all of the Micher-prime
right ideals of R are principal. Based on this fact, we ask whether:

Question 3.15. Let S be a multiplicative subset of a ring R. If every Micher-prime right ideal of R is
S -principal, is R an S -PRIR?

One can conveniently use Theorem 3.12 when determining whether a given ring is an S -PRIR. We
apply Theorem 3.12 in the following simple example.

Example 3.16. (see Theorem 2.14(3)). Let D be any division ring and S = {1}. Obviously, T2(D) has
only the following five right ideals:

{0},T2(D),D1 =
[ D D

0 0
]
,D2 =

[ 0 D
0 D

]
,D3 =

{[ 0 d
0 d

]
∈ T2(D)

∣∣∣ d ∈ D
}
.

Note that D1,D2,D3 are all prime right ideals of T2(D), and each of them is (I2(S )-)principal. Thus,
T2(D) is an (I2(S )-)PRIR.

Recall that a ring R is said to be right hereditary if every right ideal of R is projective as a right
R-module (see [17, p.42]). According to [26, Example 2.8.12], every PRID is right hereditary. We
partially generalize this fact to S -PRIDs.

Proposition 3.17. Let S be a multiplicative subset of the center Z(R) of a ring R. If R is an S -PRID
and A is a right ideal of R disjoint from S , then A is projective.
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Proof. First, assume that A = pR is principal. Then, the condition that R is a domain guarantees that R
is (R-module) isomorphic to pR. Therefore, A is free, implying it is projective by [26, Remark 2.8.2].
So we may assume that A is not principal. Because R is an S -PRIR, there exist s ∈ S and q ∈ A such
that As ⊆ qR ⊆ A. To show that A is projective, consider an R-module homomorphism f : A → M
and an R-epimorphism g : N → M, where N and M are right R-modules. Define maps h′ : A → qR
by h′(a) = as for every a ∈ A, and f ′ : qR → M by f ′(qr) = f (a) for every qr ∈ qR with qr = h′(as).
From the three facts that s ∈ Z(R), q ∈ A and R is a domain, each of h′ and f ′ is an R-homomorphism.
Note that f = f ′ ◦ h′. Since qR is projective, there exists an R-homomorphism h′′ : qR → N such that
f ′ = g ◦ h′′. Thus, the R-homomorphism h = h′′ ◦ h′ satisfies f = g ◦ h as needed. �

Corollary 3.18. ( [26, Example 2.8.12]). Every PRID is right hereditary.

Remark 3.19. (1) As stated in [17, Definition 2.28], a ring R is said to be right semihereditary if
every finitely generated right ideal of R is projective as a right R-module. A commutative hereditary
ring is called a Dedekind domain and a commutative semihereditary domain is called a Prüfer domain.
Obviously, Dedekin domains are Prüfer domains. Based on Proposition 3.17, one may suspect that
every commutative S -PID is a Dedekind domain or a Prüfer domain. However, [24, Theorem 7.7]
eliminates the possibility of the suspicion.

(2) According to [17, Corollary 2.27], if R is a PRID, then any submodule of a free right R-module
is free. Since every free module is projective, every submodule of a free module over a PRID is
projective. However, when R is an S -PRID, an R-submodule of a free R-module may not be free nor
projective by [24, Theorem 7.7] and [17, Corollary 2.31].

One may suspect that if R is an S -PRID, then a free right R-module is injective. However, [17,
Example 3.10A] eliminates the possibility of the suspicion. Next, we find a condition under which a
free module over an S -PRID is injective. To do this, we recall the notions of divisible modules and
torsion-free modules. Let M be a right module over a ring R. For m ∈ M and x ∈ R, we call that m is
divisible by x if m ∈ Mx. Furthermore, M is a divisible module if for any m ∈ M and x ∈ R such that
Annr(x) ⊆ Ann(m), m is divisible by x (see [17, Definition 3.16]), where Annr(x) = {y ∈ R | xy = 0}
and Ann(m) = {z ∈ R | mz = 0}. According to [17, Proposition 3.17], a right R-module M is divisible if
and only if for any r ∈ R, any R-homomorphism f : rR→ M extends to an R-homomorphism from RR

to M. We say that M is torsion-free if the set T (M) = {m ∈ M | mr = 0 for some regular element r ∈ R}
is zero (see [17, Exercise 10.19]).

Proposition 3.20. Let S be a multiplicative subset of the center Z(R) of a ring R, and M be a torsion-
free module over R. If R is an S -PRID, then M is injective if and only if M is divisible.

Proof. (⇒) It follows from [17, Corollary 3.17′].

(⇐) To apply Baer’s criterion, let A be a right ideal of R and f : A → M be an R-homomorphism. We
need to show that f can be extended to an R-homomorphism from R to M. If A = pR, then since M is
divisible, f extends to an R-homomorphism from R to M. So we may assume that A is not principal.
Because R is an S -PRIR, there exist s ∈ S and q ∈ A such that As ⊆ qR ⊆ A.

If s ∈ A, then we can identify q = s. Let b ∈ A. Then, Annr(b) = {0} ⊆ Ann( f (b)). Therefore,
f (b) ∈ Mb and so f (b) = m1b for some m1 ∈ M. By the same reason, f (s) = m2s for some m2 ∈ M.
From f (bs) = m1bs = m2bs, we obtain m1 = m2 by the torsion-free condition. Thus, there exists an
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element m ∈ M such that f (a) = ma for each a ∈ A. Now, define maps g : A → sR by g(a) = sa
for every a ∈ A and h1 : sR → M by h1(sr) = mr for every r ∈ R. Note that each of g and h1 is an
R-homomorphism, and f = h1 ◦ g. Since M is divisible, h1 can be extended to h′1 : R → M. This
implies that f can be extended to f ′ : R→ M.

If s < A, then q must be of the form of
∑finite

i=1 biris for some ri ∈ R, where {bi} is a (minimal)
generating set of A. Now, define maps g : A → qR by g(a) = as for every a ∈ A and h2 : qR → M
by h2(qr) = f (a) for every r ∈ R with qr = as. Note that each of g and h2 is an R-homomorphism,
and f = h2 ◦ g. Since M is divisible, h2 can be extended to h′2 : R → M. This implies that f can be
extended to f ′ : R→ M as desired. �

Remark 3.21. (1) It was shown that if R is a PRIR and M is a divisible R-module, then M is injective
(see [17, Corollary 3.17′]). However, this fact cannot be extended to S -PRIRs by [17, Example, p.73].
This example also shows that the torsion-free condition in Proposition 3.20 is not superfluous.

(2) Consider the ring R = D[x;σ] in Example 2.7 and a new multiplicative subset S ′ = {dσ(d) | d ∈ D}
of R. Note that S ′ ⊂ Z(R) and R is also an S ′-PRID. Let T = R \ {0}. Then, T is clearly a right
denominator set of R. Since S ′ ⊂ T and R is a domain, RT−1 is a division ring by [19, Corollary 3.3]
or [17, Proposition 10.21]. From the two facts that the polynomial ring RT−1[y] is a torsion-free right
R-module and also a divisible R-module, we can conclude that RT−1[y] is an injective right R-module
by Proposition 3.20.

Finally, we end this paper with inevitable basic properties of S -PRIRs.

Proposition 3.22. (cf. [4, Remark 2.11 and Lemma 2.14]). Let S be a multiplicative subset of a ring
R and M be a right R-module. Then, the following assertions hold.

(1) If every R-submodule of M is S -principal and N is an R-submodule of M, then every R-submodule
of N is also S -principal.

(2) If every R-submodule of M is S -principal and f is an R-homomorphism, then every R-submodule
of f (M) is S -principal.

(3) If every R-submodule of M is S -principal and N is an R-submodule of M, then every R-submodule
of M/N is S -principal.

(4) For a short exact sequence of right R-modules, {0} // M′
f // M

g // M′′ // {0} , if every
R-submodule of M is S -principal then each R-submodule of M′ and M′′ is S -principal.

(5) If R is an S -PRIR and M is a cyclic R-module, then every R-submodule of M is S -principal.
(6) If R is an S -PRIR and I is an ideal of R disjoint from S , then R/I is an (S + I)-PRIR.

4. Conclusions

In this article, we study the structure of S -principal right ideal rings. Especially, we construct an
S -PRID which is not a PRID, and show that the S -principal notion can be passed between based rings
and some over rings. Also, we find out a specific condition under which the S-principal concept can
be penetrated into Ore localizations. Further, we prove the S -variants of the Eakin-Nagata-Eisenbud
theorem and Cohen’s theorem for S -PRIRs.

Based on results of this paper, we will focus on the notions of S -injective modules and S -projective
modules as further works.
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