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Abstract: In this paper, the expansion problem which arises in a two-dimensional (2D) isentropic
pseudo-steady supersonic flow expanding into vacuum around a sharp corner for the generalized
Chaplygin gas is studied. This expanding problem catches the interaction of an incomplete centered
simple wave with a backward planar rarefaction wave and the interaction of a non-planar simple wave
with a rigid wall boundary of the 2D self-similar Euler equations. Using the methods of characteristic
decompositions and invariant regions, we get the hyperbolicity in the wave interaction domains and
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solution up to infinity of the gas expansion problem.
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1. Introduction

Supersonic flow around a bend or sharp corner, one of the most important elementary flows, is
effected by a simple wave. In [5], Courant and Friedrichs constructed these simple waves for the steady
flow. Recently, Sheng and You ( [31]) considered an expansion problem which arises in a supersonic
flow expanding into vacuum around a sharp corner under the condition that the inclination angle of
the rigid wall boundary is larger than a critical one and obtained the global solution to the expansion
problem by solving the interaction problem of a complete centered simple wave with a backward planar
rarefaction wave. In [29], Sheng and Yao considered the expansion problem when the inclination
angle of the rigid wall boundary is smaller than the critical angle. They studied the interaction of an
incomplete centered simple wave with a backward planar rarefaction wave and the interaction of a
non-planar simple wave with rigid wall boundary and obtained the global existence of the solution of
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the gas expansion problem for the polytropic gas. In [30], Sheng and Yao constructed the self-similar
solution for the supersonic flow around a convex corner and proved that the supersonic flow turns the
convex corner by an incomplete centered expansion wave or an incomplete centered compression wave
depending on the conditions of the downstream state. In [15], Lai and Sheng obtained the existence
of global piecewise smooth (or Lipshitz-continuous) solutions to the problem of pseudosteady flows
around a sharp corner for for the polytropic gas when the uniform flow is sonic or subsonic.

In this paper, we consider the problem of a supersonic flow expanding into vacuum around a sharp
corner for the generalized Chaplygin gas. Suppose that the sharp corner is made up to a horizontal
ground and a sloping straight rigid boundary at a sharp point. At the very beginning, the flow arrives
with constant velocity along the straight ground wall up to the sharp point. Further, we assume that
the oncoming flow is of constant state in a region adjacent to the part of the wall before the sharp point
and is vacuum outside of the region. We want to know how dose the flow turn the corner and expand
into vacuum. For this purpose, we study the 2D unsteady isentropic compressible Euler equations for
generalized Chaplygin gas 

ρt + (ρu)x + (ρv)y = 0,

(ρu)t +
(
ρu2 + p

)
x

+ (ρuv)y = 0,

(ρv)t + (ρuv)x +
(
ρu2 + p

)
y

= 0,

(1.1)

where ρ is the density, (u, v) is the velocity and p is the pressure given by p(ρ) = −Kρ−γ for generalized
Chaplygin gas, the constant K > 0 and γ is the adiabatic exponent satisfying 0 < γ < 1.

The expansion problem can be seen as a special 2D Riemann problem for Euler equations with
boundary. There will be an incomplete centered simple wave emanating from the sharp corner and
a planar rarefaction wave spreading from the supersonic oncoming flow to vacuum. The two simple
waves will interact with each other. Due to the particularity of the generalized Chaplygin gas, the
centered simple wave from the origin is a incomplete one, the interaction will piece together three
parts of the flow in the interaction domain. The first part is the interaction of the incomplete centered
simple wave with the planar rarefaction wave. The second part is a nonplanar simple wave adjacent to
a constant state. And the last one is the interaction of the simple wave with rigid wall boundary.

The 2D Riemann problem for the Euler equations (1.1), which is a special Cauchy problem that the
initial data are constants along each ray from the origin, are an interesting and complicated problem. It
involves many kinds of wave interactions. The solution configurations conjectured in [35]. Up to now,
there is much progress to the theory of system (1.1) or simplified models of it, see [1–3,7,8,17,20,24,
25, 27, 33, 34] for polytropic gas and the Chaplygin gas equations, etc.

The expansion problem of a flow into vacuum has been a favorite problem for a long time. It has
been interpreted hydraulically as the collapse of a wedge-shaped dam containing water initially with
a uniform velocity ( [18]). This is a special 2D Riemann problem, mainly involving the interaction
of two 2D planar rarefaction waves. There have been a lot of research results on the problem. A
set of interesting explicit solutions were found in [32] for special wedge angle. In [6], Dai and
Zhang established the global smooth solution for the expansion problem of pressure gradient system.
In [19], Li studied a much more difficult problem for Euler equations of the expansion of a wedge
of gas into vacuum and established the existence of a solution to the problem in the hodograph plane
by the hodograph transformation. Li and Zheng proved the existence of the classical spolution in
the hodograph plane and the non-degeneracy of the hodograph transformation on non-simple wave
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region, and obtained the existence of classical self-similar solution of the expansion problem by the
hodograph transformation and the characteristic decompositions of characteristic inclination angles
in [23]. In [21], the authors developed the direct approach to get global classical solution for 2D
polytropic Euler equations to avoid the complicated procedure of the hodograph transformation. For
more related papers, see [9–14, 16, 36]. In 2010, Sheng etc. in [28] considered an oblique rarefaction
wave reflection along a compressive corner. By using the numerical generalized characteristic analysis
method, they found a critical transonic shock. A supersonic bubble near the compression corner grows
and break through as the rarefaction wave size increases in their results. The supersonic oncoming
flow with a constant state (u1, 0, ρ1) along the straight wall AO up to the sharp point O, expands into
the vacuum in the other region of the corner. Assuming that the inclination angle of the sloping straight
rigid boundary OB is −θ

(
0 < θ < π

2

)
. For unsteady isentropic compressible generalized Chanpygin gas,

this expansion problem can be prescribed as the system (1.1) with the initial data (see Figure 1).

-

6

�

A O
x

y

B

(u1, 0, ρ1)

−θ

Vacuum

Vacuum

t = 0

Figure 1. Initial-boundary data conditions.

(u, v, ρ) (x, y, 0) =


(u1, 0, ρ1) , as (x, y) ∈ {x < 0, y > 0} ;

Vacuum, as (x, y) ∈ {y < 0, y > −x tan θ} ∪ {x > 0, y ≥ 0} ,
(1.2)

and the boundary data
(ρv) (x, 0, t) = 0, as x < 0, y > 0;

(ρv) (x, y, t) = − (ρu) (x, y, t) tan θ, as (x, y) ∈ {y < 0, y = −x cot θ} , t > 0.
(1.3)

where u1 > 0 and ρ1 > 0, the Mach angle of the initial oncoming flow is defined by α1 = arcsin c1
u1

,

c1 = Kγρ
−γ−1

2
1 is sonic velocity satisfying u1 > c1.

For the sake of the discussion below, we use following notations:

k = −
1 + γ

2
, m =

3 + γ

1 − γ
> 3, µ2 =

1 + γ

1 − γ
> 1, tan2 θ̂ = m, δ =

α − β

2
, σ =

α + β

2
,

Ω =
cos 2δ − k

(k + 1) cos2 δ
= m − tan2 δ, ∂− = ∂ξ + λ−∂η, ∂+ = ∂ξ + λ+∂η,
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∂̄+ = cosα∂ξ + sinα∂η, ∂̄− = cos β∂ξ + sin β∂η, ∂̄0 = cosσ∂ξ + sinσ∂η.

In addition, we introduce α = g(x), which is the inverse function of v̂(α)
û(α) = − tan x in Theorem 4.

The main result of this paper, which will be proved, is in the following theorem.

Theorem 1. Assume that 0 < γ < 1, 2θ̂ − π
2 < α1 <

π
2 and 0 < θ < g−1

(
2θ̂ − π

2

)
, the initial-boundary

data problem (1.1) with (1.2) and (1.3) admits a global solution.

This paper is organized as follows. In Section 2, for the generalized Chaplygion gas, we present
some preliminaries, including the inclination angles (α, β) of C± characteristic, the characteristic
forms of the 2D self-similar isentropic ir-rotational compressible Euler equations and the characteristic
decompositions of speed of sound c. The characteristic equations and the characteristic decompositions
are used to control the hyperbolicity and the priori gradient estimates of the solutions. In Section 3, we
obtain the incomplete centered simple wave through the principle part of the centered simple waves and
give the expressing of the incomplete centered simple wave. In Section 4, we obtain the global solution
of the interaction of the incomplete centered simple wave with the backward planar rarefaction wave.
In Section 5, we solve the reflecting problem of the simple wave on the rigid wall by the interaction of
two symmetric simple waves. In the last section, we obtain the global existence of the solution of the
expansion problem around the sharp corner for generalized Chaplygin gas.

2. Systems of 2D pseudo-steady isentropic ir-rotational flow

2.1. 2D pseudo-steady isentropic Euler equations

System (1.1) can be written as follows for smooth flow with the self-similar variables (ξ, η) =
(

x
t ,

y
t

)


Uρξ + Vρη + ρ
(
uξ + vη

)
= 0,

Uuξ + Vuη + c2

ρ
ρξ = 0,

Uvξ + Vvη + c2

ρ
ρη = 0,

(2.1)

where (U,V) = (u − ξ, v − η) is the pseudo-flow velocity, c is the speed of sound with c2 = p′(ρ) =

Kγρ−γ−1 for the generalized Chaplygin gas.
We further assume that the flow is ir-rotational, i.e. uy = vx. Then, the system (2.1) can be reduced as

(
c2 − U2

)
uξ − UV

(
uη + vξ

)
+

(
c2 − V2

)
vη = 0,

uη − vξ = 0,
(2.2)

supplemented by pseudo-Bernoulli’s law:

c2

−γ − 1
+

U2 + V2

2
= −ϕ + Const. (2.3)

where ϕ (ξ, η) is the pseudo-potential function such that ϕξ = U, ϕη = V . The eigenvalues of Eq (2.2)
are determined by

(λU − V)2
− c2

(
1 + λ2

)
= 0, (2.4)
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which are

λ± =
UV ±

√
c2 (

U2 + V2 − c2)
U2 − c2 . (2.5)

So, if and only if U2 + V2 > c2, the Eq (2.2) are hyperbolic. The integral curves

C± :
dη
dξ

= λ± (2.6)

are the pseudo-wave C± characteristics of (2.2), respectively. The pseudo-flow characteristic is defined
by integral curves of

C0 :
dη
dξ

= λ0 =
V
U
. (2.7)

The left-eigenvectors of the eigenvalues λ± are

l± =

(
1,∓

√
c2 (

U2 + V2 − c2)) . (2.8)

Multiplying (2.2) by l± on the left and differentiating the pseudo-Bernoulli’s law (2.3), we get the
characteristic forms of the system (2.1)

∂+u + λ−∂+v = 0,

∂−u + λ+∂−v = 0

∂±c2 = −2k (U∂±u + V∂±v) .

(2.9)

2.2. Characteristic equations and characteristic decompositions

Let α, β be the inclination angles of C± characteristics as in [23], defined by

tanα = λ+, tan β = λ−. (2.10)

For the convenience to our problem, we choose
U
c

=
cosσ
sin δ

,

V
c

=
sinσ
sin δ

,

i.e.,


u = ξ + c

cosσ
sin δ

,

v = η + c
sinσ
sin δ

,
(2.11)

where σ =
α+β

2 is the inclination angle of pseudo-flow characteristic, and δ =
α−β

2 is the Mach angle
satisfying q2 = U2 + V2 = c2

sin2 δ
(see Figure 2).
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Figure 2. Characteristic curves, characteristic angles and pseudo-sonic circle.
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The pseudo-Bernoulli’s law (2.3) can be written as the function of variables α, β and c

c2

−γ − 1
+

c2

2 sin2 δ
= −ϕ + Const.. (2.12)

Then, we have 
c∂̄+α = Ω cos2 δ

(
2 sin2 δ + c∂̄+β

)
,

c∂̄−β = Ω cos2 δ
(
−2 sin2 δ + c∂̄−α

)
,

∂̄⊥ϕ = 0,

(2.13)

where ∂̄⊥ = − sinσ∂ξ + cosσ∂η, the variable c = c(δ, ϕ) :=
√
−

2(γ+1)ϕ sin2 δ

(γ+1)−2 sin2 δ
by letting the constant of the

pseudo-Bernoulli’s law (2.12) to be 0. Moreover, we have the characteristic equations of u, v, α and β
expressed by ∂̄±c 

∂̄+u =
sin β

k
∂̄+c,

∂̄+v = −
cos β

k
∂̄+c,


∂̄−u = −

sinα
k

∂̄−c,

∂̄−v =
cosα

k
∂̄−c,

(2.14)


c∂̄+α =

Ω sin 2δ
2µ2 ∂̄+c,

c∂̄+β =
tan δ
µ2 ∂̄+c − 2 sin2 δ,


c∂̄−α = −

tanδ
µ2 ∂̄−c + 2 sin2 δ,

c∂̄−β = −
Ω sin 2δ

2µ2 ∂̄−c.
(2.15)

Lemma 1. The Eqs (2.9) or (2.13) can be reduced to the following diagonal form
∂̄+r = −H (c, δ) ,

∂̄−s = −H (c, δ) ,

∂̄0

(
c2

(
1 + kM2

))
= −2ckM or ∂̄⊥ϕ = 0,

(2.16)

where

r = r(α, β) = ψ(δ) − β, s = s(α, β) = ψ(δ) + α,

ψ(δ) = −
1

2µ
ln

∣∣∣∣∣µ cot δ − 1
µ cot δ + 1

∣∣∣∣∣ , H (c, δ) =
sin2 δ (cos 2δ − k)

c
(
k + sin2 δ

) , M =

√
U2 + V2

c
=

1
sin δ

.
(2.17)

And the characteristic decompositions of c satisfy

Lemma 2. For the variable c, we have
c∂̄+∂̄−c = ∂̄−c

(
sin2δ −

1
2µ2cos2δ

∂̄−c +

(
1 −

Ωcos2δ
2µ2

)
∂̄+c

)
,

c∂̄−∂̄+c = ∂̄+c
(
sin2δ −

1
2µ2cos2δ

∂̄+c +

(
1 −

Ωcos2δ
2µ2

)
∂̄−c

)
.

(2.18)
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By the self-similar transformation, the initial-boundary data problem (1.1) with (1.2) and (1.3) (see
Figure 1) can be reduced to corresponding boundary data problem of (2.1) at infinity with (2.19) and
(2.20) (see Figure 3). The initial condition (1.2) is changed into

(u, v, ρ)→

 (u1, 0, ρ1) , ξ < 0, η > 0, and ξ2 + η2 → ∞,

Vacuum, η > −ξ tan θ, ξ > 0, and ξ2 + η2 → ∞.
(2.19)

and the boundary condition (1.3) is changed into (ρv) (ξ, η) = 0, (ξ, η) ∈ {(ξ, η) |ξ < 0, η = 0} ;

(ρv) (ξ, η) = − (ρu) (ξ, η) tan θ, (ξ, η) ∈ {(ξ, η) |η < 0, η = −ξ tan θ}
(2.20)

We will solve the problem in the following.
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Figure 3. Boundary data at infinity.

3. Center simple wave around a corner

We have already known that a wave adjacent to a constant state is a simple wave, so we only have
to consider the the trivial case (see [13]) in our problem.

3.1. The principle part of isentropic irrotational pseudo-steady centered waves

We discuss the properties of the principal part of the centered simple wave for the system (2.1).

Definition 1. Let Λ(t) be an angular domain with boundaries (see Figure 4)

Λ(t) := {(ξ, η) | 0 ≤ ξ ≤ t, ξ tanα2 ≤ η = ξλ+ ≤ ξ tanα1} , (3.1)

A function (u, v, c) (ξ, η) is called a C+ type centered simple wave solution for system (2.1) with the
origin (0, 0) as the center point if the following properties are satisfied (see [13, 26, 31])
1) (u, v, c) (ξ, η) can be determined by (u, v, c) (ξ, η) = (ũ, ṽ, c̃) (ξ, α) and η = ξ tanα defined on a
rectangular domain

Λ̃(t) := {(ξ, α) | 0 ≤ ξ ≤ t, α2 ≤ α ≤ α1} .

Moreover, (ũ, ṽ, c̃) belong to C1(Λ̃(t));
2) The function (u, v, c) (ξ, η) defined above satisfies Eq (2.1) on Λ(t) \ (0, 0);
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3) For any α ∈ [α2, α1] , η = ξλ+ gives the C+ characteristic line passing through the origin (0, 0) with
the slope tanα at the origin.

Substituting η = ξ tanα into pseudo-Bernoulli law (2.3), we obtain pseudo-potential function

ϕ = ϕ̃(ξ, α) = Const. −
1
2
(
(ũ − ξ)2 + (ṽ − ξ tanα)2) − c̃2

−γ − 1
.

(û, v̂, ĉ)(α) = lim
ξ→0

(ũ, ṽ, c̃)(ξ, α), ϕ̂(α) = lim
ξ→0

ϕ̃(ξ, α) is called the principal part of this C+ type centered

simple wave.

-
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Figure 4. The centered simple wave.

Theorem 2. Assume that (u, v, c)(ξ, η) = (ũ, ṽ, c̃)(ξ, α), ϕ(ξ, η) = ϕ̃(ξ, α), η = ξ tanα, ξ > 0, α2 ≤ α ≤

α1 is the C+ type centered simple wave solution of the system (2.1) in pseudo-supersonic domain, then
the principal part (û, v̂, ĉ)(α) and ϕ̂(α) satisfy

1
2

(
û2(α) + v̂2(α)

)
+

ĉ2(α)
−γ − 1

= Const. − ϕ̂(α̃1),

dϕ̂(α)
dα

= 0,
dû(α)

dα
+ tanα

dv̂(α)
dα

= 0,

tanα =
û(α)v̂(α) + ĉ(α)

√
û2(α) + v̂2(α) − ĉ2(α)

û2(α) − ĉ2(α)
.

(3.2)

Theorem 3. Assume that the functions (û, v̂, ĉ) (α) = lim
ξ→0

(ũ, ṽ, c̃)(ξ, α), α ∈ [α2, α1] satisfy

1
2

(
û2(α) + v̂2(α)

)
+

ĉ2(α)
−γ − 1

= Const.,

dû(α)
dα

+ tanα
dv̂(α)

dα
= 0,

tanα =
û(α)v̂(α) + ĉ(α)

√
û2(α) + v̂2(α) − ĉ2(α)

û2(α) − ĉ2(α)
,

(3.3)

and the values of (u, v, c)(ξ, η) on the ray η = ξ tanα are defined as (û, v̂, ĉ) (α), then (u, v, c)(ξ, η) is the
centered simple wave solution of (2.1) with the origin (0, 0) as the center point.
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Proof. (1) Verifying Eq (2.4) is enough to prove that for any α ∈ [α̃2, α̃1], the straight line λ =
η

ξ
= tanα

is a C+ characteristic line. From the third equation of (3.3), by simple computation,

λ (u (ξ, η) − ξ) − (v (ξ, η) − η)

= (λu (ξ, η) − v (ξ, η)) − (λξ − η) = λũ (ξ, α) − ṽ (ξ, α)

= û(α) tanα − v̂(α) =
ĉ(α)

cos(α)
= ĉ(α)

√
1 + λ2 = c(ξ, η)

√
1 + λ2.

(3.4)

(2) We want to prove that the expressions of (u, v, c) (ξ, η) = (û, v̂, ĉ) (α) in (3.3) satisfy the characteristic
system (2.9). For fixed α, along the straight C+ characteristic line η

ξ
= tanα, u ,v, c are constant, we

have ∂̄+u = ∂̄+v = ∂̄+c = 0 and immediately we have ∂̄+u+λ−∂̄+v = 0. By the second equation of (3.3),
we have

∂̄−u + λ+∂̄−v = (û′(α) + λ+v̂′(α)) ∂̄−α = 0. (3.5)

(3) The pseudo-Bernoulli’s law (2.12) is also satisfied under the expressions of (u, v, c) (ξ, η) =

(û, v̂, ĉ) (α) in (3.3). Because of ∂̄+u = ∂̄+v = ∂̄+c = 0, it is obviously that along the direction of
C+ characteristic line, we have

∂̄+

(
(u − ξ)2 + (v − η)2

2
+

c2

−γ − 1
+ ϕ

)
= (u − ξ) ∂̄+u + (v − η) ∂̄+v +

2c
−γ − 1

∂̄+c = 0.
(3.6)

And along the direction of C− characteristic, we have

∂̄−

(
(u − ξ)2 + (v − η)2

2
+

c2

−γ − 1
+ ϕ

)
= (u − ξ) ∂̄−u + (v − η) ∂̄−v +

2c
−γ − 1

∂̄−c

=

(
û(α)û′(α) + v̂(α)v̂′(α) +

2ĉ(α)
−γ − 1

ĉ′(α) − ξû′(α) − ξ tanαv̂′(α)
)
∂̄−α

= −ξ
(
û′(α) + tanαv̂′v

)
∂̄−α

(3.3)
= 0.

(3.7)

�

3.2. Center simple wave around a corner

Theorem 4. For the oncoming supersonic flow (u1, 0, c1), near the corner O, the problem (2.1)
with (2.19) and (2.20) admits a local solution consisting of constant states I(u1, 0, c1), II(u2, v2, c2)

AIMS Mathematics Volume 7, Issue 7, 11732–11758.



11741

and an incomplete centered simple wave determined by

R1 :



û (α) = e−µ(α−α1)
((

d1 + d2e2µ(α−α1)
)

sinα +
1
µ

(
d1 − d2e2µ(α−α1)

)
cosα

)
v̂ (α) = e−µ(α−α1)

(
−

(
d1 + d2e2µ(α−α1)

)
cosα +

1
µ

(
d1 − d2e2µ(α−α1)

)
sinα

)
ĉ (α) = −č (α) = e−µ(α−α1)

(
d1 + d2e2µ(α−α1)

)
α = arctan

η

ξ

, (3.8)

where α2 < α < α1, d1 =
c1+µ
√

u2
1−c2

1
2 , d2 =

c1−µ
√

u2
1−c2

1
2 . The flow arrives at the constant states (u2, v2, c2)

when α ≤ α2, and v̂(α2)
û(α2) = − tan θ. From v̂(α)

û(α) = − tan x, we get dθ
dα < 0. So we obtain the inverse function

denoted by α = g(x) (see Figure 5).

-

6

-
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Figure 5. Incomplete centered simple wave in the flow around a sharp corner.

Proof. The principle part of the C+ incomplete centered simple wave is

(u, v, c) (ξ, η) = (û, v̂, ĉ) (α) ,

where α is the inclining angle of characteristic line η = ξ tanα
From Theorem 3.2, we have

cosα
dû
dα

+ sinα
dv̂
dα

= 0. (3.9)

Project pseudo-velocity (U,V) = (û(α) − ξ, v̂(α) − ξ tanα) on direction (− sinα, cosα) and the
direction of C+ characteristics (cosα, sinα), respectively. Then, we obtain (č(α), g (ξ, α)) satisfying:

č(α) = −ĉ(α) = − (û(α) − ξ) sinα + (v̂(α) − ξ tanα) cosα

= −û(α) sinα + v̂(α) cosα,

g (ξ, α) = (û(α) − ξ) cosα + (v̂(α) − ξ tanα) sinα.

(3.10)

Let ξ → 0, we have 
č(α) = −û(α) sinα + v̂(α) cosα,

ǧ(α) = lim
ξ→0

g (ξ, α) = û(α) cosα + v̂(α) sinα.
(3.11)
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We obtain
ǧ2(α) + č2(α) = û2(α) + v̂2(α), (3.12)

and  û(α) = −č(α) sinα + ǧ(α) cosα,

v̂(α) = č(α) cosα + ǧ(α) sinα.
(3.13)

Deriving with respect to α on both side, we obtain
dû(α)

dα
= −č′(α) sinα − č(α) cosα + ǧ′(α) cosα − ǧ(α) sinα,

dv̂(α)
dα

= č′(α) cosα − č(α) sinα + ǧ′(α) sinα + ǧ(α) cosα.
(3.14)

Inserting (3.14) into (3.9), we have
ǧ′(α) = č(α). (3.15)

By virture of Theorem 2, the Bernoulli’s law may be changed to

µ2
(
û2(α) + v̂2(α)

)
−

(
1 + µ2

)
ĉ2(α) = C.

From (3.12), accordingly,

C + č2(α) = µ2
(
û2(α) + v̂2(α) − č2(α)

)
= µ2ǧ2(α). (3.16)

Differentiating the equation above with respect to α on both side, and because of (3.15)

2č(α)č′(α) = 2µ2ǧ(α)ǧ′(α) = 2µ2ǧ(α)č(α). (3.17)

we have
č′(α) = µ2ǧ(α). (3.18)

Combining (3.15) with (3.18)
č′′(α) − µ2č(α) = 0. (3.19)

Solving Eq (3.19) with the initial data č(α1) = −c1 and ǧ2(α1) = u2
1 − č2(α1), we obtain (3.8)

immediately. �

Theorem 5. The incomplete centered simple wave R1 defined in Theorem 3 may not expand to
vacuum, i.e., the centered simple wave R1 connects constant state (u1, 0, c1) and another constant state
(u2, v2, c2), where c2 < ∞.

Proof. For any −θ < α < α1, we have e−µ(α−α1) > 1, eµ(α−α1) < 1,

ĉ′ (α) = −č′ (α) = µ
(
−d1e−µ(α−α1) + d2eµ(α−α1)

)
< 0. (3.20)

ĉ (α) increases as α decreases, so the speed of sonic ĉ (α) = d1e−µ(α−α1) + d2eµ(α−α1) can not tend to
infinity. �
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4. Interaction of the incomplete centered simple wave with the planar rarefaction wave

4.1. Goursat problem

According to [2], the backward planar rarefaction wave R2 expanding the supersonic oncoming flow
(u1, 0, c1) to the vacuum is determined by

R2 :


ξ = u1 +

1 − γ
1 + γ

√
Kγρ−

1+γ
2 −

2
1 + γ

√
Kγρ

−
1+γ

2
1 = u − c,

u = u1 +
2

1 + γ

√
Kγρ−

1+γ
2 −

2
1 + γ

√
Kγρ

−
1+γ

2
1 ,

v = 0,

0 ≤ ρ ≤ ρ1. (4.1)

The two waves R1 and R2 interact firstly at the point P
(
u1 − c1, c1

√
u1−c1
u1+c1

)
and then form a interaction

region Σ1 separated from R1, R2 by PD, PC∞, which are the C∓ cross characteristics curves determined
by R1 and R2, respectively (see Figure 6). It is easy to know that the cross characteristic curve PC∞ is
determined by


ξ = u1 +

1 − γ
1 + γ

√
Kγρ−

1+γ
2 −

2
1 + γ

√
Kγρ

−
1+γ

2
1 ,

η = ρ
1−γ

4

(
Kγ(1 − γ)

3 + γ
ρ−

3+γ
2 +Kγ

(
u1 − c1

u1 + c1
−

1 − γ
3 + γ

)
ρ
−

3+γ
2

1

)1/2

,

0 ≤ ρ ≤ ρ1. (4.2)

Therefore, we can get the expression of PC∞, which is

η=

µ41−γ
3+γ

(
ξ−u1+

2c1

1+γ

)2

+c2
1ρ

−1+γ
2

1

(
u1−c1

u1+c1
−

1−γ
3+γ

)(
ξ−u1+

2c1

1+γ

)− 1−γ
1+γ

 µ2√
Kγ

−
1−γ
1+γ


1/2

(4.3)

where u1 − c1 ≤ ξ.
We define Σ1 more precisely to contain the boundaries PD, PC∞ as well as the C+ cross

characteristic DE1
∞. The solution of the boundary data problem (2.1) with (2.19) in the outside region

of Σ1 consists of constant state (u1, 0, c1), vacuum at infinity, incomplete centered simple wave R1 and
the backward rarefaction wave R2, (see Figure 6). The solution of the boundary data problem inside
the wave interaction region Σ1 can be reduced to a Goursat problem, namely, the system (2.1) with the
boundary data

(u, v, ρ)(ξ, η) =

(u+, v+, ρ+)(ξ, η), on PC∞,

(u−, v−, ρ−)(ξ, η), on PD,
(4.4)

where (u±, v±, ρ±)(ξ, η) is determined by rarefaction wave R2(R1).
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Figure 6. Interactions of waves and global solution of (2.1) with (2.19).

Lemma 3. (Local existence) There is a h > c1, h is sufficiently close to c1 such that the Goursat
problem (2.1) with (4.4) admits a unique C1 solution on the angular domain Σh bounded by PCh, PDh

and level curve c(ξ, η) = h, which intersects with PC∞ at Ch and PD at Dh.

Proof. From [26] we know that for sufficiently small ε > 0 the Goursat problem (2.1) with (4.4) admits
a unique local C1 solution on the angular domain closed by PC∞, PD and the straight line ξ = u1−c1+ε.
By ∂̄−c|PC∞ > 0, ∂̄+c|PD > 0 and the characteristic decompositions (2.18), we have that the solution
satisfies ∂̄±c > 0. Let

h = inf
ξ=u1−c1+ε

c (ξ, η) ,

Then, the Goursat problem has a C1 solution on Σh. �

Boundary data estimates

Lemma 4. 1) On the C+ cross characteristic curve PC∞, we have

0 < θ̂ ≤ δ ≤
α1 + π

2

2
, β = −

π

2
, ∂̄+α < 0. (4.5)

2) Let β = β(α) (α2 ≤ α ≤ α1) be the image curve of PD on the (α, β) planar, then this curve can be
one of the following three situations (see Figure 7): (i) β = β(α) passes through the line α−β = 2θ̂ and
has unique intersection point with it, such that β′(α) > 0 above the line, β′(α) = 0 at the intersection
point and β′(α) < 0 below the line;

(ii) β = β(α) doesn’t pass through α − β = 2θ̂ and has unique intersection point with it, such that
β′(α) = 0 at the intersection point and β′(α) < 0 below the line;

(iii) β = β(α) is located below α − β = 2θ̂, such that β′(α) < 0.
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Figure 7. Invariant region of (α, β).

Proof. 1) According to (4.3), we get that (4.5) is valid on PC∞.
2) From the incomplete centered simple wave R1, we obtain ∂̄−c > 0 and ∂̄−α < 0 on PD. The

image point P̄ of P is below the line α − β = 2θ̂ because of (α − β)(P) = α1 + π
2 > 2θ̂. From the last

equation of (2.15), we get ∂̄−β(P) > 0. Combining with ∂̄−α(P) < 0, we have

β′(α)
∣∣∣
P̄

=
∂̄−β

∂̄−α

∣∣∣∣∣∣
P

< 0.

Hereinafter, we consider the property of β = β(α) along PD. Before β = β(α) arrives at α − β = 2θ̂,
we get ∂̄−β > 0 by (2.15). Combining with ∂̄−α < 0, we have β′(α) < 0. At the intersection point
of β = β(α) with α − β = 2θ̂, we get ∂̄−β = 0, which combines with ∂̄−α < 0 to give β′(α) = 0. If
(α, β)(D) is located above the straight line α − β = 2θ̂, β = β(α) must pass through the straight line .
After β = β(α) passes through α − β = 2θ̂, we have ∂̄−β < 0 by (2.15), which combines with ∂̄−α < 0
to give β′(α) > 0. Moreover, ∂̄−α < 0 implies that there is only one intersection point of β = β(α) with
α − β = 2θ̂. Then, we have that, the case (ii) holds, if (α, β)(D) is on the line α − β = 2θ̂. The case (iii)
holds, if (α, β)(D) is located below the straight line. �

Lemma 5. (Invariant region) Suppose that the Goursat problem (2.1) with (4.4) admits a C1 solution
on Σh (h > c1), and the assumptions of Theorem 1 hold, there exists a positive constant ε0 such that for
any ε ∈ (0, ε0),

(α, β) (ξ, η) ∈ Λε, ∀ (ξ, η) ∈ Σh, (4.6)

where Λε =
(
2θ̂ − π

2 − ε, α1 + ε
)
×

(
−π2 − ε, α1 − 2θ̂ + ε

)
.

Proof. Because of α1 <
π
2 and π

2 < 4θ̂− π
2 , we have the square domain Λ =

(
2θ̂ − π

2 , α1

)
×
(
−π2 , α1 − 2θ̂

)
⊂

Γ, where Γ denotes the open strip region between the line α − β = 0 and the line α − β = π. By
computations, for sufficient small constant ε0 > 0, the open square domain Λε ⊂ Γ for any ε ∈ (0, ε0).
The images of PC∞ and PD are both in Λε from α2 > 2θ̂ − π

2 in Theorem 1. According to the
local existence in Lemma 3 and P̄ ∈ Λ, we have (α, β)(ξ, η) ∈ Λε for any (ξ, η) ∈ Σh when h is
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sufficiently close to c1. Referring to Figure 7, the four vertexes of Λε are M̄′(2θ̂ − π
2 − ε, α1 − 2θ̂ + ε),

N̄′(α1 + ε, α1 − 2θ̂ + ε), P̄′(α1 + ε,−π2 − ε) and C̄′∞(2θ̂ − π
2 − ε,−

π
2 − ε).

Then, due to ∂̄−c|PC∞ > 0, ∂̄+c|PD > 0 and the characteristic decompositions (2.18), we have that

∂̄±c > 0 in Σh. (4.7)

If the conclusion of Lemma 5 is invalid, by the method of continuity, there must exist a point H ∈ Σh,

such that (α, β) (H) ∈
4⋃

i=4
li and (α, β) (ξ, η) ∈ Λε for all (ξ, η) ∈ ΣH \ {H}, where ΣH is the closed domain

bounded by characteristic curves PH+, PH−, H+H and H−H, and H+ (H−) is the intersection point of
the C+ (C−) characteristic curve passing through H with PD (PC∞), (see Figure 8).
1) If (α, β) (H) ∈ M̄′N̄′ \ {N̄′}, we have

c∂̄−β (H) = −
sin 2δ
2µ2

(
tan2 θ̂ − tan2 δ

)
∂̄−c|H < 0

which contradicts to ∂̄−β (H) ≥ 0.
2) If (α, β) (H) ∈ N̄′P̄′ \ {N̄′}, we have

c∂̄+α (H) =
sin 2δ
2µ2

(
tan2 θ̂ − tan2 δ

)
∂̄+c|H < 0

which contradicts to ∂̄+α (H) ≥ 0.

-

6

�

N

U

*
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Figure 8. Domain ΣH.

3) If (α, β) (H) ∈ P̄′C̄′∞ \ {C̄
′
∞} or (α, β) (H) ∈ C̄′∞M̄′ \ {C̄′∞}, we obtain the conclusions similarly.

4) If (α, β) (H) = N̄′, we define α̃ on H+H such that c∂̄+α̃ =
sin 2δ
2µ2

tan2 θ̂ − tan2
α̃ −

(
ᾱ1 − 2θ̂ + ε

)
2

∂̄+c, along H+H,

α̃ (H+) = α (H+) .

(4.8)

Then we have
α̃ (H+) < ᾱ1 + ε.

Combining (4.8) with the first equation of (2.15), we get c∂̄+ (α − α̃) =
sin 2δ
2µ2

tan2
α̃ −

(
ᾱ1 − 2θ̂ + ε

)
2

− tan2 α − β

2

∂̄+c, along H+H,

(α − α̃) (H+) = 0.

(4.9)
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Substituting α (H+) = α̃ (H+) into the first equation of (4.9), we get ∂̄+ (α − α̃) (H+) < 0. We
assert that (α − α̃) (H̃) < 0, H̃ ∈ H+H. If not, there exists a point H1 ∈ H+H \ {H+,H} such that
(α − α̃) (H1) = 0 and (α − α̃) (ξ, η) < 0, (ξ, η) ∈ H+H1 \ {H+,H1}. Therefore, ∂̄+ (α − α̃) (H1) ≥ 0. But,
according to hypothesis 2θ̂ − π

2 − ε < α (H1) < ᾱ1 + ε, −π2 − ε < β (H1) < ᾱ1 − 2θ̂ + ε and the Eq (4.9),
we get ∂̄+ (α − α̃) (H1) < 0, which leads to a contradiction. Hence, we get

α (H) < α̃ (H) < ᾱ1 + ε,

which contradicts to the hypothesis (α, β) (H) = N̄′. Similarly, we have that (α, β) (H) = C̄′∞ is also
impossible. �

Let ε→ 0, we can get the following theorem according to Lemma 5.

Theorem 6. (Hyperbolicity) Assume that the Goursat problem (2.1) with (4.4) admits a C1 solution on
Σh (h > c1), and the assumptions of Theorem 1.1 hold. Then there holds

0 < 2θ̂ −
π

4
−
α1

2
≤ δ ≤

α1

2
+
π

4
< π

and
0 < 2θ̂ −

π

2
≤ α ≤ α1, −

π

2
≤ β ≤ α1 − 2θ̂

on Σh.

Lemma 6. (C0 estimates) Assume that the Goursat problem (2.1) with (4.4) admits a C1 solution on
Σh (h > c1), and the assumptions of Theorem 1.1 hold. Then there exists a functionM(h), such that

‖ (u, v, c) ‖C0(Σh)<M(h).

Proof. We choose the maximum ξ := ξ(h) on the level curve c(ξ, η) = h, and for any u on the domain
Σh, we have

u = ξ + c
cosσ
sin δ

≤ ξ(h) + Ch :=M(h).

we can estimates v similarly. �

Lemma 7. Assume that the Goursat problem (2.1) with (4.4) admits a C1 solution on Σh (h > c1),
and the assumptions of Theorem 1.1 hold. Then ∂̄±c

c3 are uniformly bounded in Σh, that is ( ∂̄+c
c3 ,

∂̄−c
c3 ) ∈

(0,N) × (0,N), where N = 2µ2.

Proof. Since ∂̄+c
c3 > 0 on PC∞ and ∂̄−c

c3 > 0 on PD, we can get ∂̄±c
c3 > 0 for all (ξ, η) ∈ Σh from

characteristic decompositions (2.18). As h is sufficiently close to c1, it is obvious that ‖ ∂̄±c
c3 ‖C0 < N .

We use the method of contradiction to prove the uniform boundedness. Suppose there exists a
interior point T such that ∂̄−c

c3 = N or ∂̄+c
c3 = N and ( ∂̄+c

c3 ,
∂̄−c
c3 ) ∈ (0,N) × (0,N) on ΣT\{T }, where ΣT

is the closed domain bounded by PT−, PT+, TT−, TT+ (the C− characteristic curve passing through T
intersects with PC∞ at point T−, the C+ characteristic curve passing through T intersects with PD at
point T+). Without loss of generality, we assume that ∂̄−c

c3 = N at the point T . So we get ∂̄+

(
∂̄−c
c3

)
(T ) ≥ 0.

Because of the first equation of the characteristic decompositions (2.18), we get

c∂̄+

(
∂̄−c
c3

)
=
∂̄−c
c3

(
sin 2δ −

c3

2µ2 cos2 δ

∂̄−c
c3 − c3

(
2 +

Ω cos 2δ
2µ2

)
∂̄+c
c3

)
.
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Substituting ∂̄−c
c3 (T ) = N into the above equation, we have that

c∂̄+

(
∂̄−c
c3

)
(T ) = N

(
sin 2δ −

c3

2µ2 cos2 δ
N − c3

(
2 +

Ω cos 2δ
2µ2

)
∂̄+c
c3

)
< 0,

which leads to a contradiction. So we complete the proof. �

From Lemma 7, (2.14) and the identities

∂ξ = −
sin β∂̄+ − sinα∂̄−

sin(2δ)
, ∂η =

cos β∂̄+ − cosα∂̄−
sin(2δ)

,

we have the following lemma.

Lemma 8. Assume that the Goursat problem (2.1) with (4.4) admits a C1 solution on Σh (h > c1), and
the assumptions of Theorem 1.1 hold. Then there exists a constant P, which is independent of h, such
that

‖ (Du,Dv,Dc) ‖C0(Σh)≤
Ph4

ε(h)
.

4.2. Global solution

Theorem 7. Assume that the assumptions of Theorem 1.1 hold. Then the Goursat problem (2.1)
and (4.4) admits a unique C1 solution on the region Σ bounded by PC∞ and PD.

Proof. The Goursat problem (2.1) with (4.4) admits a C1 solution on Σh. Similar to the proof in
Theorem 4.12 in [31], we obtain that the level curve c(ξ, η) = h is Lipschitz continuous, and then it is
rectifiable. See Figure 9, let Q′ and Q are two arbitrary different points on the level curve c(ξ, η) = h.
The C+ characteristic passing through Q′ intersects with the C− characteristic passing through Q at a
point J. The level curve c(ξ, η) = h is a non-characteristic because of ∂̄±c > 0, so J , Q′ and J , Q.
By the method in Theorem 4.12 in [31], it can be proved that the ‘small’ Goursat problem (2.1) with
the C± characteristic boundaries JQ′ and JQ admits a unique C1 solution if the |Q′Q| is sufficiently
small. Then, by the Heine-Borel Theorem, we can extend the existence region of C1 solution from Σh

to Σh̄ (h̄ > h) by solving finite number of ‘small’ Goursat problem. �
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Figure 9. ‘Small’ Goursat problem in (ξ, η) plane.

AIMS Mathematics Volume 7, Issue 7, 11732–11758.



11749

5. Interaction of a non-planar simple wave with the solid boundary

After the interaction of the incomplete centered simple wave R1 with the backward planar
rarefaction wave R2 in the wave interaction region Σ1, a simple wave denoted by R−3 , which is adjacent
to the constant state (u2, v2, c2), emits from the C+ cross characteristic curve DE1

∞ (see Figure 6). The
characteristic decompositions (2.18) follow that ∂̄+c|DE1

∞
> 0, and then ∂̄+c > 0 in R−3 . Therefore R−3

is an expand wave. Using (2.18), the two equations in the middle of (2.15) and ∂̄+c > 0 in R−3 , we
know that the straight characteristics of R−3 can not intersect with each other. Then R−3 will touch the
rigid wall and interact with each other. The straight characteristic DF touches the boundary firstly and
reflects a C+ characteristics.

The outcome of the reflecting of the simple wave R−3 on a rigid wall simply corresponds to the
interaction of two symmetric simple waves with the wall as the axis of symmetry. So the reflecting
problem above can be solved by the interaction of two symmetric simple waves R−3 and R+

3 , which is
the symmetric part of R−3 with respect to OB. It forms a new Goursat problem, the two characteristic
boundaries of which are C+ characteristics FE2

∞ and C− characteristics FE′2∞, see Figure 6. The solution
of the reflecting problem is the half part of the Goursat problem.

5.1. Interaction of two symmetrical simple waves

We may study a new symmetric Goursat problem for convenience because of the invariance of the
system in coordinates translation and rotation, (see Figure 10).
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Figure 10. Interaction of two symmetrical simple waves.

Assume that the parametric form of D′E′1∞ is

ξ = g(s), η = h(s), s1 ≤ s ≤ s2,

and the values of u, v, c and α on D′E′1∞ are

u = ū(s), v = v̄(s), c = c̄(s), α(s) = ᾱ(s) (s1 ≤ s ≤ s2 ),

where ᾱ1 ≤ ᾱ(s) ≤ ᾱ2, and ᾱ(s) is the C+ characteristic inclination angle, ᾱ1 = min
s1≤s≤s2

ᾱ(s) and
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ᾱ2 = max
s1≤s≤s2

ᾱ(s). By the symmetry, the parametric form of DE1
∞ is

ξ = g(s), η = −h(s), s1 ≤ s ≤ s2,

and the values of u, v, c and β on DE1
∞ are

u = ū(s), v = −v̄(s), c = c̄(s), β(s) = −ᾱ(s) (s1 ≤ s ≤ s2 ),

where −ᾱ(s) is the C− characteristic inclination angle. From Figure 2, the parametric expression of the
C− cross characteristic FE′2∞ is

ξ = ξ(s) = ū(s) − c̄(s) sin ᾱ(s) − c̄(s) cot
ᾱ(s) − β(s)

2
cos(ᾱ(s)),

η = η(s) = v̄(s) + c̄(s) cos ᾱ(s) − c̄(s) cot
ᾱ(s) − β(s)

2
sin(ᾱ(s)),

(5.1)

from the last equation of (2.15), the C− characteristic angle β(s) along FE′2∞ is determined by β′(s) = −
sin (ᾱ(s) − β(s))

2µ2c̄(s)

(
m − tan

ᾱ(s) − β(s)
2

)
c̄′(s),

β(s1) = −ᾱ(s1).
(5.2)

By the symmetry, we can also obtain the parametric expression of the C+ cross characteristic FE2
∞.

In this section, we study the symmetric Goursat problem (2.1) with boundary data (u, v, c)|FE′2∞ = (u, v, c) (ξ(s), η(s)) = (ū, v̄, c̄) (s),
(u, v, c)|FE2

∞
= (u, v, c) (ξ(s),−η(s)) = (ū,−v̄, c̄) (s),

s1 ≤ s ≤ s2. (5.3)

where (ū, v̄, c̄) ∈ C1.

5.1.1. Local existence

The problem (2.1) with (5.3) is a standard Goursat problem. Then we have the following local
existence theorem.

Lemma 9. (Local existence) There is a h′ > c1 and h′ is sufficiently close to c1, the Goursat
problem (2.1) with (5.3) admits a unique C1 solution on the angular domain Σh′ bounded by FE′h′ ,
FEh′ and level curve c(ξ, η) = h′, which intersects with FE′ at E′h′ and FE at Eh′ .

Proof. The proof is similar to that of Lemma 3, we omit the detail. �

5.1.2. Boundary data estimates

Lemma 10. On the boundary FE′2∞,
1) when ᾱ1 + ᾱ2 ≤ 2θ̂, (α, β)(ᾱ) ∈ [ᾱ1, ᾱ2] × [ᾱ1 − 2θ̂,−ᾱ1];
2) when ᾱ1 + ᾱ2 > 2θ̂, (α, β)(ᾱ) ∈ [ᾱ1, ᾱ2] × [−ᾱ2, ᾱ2 − 2θ̂).
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Proof. When ᾱ1 + ᾱ2 ≤ 2θ̂, we have β(s1) = −ᾱ(s1) ∈ [ᾱ1 − 2θ̂,−ᾱ1]. Suppose that there exists an
s′ ∈ (s1, s2), satisfying β(s′) = −ᾱ1, while β(s) < −ᾱ1, s ∈ (s1, s′). Then we have

α(s′) − β(s′)
2

=
ᾱ(s′) − (−ᾱ1)

2
=
ᾱ(s′) + ᾱ1

2
< θ̂,

by the last equation of (2.15), we get ∂̄−β(s′) < 0. This is a contradiction. Thus β(s) < −ᾱ1, for all
s ∈ (s1, s2).

On the other hand, suppose that there exists an s′′ ∈ (s1, s2), satisfying β(s′′) = ᾱ1 − 2θ̂, while
β(s) > ᾱ1 − 2θ̂, s ∈ (s1, s′′). Then, we have

α(s′′) − β(s′′)
2

=
ᾱ(s′′) − (ᾱ1 − 2θ̂)

2
=
ᾱ(s′′) − ᾱ1

2
+ θ̂ > θ̂,

by the last equation of (2.15), we get ∂̄−β(s′) > 0. This is a contradiction. Thus β(s) > ᾱ1 − 2θ̂, for all
s ∈ (s1, s2).

The other case can be proved similarly, we omit the details. �

Similarly, On the boundary FE2
∞, we can also obtain the boundary estimates.

Lemma 11. On the boundary FE′2∞,
1) when ᾱ1 + ᾱ2 ≤ 2θ̂, (α, β)(ᾱ) ∈ [ᾱ1,−ᾱ1 + 2θ̂] × [−ᾱ2,−ᾱ1];
2) when ᾱ1 + ᾱ2 > 2θ̂, (α, β)(ᾱ) ∈ (−ᾱ2 + 2θ̂, ᾱ2] × [−ᾱ2,−ᾱ1].

5.1.3. Hyperbolicity and priori C0 estimates

Lemma 12. (Invariant region) In the case of ᾱ1 + ᾱ2 ≤ 2θ̂, suppose that the Goursat problem (2.1)
with (5.3) admits a C1 solution on Σh′ (h′ > c1), and ᾱ1 > 0, there exists a positive constant ε′0 such
that for any ε ∈ (0, ε′0),

(α, β) (ξ, η) ∈ Λ′ε, ∀ (ξ, η) ∈ Σh′ , (5.4)

where Λ′ε =
(
ᾱ1 − ε,−ᾱ1 + 2θ̂ + ε

)
×

(
ᾱ1 − 2θ̂ − ε,−ᾱ1 + ε

)
.

Proof. Because of ᾱ1 > 0, we have a closed square domain Λ′ := [ᾱ1,−ᾱ1 + 2θ̂] × [ᾱ1 − 2θ̂,−ᾱ1] ⊂ Γ,
where Γ denotes the open strip region between the lines α − β = 0 and α − β = π. By computations,
for sufficient small constant ε′0 > 0, the open square domain Λ′ε ⊂ Γ for any ε ∈ (0, ε′0). The images
of the two boundaries FE2

∞ and FE′2∞ are both in Λ′ε. Refer to Figure 11, the four vertexes of Λ′ε are
P1(ᾱ1 − ε,−ᾱ1 + ε), P2(−ᾱ1 + 2θ̂+ ε,−ᾱ1 + ε), P3(−ᾱ1 + 2θ̂+ ε, ᾱ1 − 2θ̂− ε) and P4(ᾱ1 − ε, ᾱ1 − 2θ̂− ε).
We denote that l1 = P1P2, l2 = P2P3, l3 = P3P4 and l4 = P4P1.
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−ᾱ1+ε

Figure 11. Invariant region of (α, β).

Then, due to ∂̄−c|FE′2∞ > 0, ∂̄+c|FE2
∞
> 0 and the characteristic decompositions (2.18), we have that

∂̄±c > 0 in Σh′ . (5.5)

If the conclusion of Lemma 12 is invalid, by the method of continuity, there must exist a point H′ ∈ ΣH′ ,

such that (α, β) (H′) ∈
4⋃

i=4
li and (α, β) (ξ, η) ∈ Λε for all (ξ, η) ∈ Σh′\{H′}, where ΣH′ is the closed domain

bounded by characteristic curves FH′+, FH′−, H′+H′ and H′−H′, and H′+ (H′−) is the intersection point
of the C+ (C−) characteristic curve passing through H′ with FE′2∞ (FE2

∞), (see Figure 12).

-

6

�

~

U

7

η

ξ

F

E2
∞

E′2∞

H′

H′−

H′+

∂̄−

∂̄+

ΣH′

Figure 12. Domain Σh′ .

1) If (α, β) (H′) ∈ l1 \ {P2}, we have

c∂̄−β
(
H′

)
= −

sin 2δ
2µ2

(
tan2 θ̂ − tan2 δ

)
∂̄−c

∣∣∣
H′
< 0.

which contradicts to ∂̄−β (H′) ≥ 0.
2) If (α, β) (H′) ∈ l2 \ {P2}, we have

c∂̄+α
(
H′

)
=

sin 2δ
2µ2

(
tan2 θ̂ − tan2 δ

)
∂̄+c

∣∣∣
H′
< 0,
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which contradicts to ∂̄+α (H′) ≥ 0.
3) If (α, β) (H′) ∈ l3 \ {P4} or (α, β) (H′) ∈ l4 \ {P4}, we get the conclusion similarly.
4) If (α, β) (H′) = P2, we define α̃ on H′+H′ such that c∂̄+α̃ =

sin 2δ
2µ2

(
tan2 θ̂ − tan2 α̃ − (−ᾱ1 + ε)

2

)
∂̄+c, along H′+H′,

α̃ (H′+) = α (H′+) .
(5.6)

Then by
ᾱ1 − ε < ᾱ1 < α̃

(
H′+

)
< ᾱ2 < −ᾱ1 + 2θ̂ < −ᾱ1 + 2θ̂ + ε,

we have
α̃
(
H′+

)
< −ᾱ1 + 2θ̂ + ε.

Combining (5.6) with the first equation of (2.15), we get c∂̄+ (α − α̃) =
sin 2δ
2µ2

(
tan2 α̃ − (−ᾱ1 + ε)

2
− tan2 α − β

2

)
∂̄+c, along H′+H′,

(α − α̃) (H′+) = 0.
(5.7)

Substituting α (H′+) = α̃ (H′+) into the first equation of (5.7), we get ∂̄+ (α − α̃) (H′+) < 0. We assert
that (α − α̃) (H̃′) < 0, H̃′ ∈ H′+H′. If not, there exists a point H′1 ∈ H′+H′ \ {H′+,H′} such that
(α − α̃) (H′1) = 0 and (α − α̃) (ξ, η) < 0, (ξ, η) ∈ H′+H′1 \ {H′+,H′1}. Therefore, ∂̄+ (α − α̃) (H′1) ≥ 0.
But, according to hypothesis ᾱ1 − ε < α (H′1) < −ᾱ1 + 2θ̂ + ε, ᾱ1 − 2θ̂ − ε < β (H′1) < −ᾱ1 + ε

and the Eq (5.7), we get ∂̄+ (α − α̃) (H′1) < 0, which leads to a contradiction. Hence, we get

α
(
H′

)
< α̃

(
H′

)
< π − ᾱ1 + 2θ̂ + ε,

which contradicts to the hypothesis (α, β) (H′) = P2. Similarly, we have that (α, β) (H′) = P4 is also
impossible. �

Similarly, we can obtain the invariant region to the other case.

Lemma 13. (Invariant region) In the case of ᾱ1 + ᾱ2 > 2θ̂, suppose that the Goursat problem (2.1)
with (5.3) admits a C1 solution on Σh′ where h′ > c1, and ᾱ2 < 2θ̂, there exists a positive constant ε0

such that for any ε ∈ (0, ε′0),
(α, β) (ξ, η) ∈ Λ′ε, ∀ (ξ, η) ∈ Σh′ , (5.8)

where Λ′ε =
(
−ᾱ2 + 2θ̂ − ε, ᾱ2 + ε

)
×

(
−ᾱ2 − ε, ᾱ2 − 2θ̂ + ε

)
.

Let ε → 0, immediately, we have that if the Goursat problem (2.1) with (5.3) admits a C1 solution
on Σh′ under the conditions 0 < ᾱ1 < ᾱ2 < 2θ̂, the solution satisfies that

0 < ᾱ1 ≤ δ ≤ 2θ̂ − ᾱ1 <
π

2
, (5.9)

or
0 < 2θ̂ − ᾱ2 ≤ δ ≤ ᾱ2 <

π

2
. (5.10)

Lemma 14. (C0 estimates) Assume that the Goursat problem (2.1) with (5.3) admits a C1 solution on
Σ′h (h′ > c1). Then there exists a functionM′(h′) > 0, such that

|| (u, v, c) ||C0(Σh′) ≤ M
′(h′). (5.11)

Proof. The proof is similar to that of Lemma 6, we omit the detail. �
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5.1.4. Gradient estimates

Lemma 15. Assume that the Goursat problem (2.1) with (5.3) admits a C1 solution on Σh′ (h′ > c1).
Then ∂̄±c

c3 are uniformly bounded in Σh′ , that is(
∂̄+c
c3 ,

∂̄−c
c3

)
∈ (0,N) × (0,N) (5.12)

where N = 2µ2.

Proof. From Lemma 7, we know ∂̄+c
c3 ∈ (0,N) on DE1

∞. Due to FE2
∞ is the C+ cross characteristic

curve of the simple wave R−3 , we get ∂̄+c
c3 ∈ (0,N) on FE2

∞. By symmetry, we also have ∂̄−c ∈ (0,N) on
FE′2∞. We will prove that the results are also correct in the interior of Σh′ .

Let T ′ be an arbitrary point in Σh′ , and Σ′T is a closed domain bounded by FT ′+, FT ′−, T ′+T ′ and T ′−T
′,

T ′+ (T ′−) is the intersection point of C+ (C−) characteristic curve passing through T ′ with FE′2∞ (FE2
∞).

Without loss of generality, assume ∂̄−c
c3 (T ′) = N , by the first equation of (2.18) we have

c∂̄+

(
∂̄−c
c3

)
(T ′) = N

(
sin 2δ −

c3

2µ2 cos2 δ
N − c3

(
2 +

Ω cos 2δ
2µ2

)
∂̄+c
c3

)
< 0.

It is a contradiction. Therefore, by the method of continuity we prove the uniform boundedness of
∂̄±c
c3 . �

Lemma 16. (Gradient estimates) Assume that the Goursat problem (2.1) with (5.3) admits a C1

solution on Σh′ (h′ > c1). Then there exists a positive constant P′ which is independent of h′, such
that

‖ (Du,Dv,Dc) ‖C0(Σh′ )≤
P′h′4

ε′(h′)
.

Proof. The proof is similar to that of Lemma 8, we omit the detail. �

5.2. Global solution

Theorem 8. Assume that 0 < ᾱ1 < ᾱ2 < 2θ̂. The Goursat problem (2.1) with (5.3) has a solution on a
triangle domain bounded by FE′2∞, FE2∞ (see Figure 13).
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Figure 13. ‘Small’ Goursat problem in (ξ, η) plane.
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6. Global solution of the gas expansion problem around the sharp corner

Proof. By the invariant region for (α, β) in section 4, we obtain the range of the C− characteristic
inclination angle β in R−3 , which is

β ∈
(
−
π

2
, α1 − 2θ̂

)
.

Then the range of angles between the characteristic inclination angles in R−3 and the rigid wall OB is(
−α1 + 2θ̂ − θ,

π

2
− θ

)
.

So we get that ᾱ1 = −α1 + 2θ̂ − θ, ᾱ2 = π
2 − θ. Then, if

0 < −α1 + 2θ̂ − θ <
π

2
− θ < 2θ̂.

we obtain the Theorem 8. �

Proof. Combining Theorems 7 and 8, we get Theorem 1. �

7. Conclusions

In this paper, the self-similar solutions for the 2D pseudo-steady isentropic irrotational supersonic
flow of the generalized Chaplygin gas around the convex corner are constructed. The supersonic flow
turns the convex corner near the cusp of the corner locally by an incomplete centered expansion wave.
Using the methods of characteristic decompositions and invariant regions, we get the global existence
of the solution up to infinity of the gas expansion problem.
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