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1. Introduction

The basic objective of the survey practitioners in sample surveys is to obtain an efficient estimate
of an unknown population parameter. Therefore, in sequence of improving the efficiency of estimators
of parameters, the survey practitioners usually consider the additional information on an auxiliary
variable X that is correlated with the study variable Y . [1] suggested the traditional ratio estimator of
population mean under simple random sampling (S RS ) provided the variable Y is positively
correlated with the variable X. [2] investigated the traditional product estimator of population mean
provided the variable Y is negatively correlated with the variable X. [3] mooted the exponential ratio
and product estimators of population mean based on S RS . [4] introduced an improved mean
estimation procedure under S RS . [5] proposed Kernel-based estimation of P(X > Y) in ranked set
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sampling (RS S ) whereas [6] developed an interval estimation of P(X < Y) in RS S . [7] introduced
entropy estimation from ranked set samples with application to test of fit. [8] suggested reliability
estimation in multistage ranked set sampling (MRS S ) whereas [9] investigated the estimation
procedure of a symmetric distribution function in MRS S . Recently, [10–12] suggested various
improved classes of estimators under RS S .

In real life scenarios, situations may also arise when the survey practitioners may be interested in
evaluating the mean value of the variable being quantified for the non-sampled units with the help
of available sample data. This approach is popularly established as predictive method of estimation
which is based on superpopulation models and thus it is also established as model-based approach.
This approach presumes that the parent population is a realization of random variables concerning
to a superpopulation model. Under this superpopulation, the prior information about the population
parameters namely variance, standard deviation, mean, coefficient of variation, etc is utilized to predict
the non-sampled values of the study variable.

[13] developed some predictive estimators of population mean based on conventional mean, ratio
and regression estimators as predictors for the mean of unobserved units in the population. Later
on, [14] constructed predictive estimator of population mean using classical product estimator as a
predictor for the mean of an unobserved units in the population and compared it with the conventional
product estimator. Further, [15] introduced predictive estimators based on [3] exponential ratio and
product estimators as predictors for the mean of an unobserved units of the population. Readers may
also refer to few recent related studies like, [16–18] for more detailed study of predictive estimation
approach.

The objective of the present manuscript is to proffer few novel logarithmic type predictive estimators
under S RS for the mean of unobserved units of the population. The paper is organized in few sections.
The Section 2 considers a thorough review of the existing predictive estimators and their properties. In
Section 3, the proffered predictive estimators are given with their properties. The efficiency conditions
are presented in Section 4 followed by a broad computational study given in Section 5. Lastly, the
manuscript is ended in Section 6 with the conclusion.

2. Conventional predictive estimators

Consider a finite population κ = (κ1, κ2, ..., κN) consist of N identifiable units labeled as 1,2,...,N. Let
(xi, yi) be the observations on ith population unit of the variables (X,Y). Let x̄, ȳ and X̄, Ȳ respectively
be the sample means and population means of variables X and Y . It is presumed that the population
mean X̄ of variable X is known and the population mean Ȳ of variable Y is computed by measuring
a random sample of size n from the population κ utilizing simple random sampling with replacement
(S RS WR). Let S be the aggregate of all possible samples from population κ such that for any given
s ∈ S , let ϑ(s) be the number of specified units in s and s̄ be the set of all those units of κ that are not
in s.

The usual mean estimator of population mean Ȳ consist of sampled units is given by

ȳs =
1
ϑ(s)

∑
i∈s

yi. (2.1)
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The usual mean estimator of population mean Ȳ consist of non-sampled units is given by

Ȳs̄ =
1

(N − ϑ(s))

∑
i∈s̄

yi. (2.2)

[13] mooted a model based predictive approach in which a model is defined to predict the non-sampled
values. Thus, under S RS for any given s ∈ S , we have the following model:

Ȳ =
ϑ(s)
N

ȳs +
N − ϑ(s)

N
Ȳs̄. (2.3)

Under S RS with size ϑ(s) = n, the predictor for overall population mean is stated as

Ȳ =
n
N

ȳs +
(N − n)

N
Ȳs̄. (2.4)

Thus, the estimator for estimating the population mean Ȳ is stated as

t =
n
N

ȳs +
(N − n)

N
T, (2.5)

where T is the predictor of the mean Ȳs̄ of unobserved values which is given as

T1 = ȳs, Usual mean estimator (2.6)

T2 = ȳs

(
X̄s̄

x̄s

)
, Classical ratio estimator (2.7)

T3 = ȳs + b(X̄s̄ − x̄s), Classical regression estimator (2.8)

T4 = ȳs

(
x̄s

X̄s̄

)
, Classical product estimator (2.9)

T5 = ȳs exp
(

X̄s̄ − x̄s

X̄s̄ + x̄s

)
, [3] exponential ratio estimator (2.10)

T6 = ȳs exp
(

x̄s − X̄s̄

x̄s + X̄s̄

)
, [3] exponential product estimator (2.11)

T7 = ȳs

{
1 + log

(
x̄s

X̄s̄

)}β1

, [19] estimator (2.12)

T8 = ȳs

{
1 + β2 log

(
x̄s

X̄s̄

)}
, [19] estimator (2.13)

where x̄s = n−1 ∑
i∈s xi and X̄s̄ = (N − n)−1 ∑

i∈s̄ xi = (NX̄ − nx̄s)/(N − n). Also, b is the regression
coefficient of Y on X, β1 and β2 are duly opted scalars.

Now, corresponding to every predictors Ti, i = 1, 2, ..., 8, we obtain the predictive estimators ti, i =

1, 2, ..., 8 using (2.5) as

t1 = ȳs, (2.14)

t2 = ȳs

(
X̄s̄

x̄s

)
, (2.15)
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t3 = ȳs + b(X̄s̄ − x̄s), (2.16)

t4 = ȳs

{
nX̄ + (N − 2n)x̄s

NX̄ − nx̄s

}
, (2.17)

t5 = f ȳs + (1 − f )ȳs exp
{

N(X̄ − x̄s)
N(X̄ + x̄s) − 2nx̄s

}
, (2.18)

t6 = f ȳs + (1 − f )ȳs exp
{

N(x̄s − X̄)
N(x̄s + X̄) − 2nx̄s

}
, (2.19)

t7 = f ȳs + (1 − f )ȳs

{
1 + log

(
x̄s

X̄s̄

)}β1

, (2.20)

t8 = f ȳs + (1 − f )ȳs

{
1 + β2 log

(
x̄s

X̄s̄

)}
, (2.21)

where f = n/N.
[13] demonstrated that while using the usual mean estimator, ratio estimator and regression

estimator as predictor Ti, i = 1, 2, 3 respectively, the predictive estimator ti, i = 1, 2, 3 becomes the
corresponding usual mean estimator T1, ratio estimator T2 and regression estimator T3 respectively.
Further, [14] demonstrated that when product estimator T4 is used as predictor, the predictive
estimator t4 is rather different from the usual product estimator T4. Later on, [15] demonstrated that
when [3] exponential ratio and product estimators are used as predictor, the corresponding predictive
estimators are rather different from the natural estimators Ti, i = 5, 6 respectively. It is also observed
that when the log type estimators envisaged by [15] are used as predictor, the corresponding
predictive estimators are found to be rather different from the customary estimators Ti, i = 7, 8.

To enhance the efficiency of the conventional estimators, [20] investigated a technique by
multiplying a regulating constant φ (say) whose optimum value depend on the coefficient of variation
which is a fairly stable quantity. Using [20] procedure, [16] defined the following improved
estimators corresponding to the predictive estimators ti, i = 1, 2, 4 as

t9 = φ1t1 = φ1ȳs, (2.22)

t10 = φ2t2 = φ2ȳs

(
X̄s̄

x̄s

)
, (2.23)

t11 = φ3t4 = φ3ȳs

{
nX̄ + (N − 2n)x̄s

NX̄ − nx̄s

}
, (2.24)

where φi, i = 1, 2, 3 are duly opted scalars to be determined.
Further, [16] developed the [20] based predictive estimators corresponding to the predictive

estimators ti, i = 5, 6 as

t12 = φ4t5 = φ4

[
f ȳs + (1 − f )ȳs exp

{
N(X̄ − x̄s)

N(X̄ + x̄s) − 2nx̄s

}]
, (2.25)

t13 = φ5t6 = φ5

[
f ȳs + (1 − f )ȳs exp

{
N(x̄s − X̄)

N(x̄s + X̄) − 2nx̄s

}]
, (2.26)

where φ4 and φ5 are duly opted scalars to be determined.
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[17] suggested regression type predictive estimator corresponding to the predictive estimator t3 as

t14 = φ6 f ȳs + (1 − f ){φ6ȳs + b(X̄s̄ − x̄s)}, (2.27)

where φ6 is a duly opted scalar to be determined.
The readers may refer to appendix A for the properties like, bias and mean square error (MS E) of

the above predictive estimators.

3. Proposed predictive estimators

The motivation of this study is to examine an efficient alternative to survey practitioners under S RS .
These predictive estimators provide a better alternative to the existing predictive estimators discussed
in the previous section. In our proposal, motivated by [21], we suggest few novel logarithmic predictive
estimators corresponding to the predictive estimators ti, i = 1, 2 for the population mean Ȳ as

tsb1 = φ7 f ȳs + (1 − f )φ7ȳs

{
1 + log

(
x̄

X̄s

)}β1

, (3.1)

tsb2 = φ8 f ȳs + (1 − f )φ8ȳs

{
1 + β2 log

(
x̄

X̄s

)}
, (3.2)

where φ7, φ8 and βi, i = 1, 2 are duly opted scalars.

Theorem 3.1. The bias and minimum MS E of the proffered predictive estimators tsbi , i = 1, 2 are
given by

Bias(tsbi) = Ȳ(φ jQi − 1), j = 7, 8, (3.3)

minMS E(tsbi) = Ȳ2
(
1 −

Q2
i

Pi

)
, (3.4)

where φ j(opt) =
Qi
Pi

, P1 = 1 + f1C2
y +

{
β1(β1 − 1) + β1 f +

β1 f 2

(1− f ) +
β1(β1−1)

(1− f )

}
f1C2

x + 4β1 f1ρxyCxCy, Q1 =

1 + β1 fρxyCxCy −
β1
2

{
(1−2 f )
(1− f ) −

(β1−1)
(1− f )

}
f1C2

x, P2 = 1 + f1C2
y + β2

{
β2 −

(1−2 f )
(1− f )

}
f1C2

x + 4β2 f1ρxyCxCy and

Q2 = 1 + β2 f1ρxyCxCy −
β2(1−2 f )
2(1− f ) f1C2

x.

Proof. To derive the expressions of bias and MS E of various predictive estimators, let us assume
that ȳ = Ȳ(1 + ε0), x̄ = X̄(1 + ε1), such that E(ε0) = E(ε1) = 0, E(ε0

2) = f1C2
y , E(ε1

2) = f1C2
x

and E(ε0, ε1) = f1ρxyCxCy.
where f1 = (n−1 − N−1) � 1/n. Also, Cx and Cy are respectively the population coefficient of

variations of variables X and Y and ρxy is the population coefficient of correlation between variables X
and Y .

Using the above notations, we convert tsb1 in ε′s as

tsb1 − Ȳ = Ȳ
φ7

 1 + ε0 + β1ε1 + β1

{
f 2

2(1− f ) +
(β1−1)
2(1− f ) −

(1− f )
2

}
ε2

1

+β1ε0ε1

 − 1
 . (3.5)

Taking expectation both the sides of (3.5), we get

Bias(tsb1) = Ȳ
(
φ7

[
1 + β1 f1ρxyCxCy −

β1
2

{
(1−2 f )
(1− f ) −

(β1−1)
(1− f )

}
f1C2

x

]
− 1

)
(3.6)
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= Ȳ(φ7Q1 − 1). (3.7)

Similarly, we can obtain bias of predictive estimator tsb2 .
Now, squaring and applying expectation both the sides of (3.5), we get

MS E(tsb1) = Ȳ2

 1 + φ2
7

 1 + f1C2
y +

{
β1(β1 − 1) + β1 f +

β1 f 2

(1− f ) +
β1(β1−1)

(1− f )

}
f1C2

x

+4β1 f1ρxyCxCy


−2φ7

[
1 + β1 f1ρxyCxCy −

β1
2

{
(1−2 f )
(1− f ) −

(β1−1)
(1− f )

}
f1C2

x

]
 , (3.8)

which can be written as

MS E(tsb1) = Ȳ2
(
1 + φ2

7P1 − 2φ7Q1

)
. (3.9)

On differentiating the above MS E expression regarding φ7 and equating to zero, we get

φ7(opt) =
Q1

P1
. (3.10)

Putting the value of φ7(opt) in the MS E(tsb1), we get

minMS E(tsb1) = Ȳ2
(
1 −

Q2
1

P1

)
. (3.11)

Similarly, the derivations of MS E of the estimator tsb2 can be obtained. In general, we can write

MS E(tsbi) = Ȳ2
(
1 + φ2

j Pi − 2φ jQi

)
, i = 1, 2 and j = 7, 8. (3.12)

We note that the simultaneous optimization of φ j and βi of the MS E equation is not possible. So, we
get the optimum values of βi =βi(opt) given φ j=1 and put it inside φ j=φ j(opt) to get (3.4). The optimum
values of scalars φ j are given by

φ j(opt) =
Qi

Pi
, (3.13)

where

P1 = 1 + f1C2
y +

{
β1(β1 − 1) + β1 f +

β1 f 2

(1 − f )
+
β1(β1 − 1)

(1 − f )

}
f1C2

x + 4β1 f1ρxyCxCy,

Q1 = 1 + β1 fρxyCxCy −
β1

2

{
(1 − 2 f )
(1 − f )

−
(β1 − 1)
(1 − f )

}
f1C2

x,

P2 = 1 + f1C2
y + β2

{
β2 −

(1 − 2 f )
(1 − f )

}
f1C2

x + 4β2 f1ρxyCxCy,

Q2 = 1 + β2 f1ρxyCxCy −
β2(1 − 2 f )
2(1 − f )

f1C2
x.

The optimum values of βi, i = 1, 2 are given by

βi(opt) = −ρxy
Cy

Cx
. (3.14)

�
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We would like to note that the MS E expression stated in (3.4) is important in order to determine
the efficiency conditions of next sections.

Corollary 3.1. The proposed predictive estimator tsb1 dominate the proposed predictive estimator tsb2 ,
iff

Q2
2

P2
<

Q2
1

P1
, (3.15)

and contrariwise. Otherwise, both are equally efficient when equality holds in (3.15).

Proof. On comparing the minimum MS E of both the proffered estimators, we get (3.15). �

We can merely obtain (3.15) whether it retains in practice is through a computational study carried
out in Section 5.

4. Efficiency conditions

In the present section, the efficiency conditions are derived by comparing the minimum MS E of the
proffered predictive estimators tsbi , i = 1, 2 from (3.4):

(1) with the MS E of the predictive estimator t1 from (A.1) and get,

Q2
i

Pi
> 1 − f1C2

y . (4.1)

(2) with the MS E of the predictive estimator t2 from (A.3) and get,

Q2
i

Pi
> 1 − f1C2

y − f1C2
x + f1ρxyCxCy. (4.2)

(3) with the minimum MS E of the predictive estimator t3 from (A.4) and get

Q2
i

Pi
> 1 − f1C2

y + f1ρ
2
xyC

2
y . (4.3)

(4) with the MS E of the predictive estimator t4 from (A.8) and get

Q2
i

Pi
> 1 − f1C2

y − f1C2
x − f1ρxyCxCy. (4.4)

(5) with the minimum MS E of the predictive estimator t5 from (A.10) and get

Q2
i

Pi
> 1 − f1C2

y −
1
4

f1C2
x + f1ρxyCxCy. (4.5)

(6) with the minimum MS E of the predictive estimator t6 from (A.12) and get

Q2
i

Pi
> 1 − f1C2

y −
1
4

f1C2
x − f1ρxyCxCy. (4.6)
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(7) with the minimum MS E of the predictive estimator t7 from (A.15) and get

Q2
i

Pi
> 1 − f1C2

y + f1ρ
2
xyC

2
y . (4.7)

(8) with the minimum MS E of the predictive estimator t8 from (A.18) and get

Q2
i

Pi
> 1 − f1C2

y + f1ρ
2
xyC

2
y . (4.8)

(9) with the minimum MS E of the predictive estimator t9 from (A.19) and get

Q2
i

Pi
> 1 −

MS E(t1)
(Ȳ2 + MS E(t1))

. (4.9)

(10) with the minimum MS E of the predictive estimator t10 from (A.20) and get

Q2
i

Pi
> 1 −

(MS E(t2) − {Bias(t2)}2)
(Ȳ2 + MS E(t2) + 2ȲBias(t2))

. (4.10)

(11) with the minimum MS E of the predictive estimator t14 from (A.28) and get

Q2
i

Pi
> 1 −

MS E(t3)
(Ȳ2 + MS E(t3))

. (4.11)

(12) with the minimum MS E of the predictive estimator t11 from (A.21) and get

Q2
i

Pi
> 1 −

(MS E(t4) − {Bias(t4)}2)
(Ȳ2 + MS E(t4) + 2ȲBias(t4))

. (4.12)

(13) with the minimum MS E of the predictive estimator t12 from (A.24) and get

Q2
i

Pi
> 1 −

(MS E(t5) − {Bias(t5)}2)
(Ȳ2 + MS E(t5) + 2ȲBias(t5))

(4.13)

(14) with the minimum MS E of the predictive estimator t13 from (A.27) and get

Q2
i

Pi
> 1 −

(MS E(t6) − {Bias(t6)}2)
(Ȳ2 + MS E(t6) + 2ȲBias(t6))

. (4.14)

Under the above conditions, the proffered predictive estimators dominate the reviewed predictive
estimators in S RS . Further, these conditions hold in practice is verified through a broad computational
study using various real and artificially generated symmetric and asymmetric populations. Also, it is
worth mentioning that the population coefficient of variations and coefficient of correlation are stable
quantities and therefore, the optimum values of both proposed and existing estimators can be estimated
using sample data.

5. Computational study

In tandem of the theoretical results, a broad computational study is carried out under the four heads
namely, numerical study using real populations, simulation study using real populations, simulation
study using artificially generated symmetric and asymmetric populations and discussion of
computational results.
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5.1. Numerical study using real populations

We consider six natural populations to perform the numerical study. The source of the populations,
the nature of the variables Y and X and the values of different parameters are described below.
Population 1: Source: ( [22], pp. 1115), Y=season average price per pound during 1996, X=season
average price per pound during 1995, N=36, n=12, Ȳ=0.2033, X̄=0.1856, S 2

y=0.006458,
S 2

x=0.005654 and ρxy=0.8775.
Population 2: Source: ( [22], pp. 1113), Y=duration of sleep (in minutes), X=age of old persons (≥
50 years), N=30, n=8, Ȳ=384.2, X̄=67.267, S 2

y=3582.58, S 2
x=85.237 and ρxy=-0.8552.

Population 3: Source: ( [23], pp. 228), Y=output for 80 factories in a region, X=number of workers
for 80 factories in a region, N=80, n=35, Ȳ=5182.637, X̄=285, S 2

y=3369642, S 2
x=73188.3 and

ρxy=0.9150.
Population 4: Source: ( [24], pp. 653-659), Y=real estate values according to 1984 assessment (in
millions of kroner), X=number of municipal employees in 1984, N=284, n=75 Ȳ=3077.525,
X̄=1779.063, S 2

y=22520027, S 2
x=18089178 and ρxy=0.94.

Population 5: Source: ( [22], pp. 1116), Y=number of fish caught by marine recreational fisherman
in 1995, X=number of fish caught by marine recreational fisherman in 1993, N=69, n=28 Ȳ=4514.89,
X̄=4591.07, S 2

y=37199578, S 2
x=39881874 and ρxy=0.9564.

Population 6: The data is chosen from [25] based on apple production and number of apple trees in 7
regions of Turkey during 1999. However, we take only the data of South Anatolia region consist of 69
villages. (Origin: Institute of Statistics, Republic of Turkey). The essential statistics are presented as,
Y=amount of apple yield in South Anatolia region, X=quantity of apple trees in South Anatolia
region, N=69, n=22 Ȳ=71.347, X̄=3165.029, S 2

y=12289.72, S 2
x=15723128 and ρxy=0.9177.

For the above populations, we have calculated the percent relative efficiency (PRE) of different
predictive estimators T with respect to (w.r.t.) the usual mean estimator t1 as follows.

PRE =
V(t1)

MS E(T )
× 100. (5.1)

The results of the numerical study calculated for the above discussed populations are displayed in
Table 1 by MS E and PRE.

Table 1. Results of simulation study using real populations.
Population 1 Population 2 Population 3 Population 4 Population 5 Population 6

Estimators MS E PRE MS E PRE MS E PRE MS E PRE MS E PRE MS E PRE
t1 0.000519 100.0000 434.6420 100.0000 95002.81 100.0000 302269.90 100.0000 1306989.0 100.0000 551.7252 100.0000
t2 0.000166 312.5867 1385.5170 31.3703 320553.70 29.6371 184797.60 163.5680 174803.5 747.6902 117.1800 470.8355
t3 0.000119 434.9081 116.7285 372.3529 15449.03 614.9437 35146.1 860.0365 111433.1 1172.8910 87.0246 633.9874
t4 0.001964 26.4355 153.5288 283.1012 1246500.00 7.6215 1487555.00 20.3199 5160970.0 25.3244 1772.1600 31.1329
t5 0.000206 251.8145 826.3593 52.5972 35647.24 266.5081 110057.10 274.6482 400671.8 326.1994 236.2164 233.5677
t6 0.001105 46.9801 210.3652 206.6131 498620.40 19.0531 761436.00 39.6973 2893755.0 45.1658 1063.7070 51.8681
ti, i = 7, 8 0.000119 434.9081 116.7285 372.3529 15449.03 614.9437 35146.17 860.0365 111433.1 1172.8910 87.0246 633.9874
t9 0.000511 101.4308 433.0463 100.3685 94653.17 100.3694 289418.30 104.4405 1227636.0 106.4639 496.6125 111.0977
t10 0.000163 317.2549 1355.3220 32.0692 297609.70 31.9219 153695.70 196.6677 165981.4 787.4310 114.3368 482.5438
t11 0.001760 29.4973 153.2289 283.6554 1086787.00 8.7416 987991.50 30.5943 3236364.0 40.3844 1019.0590 54.1406
t12 0.000205 252.3068 817.8529 53.1442 35590.03 266.9366 108684.00 278.1181 399312.5 327.3099 231.8114 238.0061
t13 0.001060 48.9902 210.2373 206.7387 481698.60 19.7224 664626.50 45.4796 2373909.0 55.0564 822.3618 67.0903
t14 0.000119 436.341 116.6131 372.7215 15439.75 615.3131 34964.35 864.5088 110819.8 1179.3830 85.5087 645.2266
tsb1 0.000113 456.0985 116.0060 374.6722 13336.01 712.3780 25317.32 1193.9250 52077.9 2509.6780 63.4117 870.0673
tsb2 0.000118 438.1760 116.0764 374.4446 15389.20 617.3344 31571.27 957.4207 66962.0 1951.8350 68.1361 809.7390
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5.2. Simulation study using real populations

In order to generalize the findings of numerical study, a simulation study is carried out using some
real populations. The steps involved in the simulation study are as follows:

Step 1. Consider the real populations discussed in subsection 5.1.
Step 2. Draw a simple random sample of size given in the respective populations using S RS WR scheme.
Step 3. Compute the necessary statistics.
Step 4. Iterate the above steps 10,000 times and compute the MS E and PRE of various estimators.

The simulated PRE is computed as

PRE =

∑10000
i=1 (t1 − Ȳ)2∑10000
i=1 (Ti − Ȳ)2

× 100. (5.2)

The outcomes of the simulation study consist of the real populations are reported in Table 2 by
MS E and PRE.

Table 2. Results of numerical study using real populations.
Population 1 Population 2 Population 3 Population 4 Population 5 Population 6

Estimators MS E PRE MS E PRE MS E PRE MS E PRE MS E PRE MS E PRE
t1 0.000537 100.0000 448.3643 100.0000 96275.54 100.0000 300267.00 100.0000 1328554.0 100.0000 558.5513 100.0000
t2 0.000135 396.9244 1469.7820 30.5055 366273.30 26.2851 146815.80 204.5196 118405.9 1122.0340 95.0817 587.7120
t3 0.000123 434.7944 120.4454 372.2551 15671.25 614.3450 34951.08 859.1065 113324.4 1172.3460 88.1543 633.9874
t4 0.002069 25.9611 120.7119 371.4332 1361119.00 7.0732 1897189 15.8269 5293654.0 25.0971 1748.331 31.9476
t5 0.000195 275.4914 872.3524 51.3971 39419.24 244.2349 43107.56 696.5530 379110.9 350.4394 236.0278 236.6627
t6 0.001162 46.2326 197.8174 226.6556 536842.20 17.9336 918294.20 32.6983 2966735.0 44.7816 1062.6520 52.5617
ti, i = 7, 8 0.000123 434.7944 120.4454 372.2551 15671.25 614.3450 34951.08 859.1065 113324.4 1172.3460 88.1543 633.9874
t9 0.000530 101.3 447.0065 100.3038 95931.69 100.3584 291040.10 103.1703 1247263.0 106.5176 503.3234 110.9738
t10 0.000134 400.2691 1438.944 31.1592 338562.80 28.4365 128582.90 233.5201 116430.5 1141.0710 94.6848 590.1685
t11 0.001855 28.9509 120.597 371.7873 1174318.00 8.1984 1214622.00 24.7210 3248543.0 40.8969 988.6951 56.4963
t12 0.000194 275.6640 863.8603 51.9024 39373.75 244.5170 43107.55 696.5532 379063.5 350.4832 233.7415 238.9769
t13 0.001114 48.1968 197.8105 226.6636 517500.20 18.6039 797916.30 37.6313 2409785.0 55.1316 813.3817 68.6718
t14 0.000123 436.0944 120.3472 372.5589 15662.11 614.7034 34822.58 862.2769 112697.8 1178.8640 86.6536 644.9612
tsb1 0.000117 457.0226 119.7430 374.4387 13286.20 724.6280 20246.70 1483.0420 s48347.9 2747.9040 63.5411 879.7056
tsb2 0.000122 437.2748 119.7707 374.3522 15619.28 616.3890 34074.35 881.2114 69799.1 1903.3950 71.5180 781.7386

5.3. Simulation study using artificially generated populations

Following [26], we accomplish a simulation study using some artificially rendered populations. The
simulation steps are are given as follows:

Step 1. Generate two families of symmetric populations such as Normal and Logistic and two families of
asymmetric populations such as Gamma and Weibull each of size N=500. The data on variables X

and Y are generated through the models Y = 8.4+
√

(1 − ρ2
xy) Y∗+ρxy

(
S y/S x

)
X∗ and X = 4.4+X∗

with particular values of parameters given in Tables 3 and 4.
Step 2. Draw a bivariate simple random sample of size n=50 using S RS WR scheme from each

population.
Step 3. Compute the required statistics.
Step 4. Iterate the above steps 10,000 times.
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Table 3. Results of simulation study using artificially generated symmetric populations.
ρxy 0.3 0.5 0.7 0.9
Estimators MS E PRE MS E PRE MS E PRE MS E PRE
X∗ ∼ N(25, 45)
Y∗ ∼ N(30, 50)
t1 50.3968 100 51.1183 100 51.4405 100 50.8947 100
t2 142.5336 35.3578 121.8881 41.9388 90.1208 57.0795 46.0322 110.5632
t3 45.8610 109.8901 38.3387 133.3333 26.2347 196.0784 9.6700 526.3158
t4 236.8842 21.2748 288.6117 17.7118 326.3872 15.7606 326.4349 15.5910
t5 61.6371 81.7636 47.9703 106.5625 31.5773 162.9035 14.6288 347.9076
t6 108.8125 46.3152 131.3322 38.9229 149.7106 34.3600 154.8301 32.8713
ti, i = 7, 8 45.8610 109.8901 38.3387 133.3333 26.2347 196.0784 9.6700 526.3158
t9 49.1092 102.6217 49.9274 102.3854 50.2591 102.3507 49.5476 102.7189
t10 109.5109 46.0199 94.6505 54.0074 70.1504 73.3289 35.0234 145.3163
t11 170.5642 29.5471 203.4361 25.1274 225.0427 22.8581 218.5347 23.2891
t12 56.8564 88.6386 44.8309 114.0248 29.8436 172.3669 13.9891 363.8153
t13 103.0177 48.9205 122.9221 41.5860 138.1792 37.2274 139.8083 36.4032
t14 44.7919 112.5130 37.6642 135.7212 25.9233 198.4338 9.6201 529.0459
tsb1 43.6835 115.3680 35.9884 142.0410 23.9434 214.8419 7.7975 652.7058
tsb2 44.5380 113.1544 37.4848 136.3710 25.9061 198.5650 9.6033 529.9678
X∗ ∼ Logis(1, 5)
Y∗ ∼ Logis(2, 6)
t1 2.8501 100 2.8076 100 2.7875 100 2.8168 100
t2 7.1526 39.8471 5.6476 49.7137 4.0338 69.1047 2.2797 123.5622
t3 2.5936 109.8901 2.1057 133.3333 1.4216 196.0784 0.5352 526.3158
t4 12.0603 23.6323 13.9165 20.1748 15.6729 17.7858 17.1602 16.4151
t5 3.3123 86.0467 2.4840 113.0280 1.6442 169.5347 0.8225 342.4645
t6 5.7661 49.4288 6.6184 42.4212 7.4638 37.3478 8.2627 34.09123
ti, i = 7, 8 2.5936 109.8901 2.1057 133.3333 1.4216 196.0784 0.5352 526.3158
t9 2.7620 103.1910 2.7267 102.9653 2.7108 102.8291 2.7377 102.8914
t10 5.5292 51.5465 4.4241 63.4618 3.1609 88.1867 1.7133 164.4075
t11 8.6904 32.7964 9.7905 28.6769 10.7669 25.8902 11.4823 24.5323
t12 3.0518 93.3901 2.3232 120.8504 1.5565 179.0859 0.7821 360.1578
t13 5.4251 52.5356 6.1453 45.6874 6.8335 40.7925 7.4366 37.8784
t14 2.5203 113.0837 2.0598 136.3038 1.4013 198.0152 0.5322 529.2192
tsb1 2.4553 116.0774 1.9658 142.8188 1.2952 215.2172 0.4348 647.8555
tsb2 2.5067 113.7006 2.0529 136.7633 1.4040 198.5382 0.5313 530.1453
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Table 4. Results of simulation study using artificially generated asymmetric populations.
ρxy 0.3 0.5 0.7 0.9
Estimators MS E PRE MS E PRE MS E PRE MS E PRE
X∗ ∼ Gamma(0.8, 0.1)
Y∗ ∼ Gamma(0.7, 0.5)
t1 0.0554 100 0.0540 100 0.0534 100 0.0545 100
t2 1.0098 5.4953 0.9505 5.6886 0.8719 6.1283 0.7581 7.1889
t3 0.0504 109.8901 0.0405 133.3333 0.0272 196.0784 0.0103 526.3158
t4 1.2956 4.2830 1.4319 3.7763 1.5512 3.4447 1.6323 3.3391
t5 0.2583 21.4801 0.2180 24.8016 0.1731 30.8601 0.1211 44.9883
t6 0.4012 13.8298 0.4587 11.7883 0.5128 10.4205 0.5582 9.7639
ti, i = 7, 8 0.0504 109.8901 0.0405 133.3333 0.0272 196.0784 0.0103 526.3158
t9 0.0554 100.0647 0.0540 100.0584 0.0534 100.0544 0.0544 100.0569
t10 0.9673 5.7369 0.9118 5.9299 0.8376 6.3794 0.7293 7.4731
t11 1.2346 4.4948 1.3621 3.9698 1.4730 3.6275 1.5470 3.5232
t12 0.2548 21.7760 0.2151 25.1302 0.1709 31.2603 0.1195 45.5821
t13 0.3999 13.8743 0.4568 11.8359 0.5103 10.4716 0.5549 9.8218
t14 0.0504 109.9549 0.0405 133.3918 0.0272 196.1329 0.0103 526.3727
tsb1 0.0503 110.2239 0.0403 134.1225 0.0269 198.4795 0.0099 548.9376
tsb2 0.0504 110.0322 0.0404 133.5476 0.0271 196.4839 0.0103 528.3340
X∗ ∼ Weibull(10, 9)
Y∗ ∼ Weibull(10, 7)
t1 8.0686 100 7.9500 100 7.8739 100 7.9031 100
t2 40.5827 19.8818 35.3331 22.5002 28.0046 28.1167 18.0719 43.7314
t3 7.3424 109.8901 5.9625 133.3333 4.0157 196.0784 1.5015 526.3158
t4 61.4817 13.1235 71.2310 11.1609 78.2847 10.0581 78.7113 10.0406
t5 13.5847 59.3945 10.3085 77.1207 6.6216 118.9127 2.8654 275.8113
t6 24.0342 33.5712 28.2575 28.1342 31.7616 24.7908 33.1850 23.8152
ti, i = 7, 8 7.3424 109.8901 5.9625 133.3333 4.0157 196.0784 1.5015 526.3158
t9 7.8197 103.1830 7.7348 102.7818 7.6731 102.6170 7.6656 103.0977
t10 25.0187 32.2501 22.2511 35.7286 17.9325 43.9089 11.6411 67.8896
t11 34.6409 23.2921 38.9807 20.3948 41.5833 18.9354 40.2655 19.6275
t12 11.6348 69.3483 8.9894 88.4374 5.8548 134.4865 2.5384 311.3420
t13 22.2728 36.2261 25.7313 30.8963 28.3435 27.7805 28.7229 27.5150
t14 7.1356 113.0748 5.8405 136.1181 3.9627 198.6987 1.4927 529.4229
tsb1 6.8280 118.1688 5.3627 148.2464 3.3633 s234.1102 0.8619 916.9281
tsb2 7.0541 114.3802 5.7602 138.0170 3.9119 201.2821 1.4796 534.1258

We have taken different values of correlation coefficient ρxy = 0.3, 0.5, 0.7, 0.9 to observe the
deportment of the proffered predictive estimators. The MS E and simulated PRE of different
predictive estimators T regarding the usual mean estimator t1 are computed using the expression
given in (5.2).

The simulation results for both the populations are displayed in Tables 3 and 4 by MS E and PRE
for various values of correlation coefficient ρxy.

5.4. Discussion of computational results

The following discussion is drawn from the computational results displayed from Tables 1 to 4.

(i) From Table 1 consists of the results of numerical study of six real populations, the proposed
predictive estimators tsbi , i = 1, 2 show their ascendancy over the existing predictive estimators
ti, i = 1, 2, ..., 14 by minimum MS E and maximum PRE. The dominance of the proposed
predictive estimators can also be observed from the histogram drawn from Figures 1 to 6 for
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MS E and PRE.
(ii) The similar inclination can be observed from the findings of simulation study of Table 2 consist

of the six real populations.
(iii) From Table 3 based on the simulation results for symmetric populations such as Normal and

Logistic with different values of ρxy also exhibit the ascendancy of the proposed predictive
estimators tsbi , i = 1, 2 over the existing predictive estimators ti, i = 1, 2, ..., 14 by minimum
MS E and maximum PRE.

(iv) The similar conclusion can be drawn from Table 4 based on the asymmetric populations such as
Gamma and Weibull.

(iv) From Tables 3 and 4 consist of the simulation results using artificially generated populations, it
can be observed that the MS E of the proffered predictive estimators gradually declines as the
value of correlation coefficient ρxy increases and contrariwise in sense of PRE in each population.

(v) Furthermore, from Tables 1 to 4 the proffered predictive estimator tsb1 is found to be superior than
the proposed predictive estimator tsb2 .

Figure 1. MSE and PRE for population 1.

Figure 2. MSE and PRE for population 2.
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Figure 3. MSE and PRE for population 3.

Figure 4. MSE and PRE for population 4.

Figure 5. MSE and PRE for population 5.
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Figure 6. MSE and PRE for population 6.

6. Conclusions

In this manuscript, we have developed few novel logarithmic predictive estimators of population
mean in S RS . The properties like bias and MS E of the proffered logarithmic predictive estimators are
determined to the first order of approximation. The efficiency conditions have been obtained which
are successively enhanced by a broad computational study using various real and artificially generated
symmetric and asymmetric populations. From the computational results listed from Tables 1 to 4, we
observe that:

(i) The proffered predictive estimators tsbi , i = 1, 2 are found to be most efficient than the usual
unbiased, ratio and regression predictive estimators due to Basu (1971), product predictive
estimator due to Srivastava (1983), Bahl and Tuteja (1991) exponential ratio and product type
predictive estimators, logarithmic type predictive estimators, Searls (1964) based predictive
estimators defined and proposed by Singh et al. (2019) and Bhushan et al. (2020) predictive
estimator.

(ii) The correlation coefficient ρxy demonstrate adverse effect over the MS E and favorable effect over
the PRE of the proffered predictive estimators tsbi , i = 1, 2 which can be seen from the simulation
results of Tables 3 and 4.

(iii) The proffered predictive estimator tsb1 performs better than the proposed predictive estimator tsb2

in each real and simulated populations.

Thus, we enthusiastically recommend the utilization of the proffered predictive estimators to the
survey professionals in real life. Moreover, in forthcoming studies, we are intended to develop the
proposed predictive estimators using ranked set sampling.
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Appendix A

The variance of predictive estimator t1 is given by

V(t1) = f1Ȳ2C2
y . (A.1)

The bias and MS E of predictive estimator t2 are given by

Bias(t2) = f1Ȳ2(C2
x − ρxyCxCy), (A.2)

MS E(t2) = f1Ȳ2(C2
y + C2

x − 2ρxyCxCy). (A.3)

The MS E of predictive estimator t3 is given by

MS E(t3) = Ȳ2 f1C2
y + X̄2b2 f1C2

x − 2bX̄Ȳ f1ρxyCxCy. (A.4)

The optimum value of b is obtained by minimizing (A.4) w.r.t. b as

b(opt) = ρxy
S y

S x
. (A.5)

The minimum MS E at optimum value of b is given by

MS E(t3) = Ȳ2 f1C2
y (1 − ρ2

xy). (A.6)

The bias and MS E of predictive estimator t4 are given by

Bias(t4) = f1Ȳ
(

f
(1 − f )

C2
x + ρxyCxCy

)
, (A.7)

MS E(t4) = f1Ȳ2
(
C2

y + C2
x + 2ρxyCxCy

)
, (A.8)
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where f = n/N.
The bias and MS E of predictive estimator t5 are given by

Bias(t5) =
Ȳ
8

f1(3C2
x − 4 f1C2

x − 4ρxyCxCy), (A.9)

MS E(t5) = Ȳ2 f1

(
C2

y +
C2

x

4
− ρxyCxCy

)
. (A.10)

The bias and MS E of predictive estimator t6 are given by

Bias(t6) =
Ȳ
8

f1(4 f1C2
x + 4ρxyCxCy − 3C2

x), (A.11)

MS E(t6) = Ȳ2 f1

(
C2

y +
C2

x

4
+ ρxyCxCy

)
. (A.12)

The MS E of predictive estimator t7 is given by

MS E(t7) = Ȳ2
[
f1C2

y + β2
1 f1C2

x + 2β1 f1ρxyCxCy

]
. (A.13)

The optimum value of β1 is obtained by minimizing (A.13) w.r.t. β1 as

β1(opt) = −ρxy
Cy

Cx
. (A.14)

The minimum MS E at optimum value of β1 is

MS E(t7) = Ȳ2 f1C2
y (1 − ρ2

xy). (A.15)

The MS E of predictive estimator t8 is given by

MS E(t8) = Ȳ2
[
f1C2

y + β2
2 f1C2

x + 2β2 f1ρxyCxCy

]
. (A.16)

The optimum value of β2 is obtained by minimizing (A.16) w.r.t. β2 as

β2(opt) = −ρxy
Cy

Cx
. (A.17)

The minimum MS E at optimum value of β2 is

MS E(t8) = Ȳ2 f1C2
y (1 − ρ2

xy). (A.18)

The minimum MS E of predictive estimator t9 under S RS is given by

minMS E(t9) =
Ȳ2MS E(t1)

Ȳ2 + MS E(t1)
. (A.19)

The minimum MS E of predictive estimator t10 under S RS is given by

minMS E(t10) = Ȳ2
[

MS E(t2) − {Bias(t2)}2

Ȳ2 + MS E(t2) + 2ȲBias(t2)

]
, (A.20)
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where φ2(opt) = (Ȳ2 + ȲBias(t2))/(Ȳ2 + MS E(t2) + 2ȲBias(t2)).
The minimum MS E of predictive estimator t11 is given by

minMS E(t11) = Ȳ2
[

MS E(t4) − {Bias(t4)}2

Ȳ2 + MS E(t4) + 2ȲBias(t4)

]
, (A.21)

where φ3(opt) = (Ȳ2 + ȲBias(t4))/(Ȳ2 + MS E(t4) + 2ȲBias(t4)).
The MS E of predictive estimator t12 is given by

MS E(t12) = (φ4 − 1)2Ȳ2 + Ȳ2φ2
4MS E(t5) + 2φ4(φ4 − 1)ȲBias(t5). (A.22)

The optimum value of φ4 is obtained by minimizing (A.22) w.r.t. φ4 as

φ4(opt) =
(Ȳ2 + ȲBias(t5))

(Ȳ2 + MS E(t5) + 2ȲBias(t5))
. (A.23)

The minimum MS E at the optimum value of φ4 is given by

minMS E(t12) =
Ȳ2(MS E(t5) − {Bias(t5)}2)

(Ȳ2 + MS E(t5) + 2ȲBias(t5))
. (A.24)

The MS E of predictive estimator t13 is given by

MS E(t13) = (φ5 − 1)2Ȳ2 + Ȳ2φ2
5MS E(t6) + 2φ5(φ5 − 1)ȲBias(t6). (A.25)

The optimum value of φ5 is obtained by minimizing (A.25) w.r.t. φ5 as

φ5(opt) =
(Ȳ2 + ȲBias(t6))

(Ȳ2 + MS E(t6) + 2ȲBias(t6))
. (A.26)

The minimum MS E at the optimum value of φ5 is given by

minMS E(t13) =
Ȳ2(MS E(t6) − {Bias(t6)}2)

(Ȳ2 + MS E(t6) + 2ȲBias(t6))
. (A.27)

The minimum MS E of predictive estimator t14 under S RS is given by

MS E(t14) =
Ȳ2MS E(t3)

Ȳ2 + MS E(t3)
, (A.28)

where φ6(opt) = (Ȳ2 + ȲBias(t3))/(Ȳ2 + MS E(t3) + 2ȲBias(t3)).
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