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is less than one, and the endemic equilibrium is local and global asymptotic stable if the basic
reproduction number is greater than one. The optimal control problem is formulated using Pontryagin’s
maximum principle, with three control strategies: Disease prevention through education, treatment,
and screening. The most cost-effective intervention strategy to combat the pneumonia pandemic is a
combination of prevention and treatment, according to the cost-effectiveness analysis of the adopted
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1. Introduction

Pneumonia is a lung tissue infection with many causes. It is a major medical problem for sheep and
goats of all ages. It is the most widespread problem associated with the lower respiratory tract of sheep
that can be acute, chronic, or progressive and can be caused by bacteria, viruses, or parasites. It is an
inflammatory response of the alveoli in lungs to infective agents, resulting in lung consolidation. It is
a common disease of sheep in all major sheep-producing countries [1]. The disease is multi-factorial,
resulting from dynamic interactions between host, infectious agent, and environmental factors. When
the bacterial herds reach a certain threshold, host susceptibility, non-specific defense mechanisms, and
lung defense mechanisms become compromised, allowing diseases to occur [2]. In younger animals,
separate upper and lower respiratory tract bacteria, viruses, and parasites are frequently involved in
developing pneumonia. These same disease-causing agents can cause pneumonia in adults. In sheep,
a systemic virus known as Ovine Progressive Pneumonia virus (OPPV) can play an important role. In
goats, pneumonia may be caused by a related systemic virus, the Caprine Arthritis, and Encephalitis
Virus (CAEV). The term “systemic” means that OPPV and CAEV are viruses that, like the lungs,
can affect multiple organs. These viruses can affect the brain, udder, and joints as well. Parasites
(worms) can travel from the gastrointestinal tract into the lungs in certain climates, causing pneumonia.
Sheep could convert and diversify several types of forages into valuable products for mankind, such as
mutton, milk, and wool [3]. The importance of sheep, to the socio-economic well-being of animals in
developing countries, cannot be emphasized hence it is necessary to study the diseases and syndromes
that affect this species to enhance and sustain their productivity to meet the demand of the human
herd’s places upon them [4]. Sheep herds have incurred a steady increase worldwide because of the
low initial investments and its dual purpose for (meat and wool) and milk; however, their production
is often limited by various infectious diseases of which respiratory infections are important [5]. The
severity of respiratory infections in sheep-like goats has been associated with several factors including
environmental, nutritional, transportation, and management. Respiratory infection resulting in fatal
outcomes usually occurs when a primary viral infection compromises host defenses and enhances the
complications from a secondary bacterial infection [6]. Among infectious agents, bacterial pneumonia
is responsible for outbreaks, sudden death, and high mortality in lambs [7]. The lamb losses relate
to bacterial infections leading to pneumonia, diarrhea, and subsequent sepsis, which is a potential
complication of pneumonia [8]. Over the years, pneumonia in small ruminants has caused enormous
production losses with mortality between 71 and 90 among goats, but with less mortality in sheep [9].
Respiratory diseases in most sheep-producing countries result in lamb mortality, reduced growth rate
with a substantial negative economic impact on animal husbandry because of the need to employ
chemotherapeutic and vaccination programs [10]. Finally, it is the most common epidemic widespread
among Sheep in Al-Baha region according to the Ministry of Environment, Water, and Agriculture
data [11].

Nowadays, the mathematical modeling of the spread of diseases and optimal control problems for
epidemics, models have attracted the attention of many researchers. It is playing a vital role in
predicting the health and environmental impacts of epidemics and diseases for animals and humans.
Little essential research has been done in the last decade on the dynamics of pneumonia. Some of
them are proposed a model on pneumonia dynamics [12–21]. Most of these scientists have considered
and estimated the basic reproductive number as a random variable by first developing and analyzing a
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deterministic model for transmission patterns of pneumonia. Tilahun et al. [21], proposed a
co-infection model for pneumonia-typhoid and mathematically analyzed their characteristic
relationship in case of cure and medical strategies. In 2018, Tilahun et al. [22] described a model of
pneumonia-meningitis co-infection with the help of ordinary differential equations and some of the
theorems. Tilahun et al. divided the population into compartments in accordance with the state of
their health, such as susceptible (S ), vaccinated (V), carrier (C), infected (I), and recovered (R).

Fractional derivatives have been used efficiently to fine-tune many existing models of physical and
natural phenomena [23–36]. In the field of Bio-Modeling, fractional derivatives were used to generalize
the Hodgkin-Huxley model [37]. The model using fractional derivatives gave more accurate results
than the model using classical derivatives. In the field of physical science, fractional derivatives were
used to model viscoelastic substances with good agreement experimental results [38–40]. Also, Sherief
et al. [41] have constructed a successful fractional model for thermoelasticity (see also [42, 43]).

In this work we shall consider formulation of Tilahun et al. model using fractional derivatives in
sense of Caputo. Which is used to improve a mathematical model for the transmission dynamics of
pneumonia in the Al-Baha region of the Kingdom of Saudi Arabia. Al-Baha is a located in the
southwestern part of Saudi Arabia. It is characterized by varying terrain that affects climate and
vegetation. The geographic characteristics of the Al-Baha are described by distinct forests, high
Juniperus procera woodland, and diverse vegetation [34]. The existence, uniqueness, non-negativity
and boundedness of the solutions of the proposed model is proved. The basic reproduction number R0

is determined, which helped us to determine the dynamical behavior of the system. Moreover,
sufficient conditions of stability or instability of the model are obtained. The endemic equilibrium
stable globally has been derived and analyzed under some conditions. Global dynamics have also
been established to be completely determined. For the main parameters, the model bifurcation
potential for the basic reproduction number is determined. Numerical simulations that we provided
support the analytical results, which are obtained using generalized Euler method to handle the
fractional derivatives. On the other hand, using Pontryagin’s Maximum Principle [44], the optimal
control problem is formulated with three control strategies: Disease prevention through education,
treatment, and screening. We expect that the cost-effectiveness analysis of the adopted control
strategies reveals that the combination of prevention and treatment is the most cost-effective
intervention strategies to combat the pneumonia pandemic. We perform numerical simulation and
present relevant results graphically. The results of this project will provide quantitative pneumonia
knowledge that helps us to design disease monitoring tools.

The main advantage behind the use of fractional derivatives stems from its memory effect. This
means that its definition as an integral over past times makes the effects of the stimuli retarded not
instantaneous as in the classical models. This is in accord with what is found in nature. Other
fractional operators such as the Caputo-Fabrizio and Atangana-Baleanu will be discussed in the future
and compared with the Caputo one [45, 46]. The important mathematical findings for the proposed
model’s dynamical behavior have also been numerically verified for an Al-Baha region.

2. Model analysis

2.1. Preliminaries

In this section, we give necessary definitions and some properties of fractional calculus. Denote by
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R+ the set of all non-negative real numbers. If ν ∈ R+ is a non integer order, the fractional integral
Jνm f (t) of the function f : R+ −→ R is defined as

Jνm f (t) =
1
Γ(ν)

∫ t

m
(t − θ)ν−1 f (θ)dθ, t ≥ m,

where Γ(z) =
∫ ∞

0
e−ttz−1dt is the Euler Gamma function.

Definition 1 ( [47]). The Riemann-Liouville fractional derivative Dν f (t) of order ν > 0, n− 1 < ν < n,
n ∈ N is defined as

RL
m Dν f (t) =

1
Γ(n − ν)

dn

dtn

∫ t

m

f (θ)
(t − θ)ν+1−n dθ, t ≥ m,

where n is a natural number satisfying n = [ν] + 1 and [ν] denotes the integer part of ν.

Definition 2 ( [47]). The Caputo fractional derivative Dν f (t) of order ν > 0, n − 1 < ν < n, n ∈ N is
defined as

c
mDν f (t) =

1
Γ(n − ν)

∫ t

m

f (n)(θ)
(t − θ)ν+1−n dθ, t ≥ m.

The Riemann-Liouville and Caputo derivatives for 0 < ν < 1 are related by the following formulas:

c
mDν f (t) = RL

m Dν f (t) − f (m)
(t − m)−ν

Γ(1 − ν)
. (2.1)

Consider the initial value problems for fractional differential equations in the form ofDνX(t) = f (X(t)),

X(0) = X0,
(2.2)

where the fractional derivative Dν = c
mDν is in sense of Caputo’s definition, and the function f (X(t)) :

R×R2 −→ R2 is called a vector field. Particularly, R2 endowed a proper norm ∥ . ∥ becomes a complete
metric space. Denote by

J = [t0 − a, t0 + a], ℏ = {X ∈ R2 :∥ X − X0 ∥≤ b},

D = {(t, X) ∈ R × R2 : t ∈ J , X ∈ ℏ}.

Lemma 1 ( [48]). Assume that the function f : D −→ R2 satisfies the following conditions:
(1) f (X(t)) is Lebesgue measurable with respect to t on J .
(2) f (X(t)) is continuous with respect to X on ℏ.
(3) There exists a real-valued function g(t) ∈ L2(J) such that

∥ f (X(t)) ∥≤ g(t),

for almost every t ∈ J , X ∈ ℏ.
(4) There exists a real-valued function µ(t) ∈ L4(J) such that

∥ f (X1(t)) − f (X2(t)) ∥≤ µ(t) ∥ X1(t) − X2(t) ∥,

for almost every t ∈ J and all X1, X2 ∈ ℏ.
Then there exists a unique solution of the initial value problem (2.2) on [t0 − ε, t0 + ε] for some

positive number ε.
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Lemma 2 ( [49]). Assume that the function f : R+ × R2 −→ R2 satisfies the following conditions:
(1) The function f (X(t)) is Lebesgue measurable with respect to t on R.
(2) The function f (X(t)) is continuous with respect to X on R2.
(3) The function ∂ f (X(t))

∂X is continuous with respect to X on R2.
(4) There exists two positive constants ω, λ such that

∥ f (X(t)) ∥≤ ω + λ ∥ X ∥,

for almost every t ∈ R, and all X ∈ R2.
Then, there exists a unique function X(t) on (−∞,+∞) solving the initial value problem (2.2).

Lemma 3 ( [50], Lemma 3). Let u(t) be a function such that Dνu(t) exists for all t and satisfyingDνu(t) ≤ −λu(t) + µ,

u(t0) = ut0 ,

where 0 < ν < 1, (λ, µ) ∈ R2 and λ , 0 and t0 ≥ 0 is the initial time. Then

u(t) ≤
(
u(t0) −

µ

λ

)
Eν,1

[
− λ(t − t0)ν

]
+
µ

λ
,

where Eν,1(t) =
∑∞

k=0
tk

Γ(kq+1) > 0 is the Mittag Leffler function.

To prove the global stability of E∗, we need the following two lemmas.

Lemma 4 ( [51,52] ). Let u(t) ∈ R+ be a continuous and derivable function. Thus, for any time instant
t ≥ t0,

Dν
(
u(t) − u∗ − u∗ ln

u(t)
u∗

)
≤

(
1 −

u∗

u(t)

)
Dνu(t), u∗ ∈ R+.

Lemma 5 ( [53]). (Fractional LaSalle’s invariance principle). Let Ω be a bounded closed set. Every
solution of DνX(t) = f (X(t)) that starts from a point in Ω and remains in Ω for all time. If ∃ L(X(t)) :
Ω −→ R with continuous first partial derivatives satisfies the following condition:

DνL(X(t)) ≤ 0.

Let E = {X ∈ Ω : DνL(X(t)) = 0} and ∆ be the largest invariant set of E. Then every solution X(t)
originating in Ω tends to ∆ as t −→ ∞. Particularly, when ∆ = {X∗}, then X −→ X∗, as t −→ ∞.

Proof. Let L̃(X(t)) = J1−ν
0 (L(X(t)) − L(X(0))). In (2.1), the relationship between Riemann-Liouville

and Caputo fractional derivatives yields

˙̃L(X(t)) = RL
0 Dν(L(X(t)) − L(X(0)))

= RL
0 Dν(L(X(t))) − L(X(0))

t−ν

Γ(1 − ν)
= Dν(L(X(t))) ≤ 0.

Also, E = {X ∈ Ω : ˙̃L(X(t)) = 0} and ∆ is the largest invariant set in E. Thus, using the classical
LaSalle’s invariance principle, Theorem 1 in [54], every solution starting in Ω tends to ∆ as t −→
∞. □

AIMS Mathematics Volume 7, Issue 7, 12011–12049.



12016

2.2. Bifurcation analysis

In the present work, we will investigate the nature of the bifurcation of the solution trajectories of
the proposed model by using the method introduced by Carlos and Song [55], and the method is based
on the use of center manifold theory.

Theorem 1 ( [31] Centre manifold theory). : Let f : Rn×Rn −→ R and f ∈ C2(Rn×Rn). Then consider
the following general system of ODEs with a parameter φ.

dy
dt
= f (y, φ), (2.3)

where y = 0 is an equilibrium point of the system (2.2) (that is, f (0, φ) = 0,∀φ. Assume that:
A1: A =

(
∂ fi
∂y j

(0, 0)
)

is the linearization matrix of (2.2) around the equilibrium point 0 with f
evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;

A2: Matrix A has a right eigenvector w and a left vector v (each corresponding to the zero
eigenvalue).

Let fk be the k-th component of f and

ℓ =

n∑
k,i, j=1

vkwiw j
∂2 f
∂yi∂y j

(0, 0),

k =
n∑

k,i=1

vkwi
∂2 f
∂yi∂ξ

.

(2.4)

The local dynamics of the system (2.2) around 0 is totally determined by the signs of ℓ and k:
i. ℓ > 0, k > 0. When φ < 0 with |φ| ⩽ 1, 0 is locally asymptotically stable, and there exists a

positive unstable equilibrium; when 0 < φ << 1, 0 is unstable and there exists a negative and locally
asymptotically stable equilibrium,

ii. ℓ < 0, k < 0. When φ < 0 with |φ| ⩽ 1, 0 is unstable; when 0 < φ << 1, 0 is locally
asymptotically stable, and there exists a positive unstable equilibrium,

iii. ℓ > 0, k < 0. When φ < 0 with |φ| ⩽ 1, 0 is unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < φ << 1, 0 is stable, and a positive unstable equilibrium appears,

iv. ℓ < 0, k > 0. When φ changes from negative to positive, 0 changes its stability from stable to
unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically
stable.

2.3. Model description and formulation

In this work, we introduce a fractional-order for the model developed by Tilahun GT et al. in [21],
which describes the dynamics of transmission of pneumonia disease. Here, we study the dynamics
of pneumonia disease in sheep and goats in Al-Baha region between five compartments based on the
disease status, that is: Susceptible (S ), vaccinated (V), carrier (C), infected (I), and recovered (R),
namely SVCIR model. More precisely, a fractional order SVCIR model is considered in sense of

AIMS Mathematics Volume 7, Issue 7, 12011–12049.



12017

Caputo derivative Dν, 0 < ν ≤ 1, and is given by

DνS (t) = (1 − p)π + ϕV(t) + δR(t) − (µ + λ + ϑ)S (t),
DνV(t) = pπ + ϑS (t) − (µ + λε + ϕ)V(t),
DνC(t) = ρλS (t) + ρελV(t) + (1 − q)ηI(t) − (µ + β + χ)C(t),
DνI(t) = (1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t) − (µ + α + η)I(t),
DνR(t) = βC(t) + qηI(t) − (µ + δ)R(t),

(2.5)

with initial data S (0) = S 0, V(0) = V0, C(0) = C0, I(0) = I0, and R(0) = R0.
The model assumes that before the disease outbreak, a fraction of the herds was vaccinated at a

rate of (p), with a fraction of herds susceptible at (1 − p). The Susceptible class is increased from the
vaccinated class, which contains animals who have been vaccinated but did not respond to vaccination
due to a waning rate of ϕ, and from recovered class in which those individuals who loss their temporary
immunity by δ rate. Animals from the susceptible class, on the other hand, move to the vaccinated class
at a rate of ϑ. The infection force is defined as λ = ξ( I(t)+ΥC(t)

N ), where N = N(t) represents the total
population of sheep or goats at the moment t ≥ 0. Thus, N = S (t) + E(t) + C(t) + I(t) + R(t) is
a non-constant time-dependent quantity (except if α = 0, which is not the case since α = 0.057 as
appears in Table 1). The susceptible class is infected with a force of infection λ by either carriers or
symptomatically infected animals, where ξ = kτ, k is contact rate, τ is the probability that a contact
is effective to cause infection and Υ is transmission coefficient for the carrier. If Υ > 1, the carriers
are more likely to infect susceptible than infective. If Υ = 1, both carriers and infective have an equal
chance of spreading the susceptible, but if Υ < 1, infective have a greater chance than carriers of
contacting the susceptible. Because the model assumes that vaccination isn’t 100 percent effective,
vaccinated classes (V) have a small chance of being infectious or carriers, and the force of infection for
the vaccinated class is λν = ελ, where 0 ⩽ ε < 1 and ε is the proportion of the serotype not covered by
the vaccine. By the force of infection, newly infected animals become either carriers with a probability
of ρ to join the carrier class C or infected with a probability of 1 − ρ to join the infected class I. The
carrier class can develop disease symptoms, or they can screen and join the infected class at a rate of χ,
or they can recover by gaining natural immunity at a rate of β. Animals in the infected class move to the
recovered compartment at a per capita rate of η by treatment, with treatment efficacy of q proportion of
animals join the recovered class or join the carrier class at a rate of (1 − q) by adapting the treatment,
or die from the disease at a rate of α. All of the parameters are positive, and µ is the natural death rate
of the animals in all compartments.

2.4. Existence and uniqueness

This section deals with the existence, uniqueness, non-negativity and boundedness of the solutions
of the system (2.4). Denote by R+ the set of all non-negative real numbers and assuming that
Ω = {(S ,V,C, I,R) ∈ R5

+ : S ≥ 0, V ≥ 0, C ≥ 0, I ≥ 0, R ≥ 0, max (|S |, |V |, |C|, |I|, |R|) ≤ N}.
Following [50], the existence and uniqueness of the solutions of the fractional-order model (2.4) is
proved in the region Ω × (0,T ] (see Figure 1).

Theorem 2. If X0 = (S (0),V(0),C(0), I(0),R(0)) ∈ Ω is an initial condition, then the solution X =
(S (t),V(t),C(t), I(t),R(t)) ∈ Ω to the fractional-order model (2.4) is unique, for t ≥ 0.
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Figure 1. Flow diagram of the model.

Proof. Let
H1(X) = (1 − p)π + ϕV(t) + δR(t) − (µ + λ + ϑ)S (t),
H2(X) = pπ + ϑS (t) − (µ + λε + ϕ)V(t),
H3(X) = ρλS (t) + ρελV(t) + (1 − q)ηI(t) − (µ + β + χ)C(t),
H4(X) = (1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t) − (µ + α + η)I(t),
H5(X) = βC(t) + qηI(t) − (µ + δ)R(t).

Hence, for X, X ∈ Ω, one obtains

∥H(X) − H(X)∥ = |H1(X) − H1(X)| + |H2(X) − H2(X)| + |H3(X) − H3(X)|

+ |H4(X) − H4(X)| + |H5(X) − H5(X)|

≤ (µ + 2λ + 2λρ + 2ϑ)|S − S | + (µ + 2ϕ + 2ελ + 2λερ)|V − V |

+ (µ + 2β + 2χ)|C −C| + (µ + α + 2η + 2qη)|I − I| + (µ + 2δ)|R − R|

≤ Γ|X − X|,

where

Γ = max {µ + 2λ + 2λρ + 2ϑ, µ + 2ϕ + 2ελ + 2λερ, µ + 2β + 2χ, µ + α + 2η + 2qη, µ + 2δ} .

Therefore H(X) satisfies the Lipschitz condition, which imply that the solution of fractional-order
model (2.4) exists and unique. □
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2.5. Non-negativity and boundedness of the solution

Theorem 3. If p < 1, q < 1, ρ < 1, the fractional-order model (2.4) has non-negative solutions.

Proof. One has

DνS (t)|S=0 = (1 − p)π + ϕV(t) + δR(t) > 0,
DνV(t)|E=0 = pπ + ϑS (t) > 0,
DνC(t)|C=0 = ρλS (t) + ρελV(t) + (1 − q)ηI(t) > 0,
DνI(t)|I=0 = (1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t)(1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t) > 0,
DνR(t)|R=0 = βC(t) + qηI(t) > 0.

Thus, by using Lemmas 5 and 6 in [56], the solutions of fractional-order model (2.4) are non-negative.
□

Theorem 4. The fractional-order model (2.4) has uniformly bounded solutions start in

Ω+ =

{
(S ,V,C, I,R) ∈ Ω : 0 ≤ S + E + I + R ≤

Λ

λ

}
.

Proof. Denote by
N(t) = S (t) + E(t) + I(t) + R(t)

the total herds at time t. By direct sum to the equations in fractional-order model (2.4), one obtains

DνN(t) = π − (µS + µV + µC + (µ + α)I + µR)
≤ π − µN(t).

Thus
DνN(t) + µN(t) ≤ π.

Following to [57], one obtains

0 ≤ N(t) ≤ N(0)Mν(−µtν) + tνMν,ν+1(−µtν)),

where Mν is the Mittag-Leffler function. According to [56], one obtains:

0 ≤ N(t) ≤
π

µ
, t −→ ∞.

Thus, the solutions of fractional-order model (2.4), starting in Ω+, are uniformly bounded in the
region Ω+. □

Remark 1. Obviously, the set Ω+ is positively invariant with respect to the fractional-order
model (2.4).

3. Stability analysis

The basic reproduction number R0 has been computed in this section. Moreover, the local and
global asymptotic stability of the infectious-free equilibrium point is studied. In addition, by building
appropriate Lyapunov functions, the local and global asymptotic stability of the endemic equilibrium
point is being studied.
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3.1. The infectious-free equilibrium point

For I = C = 0, one obtains
(1 − p)π + ϕV0 − (µ + ϑ)S 0 = 0,
pπ + ϑS 0 − (µ + ϕ)V0 = 0.

Therefore
S 0 =

πΦ

µ
, V0 =

πΘ

µ
,

where Φ =
µ+ϕ−pµ
µ+ϕ+ϑ

and Θ =
ϑ+pµ
µ+ϕ+ϑ

. We can easily obtain the infection-free equilibrium

E0 =
(
πΦ
µ
, πΘ
µ
, 0, 0, 0

)
.

3.2. The endemic-equilibrium point

For I∗ > 0, the endemic equilibrium is denoted by E∗ = (S ∗,V∗,C∗, I∗,R∗) and defined as a steady
state solutions for the model (2.4). This can occur when there is a persistence of the disease. It can be
obtained by equating the system of Eq (2.4) to zero, that is,

DνS (t) = 0,
DνV(t) = 0,
DνC(t) = 0,
DνI(t) = 0,
DνR(t) = 0.

We used the third and fourth equations of model (2.4) to get the following result:

C∗ = A1I∗,

where
A1 =

(1 − ρ)(1 − q)η + ρ(µ + α + η)
(1 − ρ)(µ + β + χ) + ρχ

.

By substituting in the fifth equation of model (2.4), one obtains

R∗ = A2I∗,

where
A2 =

βA1 + qη
µ + δ

.

The second equation gives the following:

V∗ = A3 + A4S ∗,

where
A3 =

pπ
µ + λϵ + ϕ

, A4 =
θ

µ + λϵ + ϕ
.

The first equation of model (2.4) gives the following:

S ∗ = A5 + A6I∗,
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where
A5 =

(1 − p)π + ϕA3

µ + λ + θ − ϕA4
, A6 =

δA2

µ + λ + θ − ϕA4
.

Thus
V∗ = A3 + A4A5 + A4A6I∗.

Substituting in the second equation, one obtains

I∗ =
pπ + θA5 − (µ + λϵ + ϕ)(A3 + A4A5)

−θA6 + (µ + λϵ + ϕ)A4A6
. (3.1)

Thus, one obtains

E∗ = (S ∗,V∗,C∗, I∗,R∗) = (A5 + A6I∗, A3 + A4A5 + A4A6I∗, A1I∗, I∗, A2I∗),

where I∗ is given by (3.1).

3.3. The basic reproductive number

The basic reproductive number in the classical sense is the expected number of secondary
infections produced by one infectious individual in a totally susceptible population during the
individual’s period of infectiousness. This is a static quantity (independent of time) obtained by the
standard “next-generation matrix approach” (see Driessche et al. [58]).

Obviously, the state variables (S (t),V(t),C(t), I(t),R(t)) remain in the biologically meaningful
region Ω is a positively invariant for model (2.4). The model equations are re-written starting with
newly infective classes:

DνC(t) = ρλS (t) + ρελV(t) + (1 − q)ηI(t) − (µ + β + χ)C(t),
DνI(t) = (1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t) − (µ + α + η)I(t).

Then by the principle of next generation matrix we can obtained, x = (S ,V,R)T and y = (C, I)T , then
we have

Dνy = ℵ(y) − ℏ(y),

where

ℵ(y) =
[

ρλS (t) + ρελV(t)
(1 − ρ)λS (t) + (1 − ρ)ελV(t)

]
, ℏ(y) =

[
(µ + β + χ)C(t) − (1 − q)ηI(t)

(µ + α + η)I(t) − χC(t)

]
.

The next is obtaining the Jacobian matrix of ℵ(y) and ℏ(y) with respect to C and I at the disease free
equilibrium E0 =

(
πΦ
µ
, πΘ
µ
, 0, 0, 0

)
. To simplify our work, we assigned ℵ(y) and ℏ(y) in the following

way,

ℵ(y) =
[
ℵ1

ℵ2

]
, ℏ(y) =

[
ℏ1

ℏ2

]
,

where
ℵ1 = ρλS (t) + ρελV(t),
ℵ2 = (1 − ρ)λS (t) + (1 − ρ)ελV(t),
ℏ1 = (µ + β + χ)C(t) − (1 − q)ηI(t),
ℏ2 = (µ + α + η)I(t) − χC(t).
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The Jacobian matrices of the two matrices ℵ(y) and ℏ(y), at the infection-free equilibrium point E0, are,
respectively. The Jacobian matrix of ℵ(y) and ℏ(y) is obtained, at the infection-free equilibrium point
E0, by F and Γ respectively,

F =
[
∂ℵ1
∂C

∂ℵ1
∂I

∂ℵ2
∂C

∂ℵ2
∂I

]
, Γ =

[
∂ℏ1
∂C

∂ℏ1
∂I

∂ℏ2
∂C

∂ℏ2
∂I

]
.

Since λ = aC+bI, where a = kτΥ
N is the transmission coefficient for the carrier compartment and b = kτ

N
is also the transmission co-efficient for the infective compartment. Then

∂ℵ1

∂C
= aρS (t) + aρεV(t),

∂ℵ1

∂I
= bρS (t) + bρεV(t),

∂ℵ2

∂C
= a(1 − ρ)S (t) + a(1 − ρ)εV(t),

∂ℵ2

∂I
= b(1 − ρ)S (t) + b(1 − ρ)εV(t).

Similarly the entry members of Γ is also obtained

∂ℏ1

∂C
= µ + β + χ,

∂ℏ1

∂I
= −(1 − q)η,

∂ℏ2

∂C
= −χ,

∂ℏ2

∂I
= µ + α + η.

The entry members of F is obtained in the following way:

F =
[

aρ(S 0 + εV0) bρ(S 0 + εV0)
a(1 − ρ)(S 0 + εV0) b(1 − ρ)(S 0 + εV0)

]
, Γ =

[
µ + β + χ −(1 − q)η
−χ µ + α + η

]
.

Thus

Γ−1 =
1

(µ + β + χ)(µ + α + η) − (1 − q)ηχ

[
µ + α + η (1 − q)η

χ µ + β + χ

]
.

The matrix F.Γ−1 is given by

F.Γ−1 =

[
aρd1 + bρd2 aρd3 + bρd4

a(1 − ρ)d1 + b(1 − ρ)d2 a(1 − ρ)d3 + b(1 − ρ)d4

]
,

where
d1 =

µ + α + η

(µ + β + χ)(µ + α + η) − (1 − q)ηχ
(S 0 + εV0),

d2 =
χ

(µ + β + χ)(µ + α + η) − (1 − q)ηχ
(S 0 + εV0),

d3 =
(1 − q)η

(µ + β + χ)(µ + α + η) − (1 − q)ηχ
(S 0 + εV0),

d4 =
µ + β + χ

(µ + β + χ)(µ + α + η) − (1 − q)ηχ
(S 0 + εV0).
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The eigenvalue of F.Γ−1 can be obtained,∣∣∣∣∣∣ σ − (aρd1 + bρd2) aρd3 + bρd4

a(1 − ρ)d1 + b(1 − ρ)d2 σ − (a(1 − ρ)d3 − b(1 − ρ)d4)

∣∣∣∣∣∣ = 0.

Then the eigenvalues are

σ1 = 0,
σ2 = ρ(ad1 + bd2) + (1 − ρ)(ad3 + bd4).

Thus the basic reproductive number is given by

R0 = ρ(ad1 + bd2) + (1 − ρ)(ad3 + bd4).

By substitution of d1, d2, d3, and d4, the basic reproduction number becomes

R0 =
[ρ(bχ + a(µ + α + η)) + (1 − ρ)(a(1 − q)η + b(µ + β + χ))]

(µ + α + η)(µ + β + χ) − (1 − q)ηχ
(S 0 + εV0).

3.4. Local stability

Lemma 6. The infection-free equilibrium E0 =
(
πΦ
µ
, πΘ
µ
, 0, 0, 0

)
is locally asymptotically stable in Ω if

R0 < 1 and unstable if R0 > 1.

Proof. For the fractional-order model (2.4) at E0 =
(
πΦ
µ
, πΘ
µ
, 0, 0, 0

)
, the Jacobian matrix J(E0) is

given by

J(E0) =


−(µ+ϑ) ϕ −aS 0 −bS 0 δ

ϑ −(µ+ϕ) −aεV0 −bεV0 0
0 0 ρaS 0+ρaεV0−(µ+β+χ) ρbS 0+ρbεV0+(1−q)η 0
0 0 (1−ρ)aS 0+(1−ρ)aεV0+χ (1−ρ)bS 0+(1−ρ)bεV0−(µ+α+η) 0
0 0 β qη −(µ+δ)

 .
Thus, the eigenvalue is given by

J(E0) =

∣∣∣∣∣∣∣∣
σ+(µ+ϑ) ϕ −aS 0 −bS 0 δ

ϑ σ+(µ+ϕ) −aεV0 −bεV0 0
0 0 σ−ρaS 0−ρaεV0+(µ+β+χ) ρbS 0+ρbεV0+(1−q)η 0
0 0 (1−ρ)aS 0+(1−ρ)aεV0+χ σ−(1−ρ)bS 0−(1−ρ)bεV0+(µ+α+η) 0
0 0 β qη σ+(µ+δ)

∣∣∣∣∣∣∣∣ = 0.

Then
(σ + µ + ϑ)(σ + µ + ϕ)(σ + µ + δ)

∣∣∣ σ−ρaS 0−ρaεV0+(µ+β+χ) ρbS 0+ρbεV0+(1−q)η
(1−ρ)aS 0+(1−ρ)aεV0+χ σ−(1−ρ)bS 0−(1−ρ)bεV0+(µ+α+η)

∣∣∣
−ϑϕ(σ + µ + δ)

∣∣∣∣∣∣ σ − ρaS 0 − ρaεV0 + (µ + β + χ) ρbS 0 + ρbεV0 + (1 − q)η
(1 − ρ)aS 0 + (1 − ρ)aεV0 + χ σ − (1 − ρ)bS 0 − (1 − ρ)bεV0 + (µ + α + η)

∣∣∣∣∣∣ = 0.

Therefore

(σ + µ + δ)[σ2 + (2µ + ϑ + ϕ)σ + µ(µ + ϕ + ϑ)] = 0, (3.2)
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or ∣∣∣∣∣∣ σ − ρaS 0 − ρaεV0 + (µ + β + χ) ρbS 0 + ρbεV0 + (1 − q)η
(1 − ρ)aS 0 + (1 − ρ)aεV0 + χ σ − (1 − ρ)bS 0 − (1 − ρ)bεV0 + (µ + α + η)

∣∣∣∣∣∣ = 0. (3.3)

From Eq (3.2), one obtains
σ1 = −(µ + δ),

or

σ2 + (2µ + ϑ + ϕ)σ + µ(µ + ϕ + ϑ) = 0. (3.4)

Then, by Routh-Hurwitz criteria, Eq (3.4) have two strictly negative root σ2, σ3.
On the other hand, the determinant of Eq (3.3) can be obtained from the equation

σ2 + h1σ + h2 = 0,

where

h1 = −(ρa + (1 − ρ)b)(S 0 + εV0) + (µ + α + η) + (µ + β + χ),
h2 = −[ρ(bχ + a(µ + α + η)) − (1 − ρ)(a(1 − q)η + b(µ + β + χ))](S 0 + εV0)
+ (µ + α + η)(µ + β + χ) − (1 − q)ηχ.

Thus, according to the Routh-Hurwitz criterion, for R0 < 1, the free equilibrium E0 is locally
asymptotically stable if h1 > 0 and h2 > 0. So, we need to prove that h1 > 0 and h2 > 0 when it holds
that R0 < 1.

If R0 < 1, one obtains

[ρ(bχ + a(µ + α + η)) + (1 − ρ)(a(1 − q)η + b(µ + β + χ))]
(µ + α + η)(µ + β + χ) − (1 − q)ηχ

(S 0 + εV0) < 1,

which implies

[ρ(bχ + a(µ + α + η)) + (1 − ρ)(a(1 − q)η + b(µ + β + χ))](S 0 + εV0)
< −(1 − q)ηχ + (µ + α + η)(µ + β + χ).

That is

− [ρ(bχ + a(µ + α + η)) + (1 − ρ)(a(1 − q)η + b(µ + β + χ))](S 0 + εV0)
− ((1 − q)ηχ − (µ + α + η)(µ + β + χ)) > 0.

Thus, one obtains

h2 = −[ρ(bχ + a(µ + α + η)) − (1 − ρ)(a(1 − q)η + b(µ + β + χ))](S 0 + εV0)
+ (µ + α + η)(µ + β + χ) − (1 − q)ηχ > 0.

If R0 < 1, one obtains
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[ρbχ + (1 − ρ)a(1 − q)η](S 0 + εV0) + [ρa(µ + α + η)) + (1 − ρ)b(µ + β + χ)](S 0 + εV0)
< −(1 − q)ηχ + (µ + α + η)(µ + β + χ).

That is

[ρa(µ + α + η)) + (1 − ρ)b(µ + β + χ)](S 0 + εV0) < (µ + α + η)(µ + β + χ).

If Γ = min{µ + α + η, µ + β + χ}, one obtains

(aρ + b(1 − ρ))(S 0 + εV0) <
(µ + α + η)(µ + β + χ)

Γ
.

Thus, one obtains

(aρ + b(1 − ρ))(S 0 + εV0) < (µ + α + η) + (µ + β + χ).

Then

h1 = −(ρa + (1 − ρ)b)(S 0 + εV0) + (µ + α + η) + (µ + β + χ) > 0.

Thus, the disease free equilibrium is locally asymptotically stable if R0 < 1. Otherwise, when R0 > 1
the system (2.4) is unstable. □

Lemma 7. For R0 > 1, a unique endemic equilibrium point E∗ exist and no endemic equilibrium
otherwise.

Proof. For the disease to be endemic, we must have DνC > 0 and DνI > 0, that is:

DνC(t) = ρλS (t) + ρελV(t) + (1 − q)ηI(t) − (µ + β + χ)C(t) > 0,
DνI(t) = (1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t) − (µ + α + η)I(t) > 0.

(3.5)

From the first inequality of (3.5),

(µ + β + χ)C(t) < ρλS (t) + ρελV(t) + (1 − q)ηI(t).

Then

C(t) <
ρξ

(
I(t)+ΥC(t)

N

)
(S (t) + εV(t)) + (1 − q)ηI(t)

(µ + β + χ)
.

Using the fact (S (t)+εV(t))
N ⩽ 1, one obtains

C(t) <
ρξI(t) + (1 − q)ηI(t)
(µ + β + χ) − ρξΥ

. (3.6)

From the second inequality of (3.5),

(µ + α + η)I(t) < (1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t).
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Then

I(t) <
(1 − ρ)ξ

(
I(t)+ΥC(t)

N

)
(S (t) + εV(t)) + χC(t)

(µ + α + η)
.

Using the fact (S (t)+εV(t))
N ⩽ 1, one obtains

I(t) <
(1 − ρ)ξI(t) + (1 − ρ)ξΥC(t) + χC(t)

(µ + α + η)
. (3.7)

Substituting (3.6) into (3.7), one obtains

I(t) <
(1 − ρ)ξI((µ + β + χ) − ρξΥ) + (1 − ρ)ξΥ(ρξI + (1 − q)ηI) + χ(ρξI + (1 − q)ηI)

(µ + α + η)(µ + β + χ − ρξΥ)
.

Then, by rearranging and cancelling of I(t) in both sides, one obtains

1 < ξ
[ ρ(Υ((µ + α + η) + χ)
(µ + α + η)(µ + β + χ) − χη(1 − q)

+
(1 − ρ)(Υ(1 − q)η + (µ + β + χ))

(µ + α + η)(µ + β + χ) − χη(1 − q)

]
⩽ ξ

[ ρ(Υ((µ + α + η) + χ)
(µ + α + η)(µ + β + χ) − χη(1 − q)

+
(1 − ρ)(Υ(1 − q)η + (µ + β + χ))

(µ + α + η)(µ + β + χ) − χη(1 − q)

](πΦ
µ
+
πΘ

µ

)
= R0.

Thus a unique endemic equilibrium exist when R0 > 1. □

Now, we investigate the local stability of the endemic-equilibrium point E∗. We use the center
manifold theory to purpose stability from endemic equilibrium if R0 > 1. The solution of equilibrium
point on the model assumed that occur around a point bifurcation, when R0 = 1. β = β∗ as bifurcation
parameter of the equation of R0 with β = β∗, obtained. This is done by renaming the variables as
follows: Assume that

S = y1,V = y2,C = y3, I = y4,R = y5,

further by introducing the vector notation

y = (y1, y2, y3, y4, y5)T .

Thus, the model can be written in the form of

dy
dt
= F(y),

where
F = ( f1, f2, f3, f4, f5)T ,

as follows:
Dνy1(t) = (1 − p)π + ϕy2(t) + δy5(t) − (µ + λ + ϑ)y1(t),
Dνy2(t) = pπ + ϑy1(t) − (µ + λε + ϕ)y2(t),
Dνy3(t) = ρλy1(t) + ρελy2(t) + (1 − q)ηy4(t) − (µ + β + χ)y3(t),
Dνy4(t) = (1 − ρ)λy1(t) + (1 − ρ)ελV(t) + χy3(t) − (µ + α + η)y4(t),
Dνy5(t) = βy3(t) + qηy4(t) − (µ + δ)y5(t),

(3.8)
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where

N = y1 + y2 + y3 + y4 + y5.

Then, the Jacobian system at the disease free is

J(E0) =


−(µ + ϑ) ϕ −ξΥΦ −ξΦ δ

ϑ −(µ + ϕ) −ξΥεΘ −ξεΘ 0
0 0 ρξΥ

(
Φ + εΘ

)
− (µ + β + χ) ρξ

(
Φ + εΘ

)
+ (1 − q)η 0

0 0 (1 − ρ)ξΥ
(
Φ + εΘ

)
+ χ (1 − ρ)ξ

(
Φ + εΘ

)
− (µ + α + η) 0

0 0 β qη −(µ + δ)


.

Suppose that ξ = ξ∗ is a bifurcation parameter; the system (3.8) is linearized at the disease free
equilibrium point when ξ = ξ∗ with R0 = 1, solving for ξ∗ for R0 = 1 from:

R0 = ξ
[ ρ(Υ((µ + α + η) + χ)
(µ + α + η)(µ + β + χ) − χη(1 − q)

+
(1 − ρ)(Υ(1 − q)η + (µ + β + χ))

(µ + α + η)(µ + β + χ) − χη(1 − q)

](πΦ
µ
+
πΘ

µ

)
= 1.

Thus

ξ∗ =
µ((µ + α + η)(µ + β + χ) − χη(1 − q))

π(ρ(Υ(µ + α + η) + χ) + (1 − ρ)(Υ(1 − q)η + (µ + β + χ)))
(
Φ + εΘ

) .
The system (3.8) with ξ = ξ∗ has a simple zero eigenvalues, hence the centre manifold theory will be
used to analyse the dynamics of the system near ξ = ξ∗. The Jacobean matrix near ξ = ξ∗ has a right
eigenvector associated with the zero eigenvalue w = (w1,w2,w3,w4,w5)T is given by


−(µ + ϑ) ϕ −ξΥΦ −ξΦ δ

ϑ −(µ + ϕ) −ξΥεΘ −ξεΘ 0
0 0 ρξΥ

(
Φ + εΘ

)
− (µ + β + χ) ρξ

(
Φ + εΘ

)
+ (1 − q)η 0

0 0 (1 − ρ)ξΥ
(
Φ + εΘ

)
+ χ (1 − ρ)ξ

(
Φ + εΘ

)
− (µ + α + η) 0

0 0 β qη −(µ + δ)




w1

w2

w3

w4

w5


=


0
0
0
0
0


.

The system of equation become

− (µ + ϑ)w1 + ϕw2 − ξΥΦw3 − ξΦw4 + δw5 = 0,
ϑw1 − (µ + ϕ)w2 − ξΥεΘw3 − ξεΘw4 = 0,

(ρξΥ
(
Φ + εΘ

)
− (µ + β + χ))w3 + (ρξ

(
Φ + εΘ

)
+ (1 − q)η)w4 = 0,

((1 − ρ)ξΥ
(
Φ + εΘ

)
+ χ)w3 + ((1 − ρ)ξ

(
Φ + εΘ

)
− (µ + α + η))w4 = 0,

βw3 + qηw4 − (µ + δ)w5 = 0.

(3.9)

By solving (3.9), one obtains
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w1 =
(µ + ϕ)w2 + ξΥε℘w3 + ξ℘w4

ϑ
,

w2 = w2 > 0,

w3 =
((1 − ρ)ξ

(
Φ + εΘ

)
− (µ + α + η))w4

(µ + β + χ) − ρξΥ
(
Φ + εΘ

) ,

w4 = w4 > 0,

w5 =
βw3 + qηw4

(µ + δ)
.

The left eigenvectors of JE associated with the zero eigenvalue at ξ = ξ∗ is given by

v = (v1, v2, v3, v4, v5)T .

System (3.9) gives


−(µ + ϑ) ϕ 0 0 0

ϑ −(µ + ϕ) 0 0 0
−ξΥΘ −ξΥεΘ ρξΥ

(
Φ + εΘ

)
− (µ + β + χ) (1 − ρ)ξΥ

(
Φ + εΘ

)
+ χ β

−ξΘ −ξεΘ ρξ
(
Φ + εΘ

)
+ (1 − q)η (1 − ρ)ξ

(
Φ + εΘ

)
− (µ + α + η) qη

δ 0 0 0 −(µ + δ)




w1

w2

w3

w4

w5


=


0
0
0
0
0


.

Thus

− (µ + ϑ)v1 + ϕv2 = 0,
ϑv1 − (µ + ϕ)v2 = 0,

−ξΥΘv1 − ξεΥΘv2 + (ρξΥ
(
Φ + εΘ

)
− (µ + β + χ))v3 + ((1 − ρ)ξΥ

(
Φ + εΘ

)
+ χ)v4 + βv5 = 0,

−ξΘv1 − ξεΘv2 + (ρξ
(
Φ + (εΘ)

)
+ (1 − q)η)v3 + ((1 − ρ)ξ

(
Φ + εΘ

)
− (µ + α + η))v4 + qηv5 = 0,

δv1 − (µ + δ)v5 = 0.
(3.10)

By solving (3.10), one obtains

v1 = v2 = 0,

v3 =
((1 − ρ)ξΥ

(
Φ + εΘ

)
+ χ)v4

(µ + β + χ) − ρξΥ
(
Φ + εΘ

) ,
v4 = v4 > 0,
v5 = 0.

To compute ℓ and k, we use a formula explained in (2.3) as follows
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ℓ =

n∑
i, j,k=1

vkwiw j
∂2 f
∂yi∂y j

(S 0,V0, 0, 0, 0),

k =
n∑

i,k=1

vkwi
∂2 f
∂yi∂ξ

,

where
f1 = (1 − p)π + ϕy2(t) + δy5(t) − (µ + λ + ϑ)y1(t),
f2 = pπ + ϑy1(t) − (µ + λε + ϕ)y2(t),
f3 = ρλy1(t) + ρελy2(t) + (1 − q)ηy4(t) − (µ + β + χ)y3(t),
f4 = (1 − ρ)λy1(t) + (1 − ρ)ελV(t) + χy3(t) − (µ + α + η)y4(t),
f5 = βy3(t) + qηy4(t) − (µ + δ)y5(t).

(3.11)

Taking into account system (3.11) and considering only the non-zero components of the left
eigenvectors v3 and v4, then one obtains

ℓ = (2ξw4v4)p0,

k = ξw4v4(Υr0 + 1)(ρ(k0 − 1) + 1)
(
Φ + εΘ

)
,

where

ℓ0 = (ρ(k0 − 1) + 1)(Υr0(w1 + εw2) + w1 + εw2),

k0 =
((1 − ρ)ξΥ

(
Φ + εΘ

)
− (µ + α + η))

(µ + β + χ) − ρξΥ
(
Φ + εΘ

) ,

r0 =
((1 − ρ)ξΥ

(
Φ + εΘ

)
+ χ)

(µ + β + χ) − ρξΥ
(
Φ + εΘ

) .
Since the coefficient k is always positive, it is the sign of the coefficient a and consequently the sign
of the quantity ℓ0 which determines the local dynamics of the disease around disease-free equilibrium.
Therefore, ℓ > 0 depending on whether ℓ0 is greater or less than 0. Thus we have established the
following result.

Lemma 8. If ℓ0 > 0, ℓ > 0 then model system (2.4) has a backward bifurcation at R0 = 1, otherwise,
ℓ < 0 and a unique endemic equilibrium point E∗ = (S ∗,V∗,C∗, I∗,R∗) locally asymptotically stable
for R0 > 1, but close to 1.

According to Manifold Center theorem [31], if ℓ < 0 and k > 0 so locally asymptotically stable.
The system of equations will experience bifurcation transcritical at R0 = 1, if ℓ < 0 and k > 0. So,
because R0 > 1 of the endemic equilibrium E∗ = (S ∗,V∗,C∗, I∗,R∗) locally asymptotically stable.

3.5. Global stability

Theorem 5. The infection-free equilibrium point E0 =
(
πΦ
µ
, πΘ
µ
, 0, 0, 0

)
of the fractional-order

model (2.4) is globally asymptotically stable.
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Proof. Consider the following positive definite Lyapunov function:

L1(S ,V,C, I,R) =
(
S − S 0 − S 0 ln

S
S 0

)
+

(
V − V0 − V0 ln

V
V0

)
.

From Lemma 4, one obtains

DνL1(S ,V,C, I,R) ≤
(S − S 0

S

)
DνS +

(V − V0

V

)
DνV

=
(S − S 0

S

)(
(1 − p)π + ϕV(t) + δR(t) − (µ + λ + ϑ)S (t)

)
+

(V − V0

V

)(
pπ + ϑS (t) − (µ + λε + ϕ)V(t)

)
.

At E0 =
(
πΦ
µ
, πΘ
µ
, 0, 0, 0

)
, one obtains

DνL1(S ,V,C, I,R) ≤
(S − S 0

S

)
DνS +

(V − V0

V

)
DνV

=
(
S − S 0

)( (1 − p)π
S

+
ϕV
S
+
δR
S
− (µ + λ + ϑ)

)
+

(
V − V0

)( pπ
V
+
ϑS
V
− (µ + λε + ϕ)

)
=

(
S − S 0

)( (1 − p)π
S

+
ϕV
S
+
δR
S
−

(1 − p)π
S 0

−
ϕV
S 0
−
δR
S 0

)
+

(
V − V0

)( pπ
V
+
ϑS
V
−

pπ
V0
−
ϑS
V0

)
=

(
S − S 0

)( (1 − p)π
S

−
(1 − p)π

S 0
+
ϕV
S
−
ϕV
S 0
+
δR
S
−
δR
S 0

)
+

(
V − V0

)( pπ
V
−

pπ
V0
+
ϑS
V
−
ϑS
V0

)
=

(
S − S 0

)(
−

(1 − p)π
S S 0

(
S − S 0

)
−
ϕV
S S 0

(
S − S 0

)
−

δR
S S 0

(
S − S 0

))
+

(
V − V0

)(
−

pπ
VV0

(
V − V0

)
−
ϑS
VV0

(
V − V0

))
= −

(1 − p)π
S S 0

(
S − S 0

)2
−
ϕV
S S 0

(
S − S 0

)2
−

δR
S S 0

(
S − S 0

)2
−

pπ
VV0

(
V − V0

)2

−
ϑS
VV0

(
V − V0

)2
.

Thus, DνL1(S ,V,C, I,R) < 0 for all (S ,V,C, I,R) ∈ Ω. Furthermore DνL1(S ,V,C, I,R) = 0 implies
that S = S 0, V = V0, C = C0, I = I0, and R = R0. Therefore, the singleton {E0} is the only invariant
set such that DνL1(S ,V,C, I,R) = 0. Therefore, by fractional La-Salle Invariance Principle, Lemma 5
gives conclusion that E0 is globally asymptotically stable on Ω. □

Theorem 6. The positive endemic equilibrium point E∗ = (S ∗,V∗,C∗, I∗,R∗) of the fractional-order
model (2.4) is globally asymptotically stable.
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Proof. Consider the following positive definite Lyapunov function:

L2(S ,V,C, I,R) =
(
S − S ∗ − S ∗ ln

S
S ∗

)
+

(
V − V∗ − V∗ ln

V
V∗

)
+

(
C −C∗ −C∗ ln

C
C∗

)
+

(
I − I∗ − I∗ ln

I
I∗

)
+

(
R − R∗ − R∗ ln

R
R∗

)
.

From Lemma 4, one obtains

DνL2(S ,V,C, I,R) ≤
(S − S ∗

S

)
DνS +

(V − V∗

V

)
DνV +

(C −C∗

C

)
DνC +

( I − I∗

I

)
DνI +

(R − R∗

R

)
DνR

=
(S − S ∗

S

)(
(1 − p)π + ϕV + δR − (µ + λ + ϑ)S

)
+

(V − V∗

V

)(
pπ + ϑS − (µ + λε + ϕ)V

)
+

(C −C∗

C

)(
ρλS + ρελV + (1 − q)ηI − (µ + β + χ)C

)
+

( I − I∗

I

)(
(1 − ρ)λS + (1 − ρ)ελV + χC − (µ + α + η)I

)
+

(R − R∗

R

)(
βC + qηI − (µ + δ)R

)
=

(
S − S ∗

)( (1 − p)π
S

+
ϕV
S
+
δR
S
− (µ + λ + ϑ)

)
+

(
V − V∗

)( pπ
V
+
ϑS
V
− (µ + λε + ϕ)

)
+

(
C −C∗

)(ρλS
C
+
ρελV

C
+

(1 − q)ηI
C

− (µ + β + χ)
)

+
(
I − I∗

)( (1 − ρ)λS
I

+
(1 − ρ)ελV

I
+
χC
I
− (µ + α + η)

)
+

(
R − R∗

)(βC(t)
R
+

qηI
R
− (µ + δ)

)
=

(
S − S ∗

)( (1 − p)π
S

+
ϕV
S
+
δR
S
−

(1 − p)π
S ∗

−
ϕV
S ∗
−
δR
S ∗

)
+

(
V − V∗

)( pπ
V
+
ϑS
V
−

pπ
V∗
−
ϑS
V∗

)
+

(
C −C∗

)(ρλS
C
+
ρελV

C
+

(1 − q)ηI
C

−
ρλS
C∗
−
ρελV

C∗
−

(1 − q)ηI
C∗

)
+

(
I − I∗

)( (1 − ρ)λS
I

+
(1 − ρ)ελV

I
+
χC
I
−

(1 − ρ)λS
I∗

−
(1 − ρ)ελV

I∗
−
χC
I∗

)
+

(
R − R∗

)(βC
R
+

qηI
R
−
βC
R∗
−

qηI
R∗

)
=

(
S − S ∗

)(
−

(
S − S ∗

) (1 − p)π
S S ∗

−
(
S − S ∗

) ϕV
S S ∗
−

(
S − S ∗

) δR
S S ∗

)
+

(
V − V∗

)(
−

(
V − V∗

) pπ
VV∗

−
(
V − V∗

) ϑS
VV∗

)
+

(
C −C∗

)(
−

(
C −C∗

)ρλS
CC∗

−
(
C −C∗

)ρελV
CC∗

−
(
C −C∗

) (1 − q)ηI
CC∗

)
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+
(
I − I∗

)(
−

(
I − I∗

) (1 − ρ)λS
II∗

−
(
I − I∗

) (1 − ρ)ελV
II∗

−
(
I − I∗

)χC
II∗

)
+

(
R − R∗

)(
−

(
R − R∗

)
βC

RR∗
−

(
R − R∗

) qηI
RR∗

)
= −

(
S − S ∗

)2 (1 − p)π
S S ∗

−
(
S − S ∗

)2 ϕV
S S ∗
−

(
S − S ∗

)2 δR
S S ∗

−
(
V − V∗

)2 pπ
VV∗

−
(
V − V∗

)2 ϑS
VV∗

−
(
C −C∗

)2 ρλS
CC∗

−
(
C −C∗

)2ρελV
CC∗

−
(
C −C∗

)2 (1 − q)ηI
CC∗

−
(
I − I∗

)2 (1 − ρ)λS
II∗

−
(
I − I∗

)2 (1 − ρ)ελV
II∗

−
(
I − I∗

)2χC
II∗

−
(
R − R∗

)2 βC
RR∗
−

(
R − R∗

)2 qηI
RR∗

.

Thus, DνL2(S ,V,C, I,R) < 0 for all (S ,V,C, I,R) ∈ Ω. Furthermore DνL2(S ,V,C, I,R) = 0 implies
that S = S ∗, V = V∗, C = C∗, I = I∗, and R = R∗. Therefore, the singleton {E∗} is the only invariant
set such that DνL2(S ,V,C, I,R) = 0. Therefore, by fractional La-Salle Invariance Principle, Lemma 5
gives conclusion that E∗ is globally asymptotically stable on Ω. □

4. Extension the model to an optimal control for ν = 1

In this section, as in [21], we use optimal control strategies on the model (2.4) for ν = 1. This
helped us in determining the most effective intervention options for eradicating the disease in the period
allowed. The best control model is an extension pneumonia model that includes the three controls listed
below:

i. u1 a prevention effort, that protect susceptible from contacting the disease.
ii. u2 a treatment effort, to minimize infection by treating infectious.
iii. u3 a screening effort,to help carriers to screen themselves.
We get the following optimal control model of pneumonia after including u1, u2 and u3 in pneumonia

model (2.4):

dS (t)
dt
= (1 − p)π + ϕV(t) + δR(t) −

(1 − u1)ξ(ΥC(t) + I(t))S (t)
N

− (µ + ϑ)S (t),

dV(t)
dt
= pπ + ϑS (t) −

(1 − u1)ξ(ΥC(t) + I(t))V(t)
N

− (µ + ϕ)V(t),

dC(t)
dt
=
ρ(1 − u1)ξ(ΥC(t) + I(t))(ξV(t) + S (t))

N
+ (1 − q)(1 − u2)ηI(t) − (u3 + χ)C(t) − (µ + β)C(t),

dI(t)
dt
=

(1 − ρ)(1 − u1)ξ(ΥC(t) + I(t))(ξV(t) + S (t))
N

+ (u3 + χ)C(t) − (u2 + η)I(t) − (µ + α)I(t),

dR(t)
dt
= βC(t) + (u2 + qη)I(t) − (µ + δ)R(t).

(4.1)
To study the optimal levels of the controls, the control set as

U = {(u1(t), u2(t), u3(t)), each ui is measurable with 0 ⩽ ui < 1, for 0 ⩽ t ⩽ t f }.
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is Lebesgue measurable.
Our aim is to obtain a control U and S , V , C, I and R that minimize the proposed objective function

J = min
u1,u2,u3

∫ t f

0

(
b1C + b2I +

1
2

3∑
i=1

wiu2
i

)
dt,

where b1, b2 and wi are positive (see [59]). The expression 1
2wiu2

i represents cost which is associated
with the controls ui. We seek to find an optimal triple controls (u∗1, u

∗
2, u
∗
3) such that:

J(u∗1, u
∗
2, u
∗
3) = min{J(u1, u2, u3) : ui ∈ U}.

4.1. Existence of an optimal control

The boundedness of solutions of system (4.1) for a finite time interval is used to prove the existence
of optimal control (see [60]). To prove that, we check that the following properties are satisfied.

(1) The set of controls and corresponding state variables is non-empty.
(2) The control set U is convex and closed.
(3) The right hand side of the state system is bounded by a linear function in the state and control.
(4) The integrand of the objective functional is concave on U.
(5) The function is bounded below by a2 − a1(|u2

1| + |u
2
2| + |u

2
3|)

α
2 where a1, a2 > 0 and α > 1.

An existence result in ( [61], Theorem 9.2.1, p. 182) for the state system (4.1) with bounded
coefficients is used to give condition (1). The control set U is convex and closed by definition. The right
hand side of the state system (4.1) satisfies condition (3) as the state solutions are a priori bounded. The
integrand in the objective functional, b1S + b2C + b3I + 1

2

∑3
i=1 wiu2

i is clearly concave on U. Moreover,
there are a1, a2 > 0 and α > 1 satisfying

b1C + b2I +
1
2

3∑
i=1

wiu2
i ≤ a2 − a1(|u2

1| + |u
2
2| + |u

2
3|)

α
2

because, the state variables are bounded. Finally under assumption (5), there exists an optimal control
(u1, u2, u3) that minimizes the objective functional J(u1, u2, u3).

4.2. The Hamiltonian and optimal system

By using the principle of Pontryagin et al. [44], we got the necessary conditions which is satisfied
by optimal pair. By this principle, a Hamiltonian H is given by

H(S ,V,m,C, I,R, t) = L(C, I, u1, u2, u3, t) + λ1
dS (t)

dt
+ λ2

dV(t)
dt
+ λ3

dC(t)
dt
+ λ4

dI(t)
dt
+ λ5

dR(t)
dt

,

where

L(C, I, u1, u2, u3, t) = b2C + b2I +
1
2

3∑
i=1

wiu2
i ,

and λi, i = 1, 2, 3, 4, 5 are the adjoint variable functions that be determined suitably by applying
Pontryagin’s maximal principle [44], and Fleming and Rishel [60, 62] for existence of the optimal
control pairs.
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Theorem 7 ( [21]). For an optimal control set u1, u2, u3 that minimizes J over U, there is an adjoint
variables, λi, i = 1, 2, 3, 4, 5, such that

dλ1

dt
= −

( (1 − u1)ξ(ΥC + I)
N

− (µ + ϑ)
)
λ1 − ϑλ2 −

ρ(1 − u1)ξ(ΥC + I)
N

λ3

−
( (1 − ρ)(1 − u1)ξ(ΥC + I)S

N

)
λ4,

dλ2

dt
= −ϕλ1 −

( (1 − u1)ξ(ΥC + I)
N

− (µ + ϕ)
)
λ2 −

ρ(1 − u1)ξ(ΥC(t) + I(t))S (t)
N

λ3

−
(1 − ρ)(1 − u1)ξ(ΥC + I)ε

N
λ4,

dλ3

dt
=

(1 − u1)ξΥS
N

λ1 +
(1 − u1)ξΥV

N
λ2 −

(ρ(1 − u1)ξΥ(ϵV + s)
N

− u3 − χ − µ − β
)
λ3

−
( (1 − ρ)(1 − u1)ξΥ(ϵV + s)

N
+ u3 + χ

)
λ4 − βλ5 − b1,

dλ4

dt
=

(1 − u1)ξS
N

λ1 +
(1 − u1)ξV

N
λ2 −

(ρ(1 − u1)ξ(ϵV + s)
N

+ (1 − q)(1 − u2)η
)
λ3

−
ρ(1 − u1)ξ(ϵV + s)

N
− η − u2 − µ − αηλ4 − (ηq + u2)λ5 − b2,

dλ5

dt
= −δλ1 −

(
− µ − δ

)
λ5.

With transversality conditions, λi(t f ) = 0, i = 1, ..., 5. Furthermore, one obtains the control set
(u∗1, u

∗
2, u
∗
3) characterized by

u∗1 = max{0,min(1,Φ1)},
u∗2 = max{0,min(1,Φ2)},
u∗3 = max{0,min(1,Φ3)},

where

Φ1 =
ξ(σC + I)(ρVελ3 − ρVελ4 + ρSλ3 − ρSλ4 + εVλ4 − Vλ1 + Sλ4 − Vλ2)

Nw1
,

Φ2 =
I(ηqλ3 − ηλ3 − λ4 + λS )

w2
,

Φ3 =
C(λ3 − λ4)

w3
.

4.3. Uniqueness of the optimality system

As in [21], we can obtain the uniqueness of solutions of the optimal system (4.1) for small time
interval.

Lemma 9 ( [21]). The function u∗(s) = min(max(s, a), b) is Lipschitz continuous in s, where a < b are
fixed positive constants.

Theorem 8 ( [21]). For t ∈ [0, t f ], the bounded solutions to the optimal system (4.1) are unique.
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Using different combinations of the controls, like one control only at a time, two controls at a time
and also all controls at a time, that we analyze and compare numerical results from simulations. We
used b1 = 300, b2 = 150, w1 = 2, w2 = 2 and w3 = 6 for simulation of Pneumonia model with
optimal control and also for cost-effectiveness analysis. Additionally we used S (0) = 900, V(0) = 200,
C(0) = 100, I(0) = 100, R(0) = 10 as initial values.

4.4. Control with prevention only

Using Prevention effort (u1) of susceptible without treatment (u2 = 0) and with no screening (u3 =

0). Only Preventive intervention is used to replicate the model.

Figure 2 depicts the reduction in infectious and carrier herds as a result of preventative efforts. This
can be attributed to the fact that prevention reduces the level of animals joining infective and carrier
compartments. This means that better prevention reduces the burden of pneumonia infection.

(a) Prevention impact on infectious
population

(b) Prevention impact on carrier
population

Figure 2. Simulations of optimal control with prevention control only.

4.5. Control with treatment only

Using treatment effort (u2) without prevention (u1 = 0) and with no screening (u3 = 0).

Figure 3 shows a decrease in infectious herds for the first four months, after which it begins to
increase. Those who had the disease earlier are being treated, which is why the number of infective
animals is decreasing over the first four months. Then, due to a lack of protection, newly infected
animals began to join both the infective and carrier classes. As a result, the number of infective begins
to rise after four months of decrease, and the number of carriers begins to rise after five months.
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(a) Treatment impact on infectious
population

(b) Treatment impact carrier population

Figure 3. Simulations optimal control with treatment control only.

4.6. Control with screening only

Using screening (u3) but without prevention (u1 = 0) and no treatment of infectious u2 = 0. Carriers
can move into the infective classes and begin treatment with the use of screening.

Figure 4(b) shows a decrease in the carrier herds for the first five months, then an increase due to
a lack of protection. Susceptible become infected and join both the carrier and infective classes. As a
result, screening alone may not be sufficient to reduce the burden of pneumonia infection.

(a) Screening impact on infectious
population

(b) Screening only impact on carrier
population

Figure 4. Simulations of optimal control with screening control only.

4.7. Control with prevention and treatment

Using prevention (u1) and treatment (u2) and without screening (u3 = 0). As an intervention
technique, we utilized prevention and therapy.

Figure 5 shows that the number of infective and also carriers decreases over time. As a result, this
strategy is effective in eliminating the disease from the herds within a set time frame.
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(a) Prevention and treatment impact on
infectious

(b) Prevention and treatment impact on
carrier

Figure 5. Simulations optimal control with prevention and treatment controls.

4.8. Control with prevention and screening

Using prevention u1 and screening (u3) and without treatment (u2 = 0). We used prevention and
screening in this technique.

In Figure 6, the curve for optimal control is above the curve for no control in the first. Because
there is no therapy, but animals from carrier groups are joining the infective compartment through
screening, and there are a number of infected persons in the compartment prior to prevention who
are not receiving treatment, the curve is expected to rise for the time being. After a period of time,
the number of infectious animals decreases because new infections are no longer occurring as a result
of prevention methods, and because there is no treatment, the number of infective animals decreases
owing to disease-causing mortality and natural death rates.

(a) Prevention and screening impact on
infectious

(b) Prevention and screening impact on
carrier

Figure 6. Simulations of optimal control with prevention and screening controls.
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4.9. Control with treatment and screening

Using treatment (u2) and screening u3 and without prevention (u1). As an intervention, we used
treatment and screening controls.

Figure 7 shows how optimal control of the combination of treatment and screening helps to reduce
the infectious as well as the carrier herds, resulting in the disease being eliminated in the community.

(a) Treatment and screening impact on
infectious

(b) Treatment and screening impact on
carriers

Figure 7. Simulations of optimal control with treatment and screening controls.

4.10. Control with prevention, treatment and screening

Using all the three controls, prevention u1 treatment of infective (u2) and screening of carriers u3.
We implement all three controls interventions, which helps in the reduction of the objective function.

Figure 8 shows that as a result of the intervention measures, the number of infectious and carrier
herdss decreases at the prescribed period. As a result, implementing this technique helps in the
elimination of pneumonia within a set time frame.

(a) Prevention, treatment and screening
impact on infectious

(b) Prevention ,treatment and screening
impact on carriers

Figure 8. Simulations of optimal control with prevention , treatment and screening controls.
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5. Numerical results

5.1. Application of generalized Euler method

In sense of Odibat and Momani [63], which is a generalization of Euler’s classical method, we
consider the following problem

Dν x = f (t, x), t ∈ [0,T ], 0 < ν ≤ 1. (5.1)

The interval [0, b] over which we want to find the problem’s solution (5.1) can be subdivided into k
subintervals [t j, t j+1] of equivalent width h = b/k, by using the nodes t j = jh for j = 0, 1, ..., k. Expand
x about t = t0 = 0 and using the generalized Taylor’s formula [64]. Suppose that x,Dνx, andD2νx are
continuous on [0, b]. Thus, there is a value a1 for each value t, implying that

x(t) = x(t0) + (Dν x(t))(t0)
tν

Γ(ν + 1)
+ (D2ν x(t))(a1)

t2ν

Γ(2ν + 1)
. (5.2)

When (Dν y(t))(t0) = f (t0, x(t0)) and h = t1 are substituted into Eq (5.2), the result is an expression for
y(t1):

x(t1) = x(t0) + f (t0, x(t0))
hν

Γ(ν + 1)
+ (D2ν y(t))(a1)

h2ν

Γ(2ν + 1)
.

If the step size h is small enough, the second-order term (involving h2ν) can be neglected and the result
obtained.

x(t1) = x(t0) +
hν

Γ(ν + 1)
f (t0, x(t0)).

Repeat the process until a series of points approximates the solution x(t). When t j+1 = t j + h, the
general formula for GEM is

x(t j+1) = x(t j) +
hν

Γ(ν + 1)
f (t j, x(t j)), (5.3)

for j = 0, 1, ..., k − 1. It is clear that if ν = 1, then the GEM (5.3) reduces to the classical Euler’s
method. Thus

S (t j+1) = S (t j) +
hν

Γ(ν + 1)
[
(1 − p)π + ϕV(t) + δR(t) − (µ + λ + ϑ)S (t)

]
,

V(t j+1) = V(t j) +
hν

Γ(ν + 1)
[
pπ + ϑS (t) − (µ + λε + ϕ)V(t)

]
,

C(t j+1) = C(t j) +
hν

Γ(ν + 1)
[
ρλS (t) + ρελV(t) + (1 − q)ηI(t) − (µ + β + χ)C(t)

]
,

I(t j+1) = I(t j) +
hν

Γ(ν + 1)
[
(1 − ρ)λS (t) + (1 − ρ)ελV(t) + χC(t) − (µ + α + η)I(t)

]
,

R(t j+1) = R(t j) +
hν

Γ(ν + 1)
[
βC(t) + qηI(t) − (µ + δ)R(t)

]
.
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In this way, one obtains

S n+1 = S n + m
[
(1 − p)π + ϕVn + δRn − (µ + λ + ϑ)S n

]
,

Vn+1 = Vn + m
[
pπ + ϑS n − (µ + λε + ϕ)Vn

]
,

Cn+1 = Cn + m
[
ρλS n + ρελVn + (1 − q)ηIn − (µ + β + χ)Cn

]
,

In+1 = In + m
[
(1 − ρ)λS n + (1 − ρ)ελVn + χCn − (µ + α + η)In

]
,

Rn+1 = Rn + m
[
βCn + qηIn − (µ + δ)Rn

]
,

(5.4)

where 0 < m = hν
Γ(ν+1) < 1 is the step size and subject to initial conditions, S (0) = S 0, V(0) = V0,

C(0) = C0, I(0) = I0, R(0) = R0. We have S n+1 = S n = S , Vn+1 = Vn = V , Cn+1 = Cn = C,
In+1 = In = I, and Rn+1 = Rn = R at a fixed point.

5.2. Numerical simulations

Using a set of parameter values that existed in Table 1, the numerical SVCIR model proposed
for different fractional-order values ν is simulated by using the generalized Euler method to support
analytical results and to evaluate the control strategy effectiveness. We constructed an algorithm to
simulate the results by using the Mathematica program. The numerical results have been presented for
the initial 10 months ≈ 300 days.

Figures 9 and 10 show the global stability of the model’s infection-free equilibrium (2.4) using
potentially different conditions when R0 = 0.0083 < 1. The solutions of (2.4) converge to the unique
disease-free equilibrium E0 = (0.1192, 0.2961, 0, 0, 0), as predicted. E0 is asymptotically stable
globally. We have shown the dynamical behavior of each state variable from the proposed pneumonia
disease model in Figures 9 and 10 for varying values of the fractional-order parameter ν.
Figure 10(a–e) shows the phase plot (S − V − C − I − R) for different values of
ν = 0.7, 0.75, 0.85, 0.95, 1, respectively. Although the number of infected animals has decreased
significantly for smaller fractional orders, the number of susceptible animals has increased, as shown
in Figure 9(a),(d).

Figure 9(a) shows decreasing behavior of the susceptible of certain groups of animals for decreasing
values of ν with integer-order derivatives operator predicting more susceptibility.

Figure 9(b) depicts the significance of the fractional-order parameter ν for the vaccinated
individuals of the model. This plot shows a substantial decrease in the number of vaccinated
individuals for decreasing values of ν under integer-order predicting 50 more cases in comparison
with Caputo operator assuming ν = 0.70.

As shown in Figure 9(c), the Caputo operator for ν = 0.7 predicts 350 carrier cases, whereas integer-
order suggests 150 cases.

Figure 9(d), in the first 70 days, shows decreasing behavior of the infectious of certain groups
of animals for increasing values of ν. While, in the interval from 70–300 days, it shows decreasing
behavior of the infectious of certain groups of animals for decreasing values of ν. Thus, the Caputo
operator gives better agreement with the real situation in this regard.

Further 9(e), the integer-order derivatives operator suggests that 20 recovered cases. While we
observed that the Caputo operator with ν = 0.7 generates 60 additional recovered cases. Thus, the
Caputo operator gives better agreement with the real situation in this regard. Thereby recommending
the use of the integer-order derivative operator over the Caputo.
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(c) Time series plot of the carrier (C).
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(d) Time series plot of the infected (I).
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Figure 9. Time series plot of the susceptible (S ), vaccinated (V), carrier (C), infected (I), and
recovered (R), respectively for R0 = 0.0083 < 1 with various fractional-order ν, parameter
values are given in Table 1.
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Figure 10. Epidemiological classes as a function of time for varius ν.
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Table 1. The values of parameters and initial populations in this study are obtained from the
Ministry of Environment, Water and Agriculture of Al Baha region of Saudi Arabia [11].

Parameter S (0) V(0) C(0) I(0) R(0) k ϵ τ ϕ ψ δ

Value 900 500 100 100 10 0.5 0.002 0.98 0.0025 0.2 0.1
Parameter χ p θ µ α ρ β η q Υ

Value 0.001 0.2 0.008 0.01 0.0057 0.0115 0.02 0.05 0.2 1.2

6. Discussion of results

A fractional-order mathematical model was intended for describing the pneumonia disease in
sheep and goats in the Al-Baha region of the Kingdom of Saudi Arabia. We have divided the total
herds into five compartments, namely susceptible, vaccinated, carrier, infective, recovered herds, and
investigated the dynamical behavior of this model. As it was explained in the introduction, over the
years, pneumonia in small herds has caused enormous production losses with mortality between 71
and 90 among goats, but with less mortality in sheep. In the analysis of the dynamic of the virus,
serious attention is needed. As a result, we provided insights into the complex behavior of the
Pneumonia infection model in a fractional sense using the Caputo operator. In light of this, we
employ the initial conditions as S (0) = 900,V(0) = 200,C(0) = 100, I(0) = 100 and R(0) = 10, and
the values of the parameters of the model as in Table 1.

One of the great advantages of the Caputo fractional derivative is that it minimizes the number
of susceptible and infected while maximizing the number of recovered population from Pneumonia
infection. Also, we note that when the S (t) decreases, C(t), as well as I(t), get increases. However, at
some point, both the I(t) start to decrease. For the fractional variant the curves continue to decrease.
And this gets R(t) increased as seen in Figures 9(e). This is one of the advantages of fractional order
over integer order.

As is well known, epidemiological models which incorporate the control strategies can be useful to
both controls the spread of disease and minimize the intervention costs. For our model, it is natural to
consider the vaccination rate coefficient as a control to reduce the disease burden. Thus, it is
important and interesting to prove the existence of optimal control, characterize the optimal control,
prove the uniqueness of optimal control, compute the optimal control numerically and investigate how
the optimal control depends on various parameters in the models. Furthermore, one of the most
important and effective parameters called the force of infection λ which is the rate at which
susceptible individuals acquire an infectious disease has been varied for increasing and decreasing
values in order to see further the dynamical characteristics of the model. The results depicted in
Figures 2–8, with the decreasing increasing values of λ, can clearly be observed how effective is the
force of infection in the behavior of the model.

7. Conclusions

The proposed fractional-order model of pneumonia infection in sheep and goats has been applied
in the Al-Baha region of the Kingdom of Saudi Arabia. We have obtained real data related to the
pneumonia disease in sheep and goats from the Ministry of Environment, Agriculture, and Water in
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the Al-Baha region of the Kingdom of Saudi Arabia. And this ministry is mainly responsible for
collecting this data annually and there is no authentic source that has the ability to provide such data
on daily basis. It should be noted that the proposed fractional-order model understands the disease’s
actions more correctly than the integer-order version. The reason to introduce such the fractional order
in the model and the dynamical analysis of the proposed model has illustrated in Section 5.2.

By using the Routh-Hurwitz criteria and constructing Lyapunov functions, the local and the global
stability of free equilibrium and endemic equilibrium points are obtained. Our main aim is to minimize
the infection and death rate due to pneumonia disease. For our proposed model, we founded that if
R0 < 1, the disease-free equilibrium is locally asymptotically stable. Most importantly, the goal of this
model is to estimate in the future the number of total infected, active cases, deaths as well as recoveries
from pneumonia disease. This helps to decide the future decision so that we control or minimize the
above cases.

By means of an effective numerical scheme, various numerical simulations were carried out in order
to shed more light on the model’s characteristics. Moreover, we examined the optimality system using
the following strategies:

• Using just one control, preventative, treatment, or screening method.

• Using two types of control: Preventive and treatment.

• Using two types of controls: Prevention and screening.

• Using two types of controls: Treatment and screening.

• By implementing all preventative, therapeutic, and screening measures.

Furthermore, we studied cost-effectiveness to determine the least and most expensive solutions.
Based on the findings of this study’s pairwise analysis, we conclude that combining prevention and
treatment is the most cost-effective strategy in terms of both cost and health benefits.The proposed
fractional order model of pneumonia infection in sheep and goats has been applied in Al-Baha region
of the Kingdom of Saudi Arabia. We have obtained real data whic related to the pneumonia disease
in sheep and goats from Ministry of Environment, Agriculture and Water in Al-Baha region of the
Kingdom of Saudi Arabia. And this ministry is mainly responsible for collecting this data annually
and there is no authentic source has the ability to provide such data on daily basis. It should be noted
that the proposed fractional order model understands the disease’s actions more correctly than the
integer-order version.

8. Future research

The work presented in this paper can be extended in a lot of respects including the following:

• We note that the models in this paper are not exhaustive.

• Incorporating drug resistance compartment could be studied for Pneumonia diseases.

• An extension of the models in this paper to take care of the period between contacting disease-
causing organisms and the development of clinical symptoms will be interesting. In this case, delay
differential equation models will be developed.

• Analyzing the models based upon immune level dynamics of the diseases.
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