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1. Introduction

Due to its superlative physical qualities and its beauty, the diamond is a renowned structure.
Polishing, drilling, cutting, and heatsink in electronics are numerous practical and industrial
applications of diamond. Its hardness, exceptional thermal conductivity determines by its rigor
of composition. A single molecule with macroscopic size makes it into a diamond crystal. The
model depicting fundamental atomic groupings undergoes alterations while going from molecules
to materials, both in terms of idea and actual manifestation, as well as insignificant computational
processing [1].

There are four types of higher diamondoids and each have been assigned with four different colors
and name. The assigned colors are yellow, red, blue, and green, while the names are, nonbranched
rodlike zigzag catamantanes associated with yellow. The regularly branched catamantanes are linked
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with blue diamondoids, chiral diamondoids are red-colored and the green-colored are perimantanes
diamondoids. All these series have been isolated and found from petroleum [2].

A chemical/molecular graph is a hydrogen-depleted molecular structure in which the edges
represent bonds and the vertices represent atoms in the underlying organic chemical compounds. The
chemical graph theory is the study of these chemical graphs [3, 4]. There are enough data available on
this assumption and transformation from a chemical structure to a graph (vertex-edge-based structure).
More detail can be found in the recent literature such as [5–7].

The notion of resolving set was proposed by the researcher in [8]. It is the first study to look at
the notion of finding a graph’s metric dimension using the definition of a resolving set. The least
cardinality of a resolving set is the metric dimension. The impetus for inventing the notion of finding
the set came from LORAN and sonar stations. After that, several academics took this concept and
labeled it in a variety of ways. The idea of a resolving set is dubbed as a metric dimension in [9]’s
study. While the researchers in [10, 11] renamed the same notion with metric foundation or resolving
set in a purely theoretical fashion. A more advanced definition of a resolving set was developed in the
last decade. Researchers of [12] in which the idea of edge resolving set is explained. The notion is
referred to as a fault-tolerant edge resolving set is defined in [13], and it is a generalized form of the
edge resolving set. A Further generalized version of edge and resolving set is named as mixed-metric
resolving set is defined in [14].

Many concepts and implementations sprang from the generalized approach of resolving set. In
electronics [15], a recent innovation reveals the implementation of locating set (and its extensions).
A method for studying diverse polyphenyl structures, especially for the polymer industry citation
Nadeem2021b. In the broader view, this idea is used in combinatorial optimization [16], some complex
games or robotic roving [17], image processing [8], pharmaceutical chemistry [18].

The job of determining a graph’s resolving set is a non-deterministic polynomial-time hard problem
(NP), with an unknown algorithmic difficulty [19–21]. Metric dimension or resolving set has a large
literature because of its many variations and applications in various disciplines. Few research are
discussed by [22–29]. There is extensive research on the edge metric only the most current and broad
results will be discussed here. A generalized structure of convex polytopes are discussed in [30],
barycentric is an operation of graph discussed in [31], study of edge and its base parameter studied
in [32], necklace structure is discussed in [33], generalized version of edge resolving set is discussed
in [34, 35], computer networks and their edge metric based parameters are studied in [36–38]. For
the mixed metric, [39] studied the generalized Peterson graph, rotational symmetric graph is discussed
in [40], generalized path related graphs are studied in [41], generalized class of an aromatic compound
are studied in [42, 43], quartz based structure discussed in [44]. Moreover, some recent studies and
literature are available at [45, 46].

Given below are some basic concepts elaborated for further use in our main results.

Definition 1.1. [12, 37] A vertex α ∈ V (G) and a branch e = α1α2 ∈ E (G) , the distance between α
and edge e is defined as d(e, α) = min{d(α1, α), d(α2, α)}. Suppose Re ⊂ V (G) is the subset of vertex
set and defined as Re = {α1, α2, . . . , αs}, and a branch e ∈ E (α) . The identification r(e|Re) of a branch
e with respect to Re is actually a s−tuple distances (d(e, α1), d(e, α2), . . . , d(e, αs)). If each branch from
E (G) have unique identification according to Re, then Re is called an edge metric resolving set of
network ℵ. The minimum count of the elements in Re is called the edge metric dimension of ℵ and it is
represented by dime (G) .
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Definition 1.2. [13,37] An edge metric resolving set Re of a network G is said to be fault-tolerant edge
metric (Re, f ) if for each α ∈ Re, Re\α is also a edge metric resolving set for G. The minimum amount
of the fault-tolerant edge metric resolving set is known as the fault-tolerant edge metric dimension and
described as dime, f (α) .

Definition 1.3. [36] A vertex α of a connected associated graph G of a chemical structure,
differentiates nodes (α1) and edges (e1), if d (α1, α) , d (α, e1) . A subset Rm is a mixed resolving
set if any different pair of components of G are separated by a node of Rm. The minimum number of
nodes in mixed resolving set for G is named the mixed metric dimension and is denoted by dimm(G). It
is also known as blended version of both metric [8] and edge metric dimension [10].

In this draft, we have discussed edge metric dimension and their generalizations for the generalized
perimantanes diamondoid structure and proved that each parameter depends on the copies of original
or base perimantanes diamondoid structure and changes with the parameter n or its number of copies.
The next section will present some main results, conclusions are drawn and at the end, references are
given for more and deep insight into this topic and structure.

2. Construction and methodology of presented work

The structure shown in Figure 1, is a green-colored perimantanes diamondoid and one of a higher
diamond structure. Its topological version is found in [1,2] and motivated by the structures applications
and usage, we look into the metric-based parameters of this structure.

Figure 1. Vertex-edge sets of perimantanes diamondoid structure Dn.

The perimantanes diamondoid structure has total |V (PDλ)| = 22λ + 3, number of vertices and total
edges are |E (PDλ)| = 38λ+2. The labeling of vertices and edges is described in Figure 1 and is utilized
in the major results. Furthermore, vertex and edge are stated given below.

V (PDλ) ={α
j
ξ : ξ = 1, 2, . . . , 19, j = 1, 2, . . . , λ} ∪ {βξ : ξ = 1, 2, . . . , 3 (λ + 1)},

E (PDλ) ={α
j
ξα

j
ξ+1 : ξ = 1, 2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 18 j = 1, 2, . . . , λ} ∪ {βξβξ+1 : ξ = 1,

4, 7, . . . , 3λ + 1, ξ = 2, 5, . . . , 3λ + 1} ∪ {βξα
j
2 : ξ = 1, 4, 7, . . . , 3λ − 2, j = 1, 2,

. . . , λ} ∪ {βξα
j
3, βξα

j
4 : ξ = 2, 5, 8, . . . , 3λ − 1, j = 1, 2, . . . , λ} ∪ {βξα

j
5 : ξ = 3, 6, 9,

. . . , 3λ, j = 1, 2, . . . , λ} ∪ {βξα
j
15 : ξ = 4, 7, 10, . . . , 3λ + 1, j = 1, 2, . . . , λ} ∪ {βξα

j
16,
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βξα
j
17 : ξ = 5, 8, 11, . . . , 3λ + 2, j = 1, 2, . . . , λ} ∪ {βξα

j
18 : ξ = 6, 9, 12, . . . , 3λ + 3,

j = 1, 2, . . . , λ}.

Presented below are the main results of this novel structure.

Lemma 2.1. Let PDλ is a structure of perimantanes diamondoid with λ ≥ 1, and Re is the edge
resolving set of PDλ for λ = 1. Then one of the possible edge resolving set is defined as

Re = {β1, β4, α
1
7}.

Proof. Using the definition of edge resolving set and find the locations of each edge with regards to the
chosen edge resolving set. Let Re = {β1, β4, α

1
7}, is one of a candidate subset and given below are the

representations of every edge of structure of perimantanes diamondoid PD1, and the structure shown
in the Figure 1.

r
(
α

j
ξα

j
ξ+1|Re

)
=



(ξ, ξ + 2, ξ) , if ξ = 1;
(ξ − 1, ξ + 1, ξ) , if ξ = 2;
(ξ − 2, ξ, ξ + 1) , if ξ = 4;
(ξ − 5, ξ − 5, ξ − 7) , if ξ = 7;
(ξ − 7, ξ − 7, ξ − 6) , if ξ = 9, 10;
(ξ − 8, ξ − 8, ξ − 5) , if ξ = 12;
(ξ − 11, ξ − 13, ξ − 13) , if ξ = 14;
(ξ − 12, ξ − 14, ξ − 13) , if ξ = 15;
(ξ − 13, ξ − 15, ξ − 12) , if ξ = 17;
(ξ − 13, ξ − 15, ξ − 12) , if ξ = 18.

(2.1)

r
(
βξβξ+1|Re

)
=

(ξ − 1, 3 + ξ, ξ + 2) , if ξ = 1, 2;
(ξ, ξ − 4, ξ − 1) , if ξ = 4, 5.

(2.2)

r
(
βξα

j
2|Re

)
= (0, 3, 2) , r

(
βξα

j
3|Re

)
= (1, 4, 3) , r

(
βξα

j
4|Re

)
= (1, 4, 4) , r

(
βξα

j
5|Re

)
= (2, 5, 6) .

r
(
βξα

j
15|Re

)
= (3, 0, 2) , r

(
βξα

j
16|Re

)
= (4, 1, 3) , r

(
βξα

j
17|Re

)
= (4, 1, 4) , r

(
βξα

j
18|Re

)
= (5, 2, 5) .

r
(
α

j
1α

j
7|Re

)
= (2, 3, 0) , r

(
α

j
2α

j
8|Re

)
= (1, 2, 1) , r

(
α

j
2α

j
9|Re

)
= (1, 2, 2) ,

r
(
α

j
3α

j
10|Re

)
= (2, 3, 3) , r

(
α

j
4α

j
10|Re

)
= (2, 3, 4) , r

(
α

j
5α

j
11|Re

)
= (3, 2, 6) ,

r
(
α

j
5α

j
12|Re

)
= (3, 4, 6) , r

(
α

j
6α

j
13|Re

)
= (4, 5, 7) , r

(
α

j
7α

j
14|Re

)
= (3, 2, 0) ,

r
(
α

j
8α

j
15|Re

)
= (2, 1, 1) , r

(
α

j
9α

j
15|Re

)
= (2, 2, 2) , r

(
α

j
10α

j
16|Re

)
= (3, 2, 4) ,

r
(
α

j
10α

j
17|Re

)
= (3, 3, 4) , r

(
α

j
11α

j
18|Re

)
= (4, 3, 5) , r

(
α

j
12α

j
18|Re

)
= (4, 3, 6) ,

r
(
α

j
13α

j
19|Re

)
= (5, 4, 7) .

It is obvious by looking at the position of every edge, that there are no two edges having the same
code. In the short entire structure of perimantanes diamondoid with λ = 1, has unique representations
with regard to the chosen subsets. It is proved that the chosen subset is one of the possible candidates
for the edge resolving set with three minimum elements in it. �

AIMS Mathematics Volume 7, Issue 7, 11718–11731.



11722

Lemma 2.2. Let PDλ is a structure of perimantanes diamondoid with λ = 1. Then

dime (PD1) = 3. (2.3)

Proof. The subset chosen in the Lemma 2.1 is a base case of this lemma. In the lemma, it is proved that
Re = {β1, β4, α

1
7}, is one of a candidate subset for the edge resolving set of structure of perimantanes

diamondoid PD1, and the structure shown in the Figure 1. Having three members in it, this proved
that dime (PD1) ≤ 3. For the twofold inequality, chose contrary method and we will proved that
dime (PD1) , 2. Given below are some reasons on this assertion.

Case 2.1. Let a chosen subset R′e having two distinct elements, say R′e = {β1, β2}. The contradiction will
be arise due the edges which have two distance to any of the chosen element of R′e. Mathematically, it
can be written as r

(
α1
ξ |R
′
e

)
= r

(
α1

j |R
′
e

)
= d

(
α1
ξ , β1

)
= 2.

Case 2.2. Let a chosen subset B′ having two distinct elements, say R′e = {β1, β3}. The contradiction will
be arise due the edges which have two distance to any of the chosen element of R′e. Mathematically, it
can be written as r

(
α1
ξ |R
′
e

)
= r

(
α1

j |R
′
e

)
= d

(
α1
ξ , β1

)
= 2.

Case 2.3. Let a chosen subset R′e having two distinct elements, say R′e = {β2, β3}. The contradiction will
be arise due the edges which have two distance to any of the chosen element of R′e. Mathematically, it
can be written as r

(
α1
ξ |R
′
e

)
= r

(
α1

j |R
′
e

)
= d

(
α1
ξ , β1

)
= 2.

Case 2.4. Let a chosen subset R′e having two distinct elements, say R′e = {α1
ξ , α

j
1}, with distinct ξ, j.

The contradiction will be arise due the edges which have two and three distance to any of the chosen
element of R′e. Mathematically, it can be written as r

(
α1
α|R
′
e

)
= r

(
α1
β|R
′
e

)
= d

(
α1
α, α

1
ξ

)
= {2, 3}.

All the chosen cases resulted in the same location of at least two edges of the structure and our main
assertion resulted in the contradiction. So, it is proved that dime (PD1) , 2.

Hence, dime (PD1) = 3. �

Theorem 2.1. Let PDλ is a structure of perimantanes diamondoid with λ ≥ 2. Then

dime (PDλ) = λ + 2 (2.4)

Proof. We will proved that the entire structure of perimantanes diamondoid have dime (PDλ) = λ+2 for
every possible value of λ ≥ 2. For this prove, we will employ the technique of mathematical induction
and the base case, which is for λ = 1 and dime (PD1) = 3, is already proved in the Lemmas 2.1 and 2.2.
Now, suppose the assertion is true for λ = χ, and the equation becomes

dime

(
PDχ

)
= χ + 2. (2.5)

We will show that it is true for λ = χ + 1. Suppose

dime

(
PDχ+1

)
= dime

(
PDχ

)
+ dime (PD1) − 2. (2.6)

Using Eqs 2.3 and 2.5 in Eq 2.6, we have

dime

(
PDχ+1

)
=χ + 2 + 3 − 2,

=χ + 3. (2.7)
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As a result, the conclusion holds for all positive integers λ ≥ 1.
Moreover, the generalized edge resolving set for the generalized structure of perimantanes

diamondoid, is in the set form is given by Re = {β1, β3λ+1, α
1
7, α

2
7, α

3
7, . . . , α

λ
7}. This concludes. �

Lemma 2.3. Let PDλ is a structure of perimantanes diamondoid with λ ≥ 1, and Re, f is the fault-
tolerant edge resolving set of PDλ for λ = 1. Then one of the possible fault-tolerant edge resolving set
is defined as

Re, f = {β1, β4, α
1
7, β3, β6, α

1
13}.

Proof. Using the definition of fault-tolerant edge resolving set and found the locations of each edge
with regards to the chosen fault-tolerant edge resolving set. Let Re, f = {β1, β4, α

1
7, β3, β6, α

1
13}, is one of

a candidate subset and given below are the representations of every edge of structure of perimantanes
diamondoid PD1, and the structure shown in the Figure 1.

r
(
α

j
ξα

j
ξ+1|Re, f

)
=



(ξ, ξ + 2, ξ, ξ + 2, ξ + 4, ξ + 5) , if ξ = 1;
(ξ − 1, ξ + 1, ξ, ξ, ξ + 2, ξ + 3) , if ξ = 2;
(ξ − 2, ξ, ξ + 1, ξ − 3, ξ − 1, ξ − 2) , if ξ = 4;
(ξ − 5, ξ − 5, ξ − 7, ξ − 3, ξ − 3, ξ) , if ξ = 7;
(ξ − 7, ξ − 7, ξ − 6, ξ − 6, ξ − 6, ξ − 5) , if ξ = 9;
(ξ − 7, ξ − 7, ξ − 6, ξ − 8, ξ − 8, ξ − 7) , if ξ = 10;
(ξ − 8, ξ − 8, ξ − 5, ξ − 10, ξ − 10, ξ − 12) , if ξ = 12;
(ξ − 11, ξ − 13, ξ − 13, ξ − 9, ξ − 11, ξ − 8) , if ξ = 14;
(ξ − 12, ξ − 14, ξ − 13, ξ − 11, ξ − 13, ξ − 10) , if ξ = 15;
(ξ − 13, ξ − 15, ξ − 12, ξ − 14, ξ − 16, ξ − 15) , if ξ = 17;
(ξ − 13, ξ − 15, ξ − 12, ξ − 15, ξ − 17, ξ − 17) , if ξ = 18.

(2.8)

r
(
βξβξ+1|Re, f

)
=


(ξ − 1, 3 + ξ, ξ + 2, ξ, ξ + 4, ξ + 3) , if ξ = 1;
(ξ − 1, 3 + ξ, ξ + 2, ξ − 2, ξ + 2, ξ + 1) , if ξ = 2;
(ξ, ξ − 4, ξ − 1, ξ + 1, ξ − 3, ξ) , if ξ = 4,
(ξ, ξ − 4, ξ − 1, ξ − 4, ξ − 5, ξ − 2) , if ξ = 5.

(2.9)

r
(
βξα

j
2|Re, f

)
= (0, 3, 2, 2, 5, 5) ,

r
(
βξα

j
3|Re, f

)
= (1, 4, 3, 1, 4, 4) ,

r
(
βξα

j
4|Re, f

)
= (1, 4, 4, 1, 4, 3) ,

r
(
βξα

j
5|Re, f

)
= (2, 5, 6, 0, 3, 2) .

r
(
βξα

j
15|Re, f

)
= (3, 0, 2, 5, 2, 5) ,

r
(
βξα

j
16|Re, f

)
= (4, 1, 3, 4, 1, 4) ,

r
(
βξα

j
17|Re, f

)
= (4, 1, 4, 4, 1, 3) ,
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r
(
βξα

j
18|Re, f

)
= (5, 2, 5, 3, 0, 2) .

r
(
α

j
1α

j
7|Re, f

)
= (2, 3, 0, 4, 5, 7) , r

(
α

j
2α

j
8|Re, f

)
= (1, 2, 1, 3, 5, 6) , r

(
α

j
2α

j
9|Re, f

)
= (1, 2, 2, 3, 4, 5) ,

r
(
α

j
3α

j
10|Re, f

)
= (2, 3, 3, 2, 3, 4) , r

(
α

j
4α

j
10|Re, f

)
= (2, 3, 4, 2, 3, 3) , r

(
α

j
5α

j
11|Re, f

)
= (3, 2, 6, 1, 2, 2) ,

r
(
α

j
5α

j
12|Re, f

)
= (3, 4, 6, 1, 2, 1) , r

(
α

j
6α

j
13|Re, f

)
= (4, 5, 7, 2, 3, 0) , r

(
α

j
7α

j
14|Re, f

)
= (3, 2, 0, 5, 4, 7) ,

r
(
α

j
8α

j
15|Re, f

)
= (2, 1, 1, 4, 3, 6) , r

(
α

j
9α

j
15|Re, f

)
= (2, 2, 2, 4, 3, 5) , r

(
α

j
10α

j
16|Re, f

)
= (3, 2, 4, 3, 3, 4) ,

r
(
α

j
10α

j
17|Re, f

)
= (3, 3, 4, 3, 2, 4) , r

(
α

j
11α

j
18|Re, f

)
= (4, 3, 5, 2, 1, 2) , r

(
α

j
12α

j
18|Re, f

)
= (4, 3, 6, 2, 1, 1) ,

r
(
α

j
13α

j
19|Re, f

)
= (5, 4, 7, 3, 2, 0) .

It is obvious by looking at the position of every edge, that there are no two edges having the same
code. BY eliminating any element from Re, f making its cardinality five still remains the candidate for
the edge resolving set and overall candidate for the fault-tolerant edge resolving set. In short entire
structure of perimantanes diamondoid with λ = 1, have unique representations with regard to the
chosen subsets. It is proved that the chosen subset is one of a possible candidate for the fault-tolerant
edge resolving set with six minimum elements in it. �

Lemma 2.4. Let PDλ is a structure of perimantanes diamondoid with λ = 1. Then

dime, f (PD1) = 6. (2.10)

Proof. The subset chosen in the Lemma 2.3 is a base case of this lemma. In the lemma, it is proved
that Re, f = {β1, β4, α

1
7, β3, β6, α

1
13}, is one of a candidate subset for the fault-tolerant edge resolving set

of structure of perimantanes diamondoid PD1, and the structure shown in the Figure 1. Having six
members in it, this proved that dime, f (PD1) ≤ 6. For the twofold inequality, chose contrary method
and we will proved that dime, f (PD1) , 5. Given below are some reasons on this assertion.

Let a chosen subset R′e, f having five distinct elements, say R′e, f = {α1
ξ , α

j
1}, with distinct ξ, j. The

contradiction will be arise due the edges which have two and three distance to any of the chosen
element of R′e, f . Mathematically, it can be written as r

(
α1
α|R
′
e, f

)
= r

(
α1
β|R
′
e, f

)
= d

(
α1
α, α

1
ξ

)
= {2, 3}.

All the chosen cases resulted in the same location of at least two edges of the structure and our main
assertion resulted in the contradiction. Either the same locations of edges or by eliminating any vertex
from the chosen subset not fulfilling the definition. So, it is proved that dime, f (PD1) , 5.
Hence, dime, f (PD1) = 6. �

Theorem 2.2. Let PDλ is a structure of perimantanes diamondoid with λ ≥ 2. Then

dime, f (PDλ) = 2 (λ + 2) (2.11)

Proof. We will proved that the entire structure of perimantanes diamondoid have
dime, f (PDλ)=2 (λ + 2) for every possible value of λ ≥ 2. For this prove, we will employ the
technique of mathematical induction and the base case, which is for λ = 1 and dime, f (PDλ) = 6, is
already proved in the Lemmas 2.3 and 2.4.

Now, suppose the assertion is true for λ = χ, and the equation becomes

dime, f

(
PDχ

)
= 2 (χ + 2) . (2.12)
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We will show that it is true for λ = χ + 1. Suppose

dime, f

(
PDχ+1

)
= dime, f

(
PDχ

)
+ dime, f (PD1) − 5. (2.13)

Using Eqs 2.10 and 2.12 in Eq 2.13, we have

dime, f

(
PDχ+1

)
=2 (χ + 2) + 6 − 5,

=2 (χ + 2) + 1. (2.14)

As a result, the conclusion holds for all positive integers λ ≥ 1.
Moreover, the generalized fault-tolerant edge resolving set for the generalized

structure of perimantanes diamondoid, is in the set form is given by Re, f =

{β1, β3, β3λ+1, β3λ+3, α
1
7, α

2
7, α

3
7, . . . , α

λ
7, α

1
13, α

2
13, α

3
13, . . . , α

λ
13}. This concludes. �

Lemma 2.5. Let PDλ is a structure of perimantanes diamondoid with λ ≥ 1, and Rm is the vertex-edge
resolving set of PDλ for λ = 1. Then one of the possible vertex-edge resolving set is defined as

Rm = {β1, β4, α
1
7, α

1
13}.

Proof. Using the definition of mixed-metric resolving set and found the locations of each edge and
vertex with regards to the chosen mixed-metric resolving set. Let Rm = {β1, β4, α

1
7, α

1
13}, is one of

a candidate subset and given below are the representations of every edge and vertex of structure of
perimantanes diamondoid PD1, and the structure shown in the Figure 1.

Given below are representations of every vertex of structure of perimantanes diamondoid PD1, by
using the definition of shortest distances. If we found every vertex having unique positions then we
will further compute the locations of edges of this structure.

r
(
α

j
ξ |Rm

)
=



(3 − ξ, 5 − ξ, ξ, 8 − ξ) , if ξ = 1, 2;
(2, 4, ξ, 8 − ξ) , if ξ = 3;
(2, ξ, ξ + 1, 7 − ξ) , if ξ = 4;
(ξ − 2, ξ, ξ + 1, 7 − ξ) , if ξ = 5, 6;
(10 − ξ, 10 − ξ, ξ − 7, 15 − ξ) , if ξ = 7, 8;
(ξ − 7, ξ − 7, ξ − 7, 14 − ξ) , if ξ = 9, 10, 11;
(ξ − 8, ξ − 8, ξ − 5, 13 − ξ) , if ξ = 12, 13;
(18 − ξ, 16 − ξ, ξ − 13, 20 − ξ) , if ξ = 14, 15;
(4, 2, 18 − ξ, 20 − ξ) , if ξ = 16;
(ξ − 13, ξ − 15, ξ − 12, 20 − ξ) , if ξ = 17, 18, 19.

(2.15)

r
(
βξ |Rm

)
=

(ξ − 1, 3 + ξ, ξ + 2, 6 − ξ) , if ξ = 1, 2, 3;
(ξ, ξ − 4, ξ − 1, 9 − ξ) , if ξ = 4, 5, 6.

(2.16)

Given below are representations of every edge of structure of perimantanes diamondoid PD1, by
using the definition of shortest distances. If we found every edge having also unique positions then we
will further compare the locations of vertices with edges of this structure.
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r
(
α

j
ξα

j
ξ+1|Rm

)
=



(ξ, ξ + 2, ξ, ξ + 5) , if ξ = 1;
(ξ − 1, ξ + 1, ξ, ξ + 3) , if ξ = 2;
(ξ − 2, ξ, ξ + 1, ξ − 2) , if ξ = 4;
(ξ − 5, ξ − 5, ξ − 7, ξ) , if ξ = 7;
(ξ − 7, ξ − 7, ξ − 6, ξ − 5) , if ξ = 9;
(ξ − 7, ξ − 7, ξ − 6, ξ − 7) , if ξ = 10;
(ξ − 8, ξ − 8, ξ − 5, ξ − 12) , if ξ = 12;
(ξ − 11, ξ − 13, ξ − 13, ξ − 8) , if ξ = 14;
(ξ − 12, ξ − 14, ξ − 13, ξ − 10) , if ξ = 15;
(ξ − 13, ξ − 15, ξ − 12, ξ − 15) , if ξ = 17;
(ξ − 13, ξ − 15, ξ − 12, ξ − 17) , if ξ = 18.

(2.17)

r
(
βξβξ+1|Rm

)
=


(ξ − 1, 3 + ξ, ξ + 2, ξ + 3) , if ξ = 1;
(ξ − 1, 3 + ξ, ξ + 2, ξ + 1) , if ξ = 2;
(ξ, ξ − 4, ξ − 1, ξ) , if ξ = 4,
(ξ, ξ − 4, ξ − 1, ξ − 2) , if ξ = 5.

(2.18)

r
(
βξα

j
2|Rm

)
= (0, 3, 2, 5) ,

r
(
βξα

j
3|Rm

)
= (1, 4, 3, 4) ,

r
(
βξα

j
4|Rm

)
= (1, 4, 4, 3) ,

r
(
βξα

j
5|Rm

)
= (2, 5, 6, 2) .

r
(
βξα

j
15|Rm

)
= (3, 0, 2, 5) ,

r
(
βξα

j
16|Rm

)
= (4, 1, 3, 4) ,

r
(
βξα

j
17|Rm

)
= (4, 1, 4, 3) ,

r
(
βξα

j
18|Rm

)
= (5, 2, 5, 2) .

r
(
α

j
1α

j
7|Rm

)
= (2, 3, 0, 7) , r

(
α

j
2α

j
8|Rm

)
= (1, 2, 1, 6) , r

(
α

j
2α

j
9|Rm

)
= (1, 2, 2, 5) ,

r
(
α

j
3α

j
10|Rm

)
= (2, 3, 3, 4) , r

(
α

j
4α

j
10|Rm

)
= (2, 3, 4, 3) , r

(
α

j
5α

j
11|Rm

)
= (3, 2, 6, 2) ,

r
(
α

j
5α

j
12|Rm

)
= (3, 4, 6, 1) , r

(
α

j
6α

j
13|Rm

)
= (4, 5, 7, 0) , r

(
α

j
7α

j
14|Rm

)
= (3, 2, 0, 7) ,

r
(
α

j
8α

j
15|Rm

)
= (2, 1, 1, 6) , r

(
α

j
9α

j
15|Rm

)
= (2, 2, 2, 5) , r

(
α

j
10α

j
16|Rm

)
= (3, 2, 4, 4) ,

r
(
α

j
10α

j
17|Rm

)
= (3, 3, 4, 4) , r

(
α

j
11α

j
18|Rm

)
= (4, 3, 5, 2) , r

(
α

j
12α

j
18|Rm

)
= (4, 3, 6, 1) ,

r
(
α

j
13α

j
19|Rm

)
= (5, 4, 7, 0) .

It is obvious by looking the position of every edge and every vertex, that there are no two edges
having same code, there are no two vertices having the same code and there is no single edge having
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the same code with any vertex. In short entire structure of perimantanes diamondoid with λ = 1, have
unique representations. It is proved that the chosen subset is one of a possible candidate for the mixed
metric resolving set with four minimum elements in it. �

Lemma 2.6. Let PDλ is a structure of perimantanes diamondoid with λ = 1. Then

dimm (PD1) = 4. (2.19)

Proof. The subset chosen in the Lemma 2.5 is a base case of this lemma. In the lemma, it is proved
that Rm = {β1, β4, α

1
7, α

1
13}, is one of a candidate subset for the mixed-metric resolving set of structure

of perimantanes diamondoid PD1, and the structure shown in the Figure 1. Having four members in it,
this proved that dimm (PD1) ≤ 4. For the twofold inequality, chose contrary method and we will proved
that dimm (PD1) , 3. Given below are some reasons on this assertion.

Let a chosen subset R′m having three distinct elements, say R′m = {α1
ξ , α

j
1}, with distinct ξ, j. The

contradiction will be arise due the either edges or edges which have two three and four distances
to any of the chosen element of R′m. Mathematically, it can be written as r

(
α1
α|R
′
m

)
= r

(
α1
β|R
′
m

)
=

d
(
α1
α, α

1
ξ

)
=(2, 3, 4) .

All the chosen cases resulted in the same location of at least two edges or two vertices. If both the
edges and vertices have unique position, then the inter positions are matched for the structure and our
main assertion resulted in the contradiction. So, it is proved that dimm (PD1) , 3.

Hence, dimm (PD1) = 4. �

Theorem 2.3. Let PDλ is a structure of perimantanes diamondoid with λ ≥ 2. Then

dimm (PDλ) = 2 (λ + 1) (2.20)

Proof. We will proved that the entire structure of perimantanes diamondoid have dimm (PDλ)=2 (λ + 1)
for every possible value of λ ≥ 2. For this prove, we will employ the technique of mathematical
induction and the base case, which is for λ = 1 and dimm (PDλ) = 4, is already proved in the
Lemmas 2.5 and 2.6.

Now, suppose the assertion is true for λ = χ, and the equation becomes

dimm

(
PDχ

)
= 2 (χ + 1) . (2.21)

We will show that it is true for λ = χ + 1. Suppose

dimm

(
PDχ+1

)
= dimm

(
PDχ

)
+ dimm (PD1) − 3. (2.22)

Using Eqs 2.19 and 2.21 in Eq 2.22, we have

dimm

(
PDχ+1

)
=2 (χ + 1) + 4 − 3,

=2 (χ + 1) + 1. (2.23)

As a result, the conclusion holds for all positive integers λ ≥ 1.
Moreover, the generalized fault-tolerant edge resolving set for the generalized

structure of perimantanes diamondoid, is in the set form is given by Rm =

{β1, β3λ+1, α
1
7, α

2
7, α

3
7, . . . , α

λ
7, α

1
13, α

2
13, α

3
13, . . . , α

λ
13}. This concludes. �
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3. Conclusions

In this article, we have discussed the edge metric dimension and their generalizations for the
generalized perimantanes diamondoid structure and proved that each parameter depends on the copies
of original or base perimantanes diamondoid structure and changes with the parameter n or its number
of copies. Future direction can be considered as to discussed its other parameters which are also based
on the metric of structure.
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