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1. Introduction

In recent decades, fractional calculus has played a significant role in mathematics. Some physical
problems cannot be addressed using integer-order differential equations, while fractional-order
differential equations can. Fractional differential equations have received a lot of attention and are
utilized widely in engineering, physics, chemistry, biology, and a variety of other subjects. Fractional
calculus notions have lately been effectively applied to a wide range of domains, and scientists are
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increasingly realizing that the fractional system may well correspond to many occurrences in regular
sciences and engineering. Rheology, liquid stream, scattering, microscopic structures, viscoelasticity,
and optics are just a few of the significant fractional calculus issues that are now being studied.
Although diagnostic structures are often difficult to come by, the efficacy of mathematical evaluation
methodologies for fractional systems in these disciplines has impressed some academics. Readers can
check [1-3,6,7,14-18,22,25-31,33,35,37-41,44,52,54-59].

The use of controllability notation in the research and design of control systems is beneficial.
Fractional derivatives of various significations can be used to address these types of difficulties. It
may be used in a range of sectors, including economics, chemical outgrowth control, biology, power
systems, space technology, engineering, electronics, physics, robotics, transportation, chemistry, and
so on. The topic of controllability is particularly important in control theory. If the control system is
controllable, it can manage a variety of issues such as stability, pole assignment, and optimum
control. Boundary controllability plays an important role in the analysis and design of control
systems. The researchers in the recent years derived results on controllability for a variety of systems
like neutral systems, integrodifferential equations, impulsive systems, fixed delay systems, and
time-varying delay systems, etc. Solving these types of seeds has become a significant work for
young scholars, one can refer to [1-18,20,21,23,27-29,31-33,38-53].

Fattorini proved the controllability condition on the first and second-order boundary control
systems by replacing boundary controls with distributed controls [13]. By assuming exact
controllability of the linear system and approximate controllability of linearization, the authors [21]
studied global controllability for the abstract semilinear system. [2] obtained results for approximate
boundary controllability of stochastic control systems of fractional order with Poisson jump and
fractional Brownian motion are cited by the authors. Zhou et al. [59] derived various conditions for
the existence of mild solutions with the help of fixed point theorems and fractional power of operators
for neutral fractional-order evolution equations having nonlocal conditions.

Also, authors in [22] established results for the neutral integrodifferential fractional-order system
having nonlocal conditions and finite delays in abstract space with the help of the measure of
noncompactness. In [4] authors established some sufficient conditions for boundary controllability of
integrodifferential system of Sobolev-type with the help of Banach contraction principle and theory of
strongly continuous operators. With the help of Schauder’s fixed point theorem, Ahmed [3]
established sufficient conditions for boundary controllability of integrodifferential fractional-order
non-linear system in abstract space. Inspired by the above and recent work, to the best of our
knowledge there is no article dealing with boundary controllability for Sobolev-type neutral evolution
equations of fractional order using this technique. We obtained sufficient conditions for boundary
controllability. The results are advanced and weighed as an improvement to the control theory for
fractional-order control systems.

The paper is structured in the following manner: In segment 2, we propose a few elementary
definitions. In segment 3, we obtained results for boundary controllability. In segment 4, we
discussed an example to understand theoretical results.
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2. Preliminaries

Assume that Y and Z be two real Banach spaces with || - || and | - |. Assume that o be a closed linear
and densely defined operator with domain D(o) € Y and R(0) € Z. Consider Q be a linear operator
with D(Q) C Y and R(Q) C X, a Banach space together || - ||x.

Assume that the boundary control of neutral evolution equations of Sobolev-type with fractional
order of the form

‘D[Sx(w) + F(@, x(@), x(b1(@)), - - -, x(b(®@)))]
=ox(@) + G(w, x(@), x(a1(@)), - - - , x(an())), @ € J = [0, D], (2.1)
Ox(w) = Biu(w), x(0) = xo. (2.2)
In the above, S : D(S) C Y — R(S) C Z is a linear operator, the control function u € L*(J, U),
a Banach space of admissible control function with U as a Banach space, B; : U — X is a linear
continuous operator and a;,b; € C(J,J),i = 1,2,--- ,n, j=1,2,--- ,m where C(J,J) is a set of all
continuous function defined from J to J. G and F are the appropriate functions to be specified later
and °D”, 0 < @ < 1 is in the Caputo sense. Let y(@w) = Sx(w) for x € Y, then (2.1) and (2.2) can be
written as
‘Dly(@) + F(@, S y(@), S y(by(@)), - - , S y(bu(w)))]
=0Sy(@) + G(@, Sy (@), Sy (@), .S V@), wel=[0,b],  (23)

Oy(@) = Bu@),  y(0) = yo, 2.4)
where Q = 0S™! : Z — X is a linear operator. The operator A : Y — Z given by
DAS™) ={we DS : Ow =0},

AS 'w = oS 'w for w € D(AS™), (see [4,23]).

Definition 2.1. [4, 23] The operators A : D(A) C Y - Zand S : D(S) C Y — Z satisfying the
following hypotheses:

(H1) A and S are closed linear operators.
(H2) D(S) Cc D(A) and S is bijective.
(H3) 87! : Z = D(S) is continuous.

The hypothesis (H1)-(H3) and the closed graph theorem imply the boundedness of the linear
operator AS™! : Z — Z and AS™! generates an analytic compact semigroup of uniformly bounded
linear operators {T(w) : @w > 0}. This means that there exists a M > 1 such that ||T (w)|| < M. Without
loss of generality, we assume that 0 € A(AS™"). This allow us to define the fractional power (—A)¢, for
0 < g < 1 as a closed linear operator on its domain D((—A)?) with inverse (—A)™9.

Theorem 2.2. [34]
(1) Y, = D((-A)?) is a Banach space with the norm ||x||, = ||(~A)?x|l, x €Y.
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(2) T(w) : Y = Y, for each (-A)'T (w)x = T(w)(—A)x, forall x € Y, and @ > 0.
(3) Forall w > 0, (—A)!T(w) is bounded on'Y and there exists a positive constant C, such that

C‘I
A T(@)] < —L.
w

(4) If 0 < B < q < 1, then D(—A)Y — D(-A) and the embedding is compact whenever the resolvent
operator of A is compact.

Let us recall the following known definitions.

Definition 2.3. [35] The fractional integral of order a > O with the lower limit zero for a function f
can be defined as
“ f(»dv

,o>0,a>0,
o (@—-v)le

1
¢ = —
f@) = —
provided the right-hand side is pointwise defined on [0, c0), where I is the Gamma function.

Definition 2.4. [35] The Caputo derivative of order a with the lower limit zero for a function f can
be written as:
7 fDW)dy

'n-a)Jy) (w-v)rtin

‘D f(w) = =I""fw), >0, 0<n—-1l<a<n.

If f is an abstract function with the values in Y, then the integrals in the above definition are taken in
Bochner’s sense.

Lemma 2.5. A measurable function || : [0,b] — Y is Bochner integrable if |[]| is Lebesgue
integrable.

We now present the following results on the controllability.
(A1) D(o) c D(Q) and the restriction of Q to D(o) is continuous relative to graph norm of D(o).

(A2) There exists a linear continuous operator S : U — Z such that cS™'B € L(U, Z), Q(Bu) =
Byu, for allu € U. Also Bu(w) is continuously differentiable and

(=AY’ Bull < CI|Byull,

for all u € U, where C is a constant.

(A3) For all @ € (0,b] and u € U, T(w)Bu € D(AS™"). Moreover, there exists a positive function
M, > 0 such that ||JAS™'T(@)|| < M, (see [3,18]).

Let y(w) be the solution of the systems (2.3) and (2.4). Then we define a function z(@w) = y(@w) —
Bu(w). From the assumptions it follows that z(w) € D(AS™"). Hence, the systems (2.3) and (2.4) can
be written in terms of A and B as

‘D'[z(w) + F(w, S ' y(@), S 'y(bi(@)), -+, S y(bu(w)))]
=AS '2(w) + 0S8 Bu(w) — B°Du(w) + G(w, S 'y(w), S 'y(a;(@)), - , S Wa.,(w))), (2.5)
2(0) = y(0) — Bu(0). (2.6)
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For more details, see [1, 19]. From the systems (2.5) and (2.6), we present the integral form of the
systems (2.3) and (2.4) in the following way:

y(@) = y(0) + F(0,87'y(0), S~ y(b1(0)), - - - , S 'y(b(0)))]
- F(@, 8 y(@), 8 'y(b1(@)), - , S y(bu(@)))]
1 7 SAywydv 1 7 S'ABu(v)ydv 1 7 S~ loBu(v)dy

Ta o (@-v* TaJy, (w@-v)' T Jo (w-v)@
N 1 (7608 ym), S @), ,S_ly(an(v)))dv, 27
T'a Jo (w —v)l-@

(see [4, 14,22, 59]) and hence, the mild solution of the systems (2.1) and (2.2) is presented in the
following way:

x(@) = 87'S o(@)Sx(0) + S'S (@) F(0, x(0), x(b1(0)), - - , x(b(0)))
- S8 F(@, x(@), x(b\(@)), - -, x(by(@)))

- f w(w -V AT (@ = VST F(v, x(v), x(b1(V)), - - - , x(by(¥)))dY
0

+ fw S @ - v) " T (w - v)oS'B-AS T, (w — v)Blu(v)dv
0

+ f ’ S Y@ - )T (@ — V)G, x(v), x(a,(V)), - - -, x(a,(v)))dv, (2.8)
0

where &,(0) is a probability density function defined on (0, co) and

So(@) = f i Ea(O)T (0" 6)xd0,
0

and .
T,(o)x =« f 0, (T (w*0)xd6.
0

Remark 2.6. [59] £,(0) > 0,0 € (0,00), [~ £,(6)d0 = 1 and [~ 0£,(6)d0 = 7

T(l+a)"

Definition 2.7. [4, 14] The systems (2.1) and (2.2) are said to be controllable on the interval J if for
every xo, X1 € Y, there exists a control u € L*(J,U) such that the solution x(-) of the systems (2.1)
and (2.2) satisfies x(b) = x;.

Lemma 2.8. [22] The operators S (@) and T, (@) have the following properties:
(i) For any fixed x € Y, ||S o(@)x]| < M||x]|, |To(w)x]| < ;’(Z—l’i';
(i) {S (@), @ = 0} and {T (@), @ > 0} are strongly continuous.
(iii) Forall @ > 0, S ,(@)and T,(w@) are also compact operators.
(iv) Forany x €Y, f€(0,1)and 6 € (0, 1), we have
(—A)To(@)x = (-A) Ty (w)(-AYx,

and
aCs[2 -6

AN
AP Ta@l < e e

@ € (0,b).
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Remark 2.9. Forany x e Y, € (0,1)and 6 = 1, we have
a||xl|Mo

IAT. (@l = ol [ 06,OAT (@ 0)a0) = S,

Further, assume the following assumptions:

(A4) The linear operator W from L2(J, U) into Y is given by
b
Wwi[S%hﬂfﬁﬂ@—ﬂﬁ?ﬁ—A?Tﬂhﬂmwmm
0
induces an invertible operator W defined on L*(J, ~U )/ KerW, and there exists K;, K, and K3 > 0

such that (-AY’ < K,,0<B <1, ||B|| < K, and |[W7}|| < K;.

(A5) F : J x Y™! — Y is continuous and there exists § € (0,1) and M;, M, > 0 such that (~AY’F
fulfills the subsequent condition:

=AY F O, X0, 51,0+ 5 ) = (ZAY F(v2, 0,71+ 5 yu)ll < Ma(ba =val +_max | = yill),

forO <vi,v, <b,x;,y; €Y, i=0,1,--- ,mand
I—APF (@, x0, 31,0, xn)ll < Mo max_ (gl + 1), 2.9)
holds for (@, xo, X1, -+ , Xp) € J X Y"1,

(A6) G : J x Y"! — Y fulfill the subsequent conditions:

(i) For every w € J, G(w,-) : Y"*!' — Y is continuous and for every (xg, x;,--- ,x,) € Y™,
G(-, xo, X1, ,X,) : J = Y is strongly measurable.

(ii) For every k € N, there exists /(-) : [0,b] — R* such that

sup  ||G(@, x0, X1, -+, X)|| < (@),
[Ixoll,+= J[lxall<k

S = (@ - ) ""h(v) € L'([0,@],R")
and there exists /\ > 0 such that

- Iy @ =)'~ ()
o in k

:A<&wemm

(A7) We assume
Ci15I(1 + B)b**

* -1
L =[IS7 M [(M + DK, + BN+ ) 1, (2.10)
_ _ IS~ C14T(1 + PbP M, IS~ laM
1 1
MIS K M 71 My + =P A
—1112 a —1||17,@
(x)(l N [IIS I"llor|b* M N IS~ 116 MO]K2K3) <1 2.11)
I + @) I'( + )

Theorem 2.10. [36, Sadovskii fixed point theorem] Let ¢ be a condensing operator on a Banach
space Y, that is ¢ is continuous and takes bounded sets into bounded sets, and u(¢(B)) < u(B) for
every bounded set B of Y with u(B) > 0. If ¢(y) C y for a convex, closed and bounded set y of Y, then
¢ has a fixed point in Y. (Here u(-) denotes Kuratowski’s measure of non compactness).
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3. Main results

Theorem 3.1. If (A1)—(A7) are fulfilled, then the systems (2.1) and (2.2) are controllable on J.
Proof. For our convenience, we use the following
(@, x(@), x(b1(@)), - -+ , X(b(w)) = (@, (@),

and
(@, x(@), x(a)(@)), -, X(a,(@)) = (@, w(@)).

Using the assumption (AS), for x(-), we define
ww) = W' x; = S7'S ,(b)Sxo — S'S ,(b)F(0,v(0)) + S F(b, v(b))
b
+ f (b =) 'AT (b = v)S™'F(v, v(v))dv
0
b
- f S -6 = V)G, wv))dv](m).
0
We now define P as follows:

(Px)(@) = 87'S ,(@)Sx(0) + S7'S (@) F(0,v(0)) — S F(w, v(w))
- f w(w — V) AT (@ — V)S ' F(v, v(v))dy
0

+ fw S (w - )T (w — v)oS™ ' Bu(v)dy
0

— fw SN w - v)* A8 T, (@ — v)Bu(v)dv
0

+ f ’ S (@ - )" ' T (@ - v)G(v, w(V))dv,
0

has a fixed point and this fixed point is then a solution of (2.1) and (2.2). So, we have to prove that P
has a fixed point. For every k > 0, we set

By ={xeY :||x(@m)| <£k,0< @< b}
Then for every k, By 1s clearly a bounded closed convex set in Y. From Lemma 2.8 and Eq (2.9) yields
I f (@ = )" AT (@ = VS Fr, v(v)dv]
0

< fw (@ = v)*' ST (=A) P To(@ = v)(=AP F(v,v()lldv
0
- IS~ laCy 6T (1 + )

f w(w — P —APF, v(v))dy
0

I'(1+ap)
Ci_sT( + IS b*M.
L 1+ ISl 21 max o + 1]
I'(l+ ap) i=1,2,.m

AIMS Mathematics Volume 7, Issue 7, 11687-11707.



11694

<|IS‘1||C1_/;F(1 +5)
~ prd +ap)

then it follows that (@ — v)* AT, (@ — v)S™'F(v,v(v)) is integrable on J, by Lemma (2.5), P is well
defined on By. From (A6)(ii), one can get

bk + H)M,,

l f i SN @ =) To(@ = )G, wv)dv] < f i IS~ (@ = V)™ To(@ = V)G(v, w))lldv
0 0

aM
I'a+1)

aM
INa+1)

s fo (@ =V GO, w)ldv

<IS7M

f w(w - (v)dv.
0

We conclude that for £ > 0 such that PB;, C By. If it fails, then there exist a function x;(-) € By but
PBy & By, and ||Pxi(@)|| > k, for some w(k) € J, where w(k) denotes that @ is independent of k.
Then, one can get

k < ||(Pxi)(@)|
< IS7LS o (@)Sx(0) + S7'S . (@) F (0, v(0))

- S 'F(w, vi(w)) - f w(w — VAT (@ = VS F(v, vi(v))dy
0

+ f ’ S (@ - v Ty(w - v)o S — AS™'T,(w — v)|BW™!
0
(X){x1 = 87'S ((H)Sx(0) — S7'S L(B)F (0, vi(0)) + ST F(b, vi(b))

b
+ f (b — )" AT (b — DS F(1, vi(7))dv
0

b
- f S b -0, (b — 1)G(r, wi(7))dT}(v)dy
0

+ f ’ S (@ = v)* ' T (w — )Gy, wi(V)dv|
0

< MIIST'IISIxoll + MIS™III(-A) P(—AYF(0, vi (O)]
Cigl'(1 +p)
BI'(l + ap)

+ f IS~ (@ = )" oS T o(@ = V)l + IAS™ To(@ — )]
0

+ IS I(=A) P (=AY F (@, vi(@))ll + IS7]| bk + 1M,

COIBIIW ™ [llbxll + MIS lSHlxoll + MIS ™ lIl(=A) (=AY F(O, vi(O))|
Cipl'(0 +5)
BI(1 +ap)

b
+ f IS1I(6 = DT (b — DG we(0))dr)dv
0

+ IS (=AY P (=AY F (b, i)l + IS bk + )M,

+ fo IS~ (@ = )" T o(@ = MINGE, wi())lidv
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< MIIST'ISIIxoll + MIS™ K Ma(k + 1) + IS™! 1K Ma(k + 1)

N ISMC16T(1 + bk + 1)
/31“(1 +aﬁ)

+[187 ||—[|| IS~ ||

2

aMO

1) 1) 1K:K;
Cllx |l + M||IS™ ||||S||||xO|| + MIIS ||K1 Mok + 1) + IS K Mok + 1)

CigI'(1 +pB) op 1o
—,BF(l 5 bk + 1)M, + e

1Sl f (@ =) ().

b
+1I87l 1)IlSlllfO (b = 1) (r)dr)

F( + 1)
Dividing by k on both sides of the above inequality and letting k — +oc0, one can get

Cl_ﬁl"(l +ﬁ) baﬂMz
BL(1 +ap)

]K2K3(M||S 1K\ M>

1< MIIST' K My + ISTHIK M, + 187

aM,
F( +1) F(a+1)

) L, Cipl +B) aM_ o - —aM
1 1 o ! !
ISRy + S b M + oS )+ 1S e

Therefore,

FIS ||—[|| s

gt +B),
BI(1 + aff)
—1 —1712 a 11,2

IS~ lleM ](1 N [llS Fllefib™ IS~ 116" Mo
T+ 1) T+ a) T +a)

[MHS KM, + 1S 1K M, + K87

]K2K3) > 1.

The above equation contradicts Eq (2.11). Thus, for k > 0, PB;, C B;. Now, we need to verify P has a
fixed point on By, which implies (2.1) and (2.2) have a mild solution. We decompose P as P = Py + P>,
where P, and P, are determined on By by

(P1x)(@) = S7'S (@)F (0, ¥(0)) = S™' F(w, v(w))

- f w(w — V) AT (@ — VST F(v, v(v))dv,
0

and
(Prx)(w)
=SS (@)Sxo + f SN w =) NTo(w —v)oS™ — AS™' T (w — v)1Bu(v)dv
0
+ f S @ - )" ' T (w = v)G(v, w(v))dv,
0

for 0 < @ < b. We have to verify P, is a contraction mapping if P, is compact. For checking P, fulfills
the contraction condition, we assume xi, x, € B;. Then, for every @w € J and by hypothesis (AS5) and

Eq (2.10), one can get
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l(P1x1)(@) — (Prx2) ()|
<IIS7'S o (@)[F(0, v1(0)) — F(O, v2(0))|
+IS™[F (@, vi(@)) — F(w, va(@))]ll

+ f ’ S @ = v)* AT (@ — V)[F (v, vi(v)) = F(v, v2(v))]dV||
0
<ISTMIMEK M, sup |lx;(v) — ;|| + [ISTHIK 1 M, sup [lx;(v) — x|

0<v<b 0<v<b

MM] sup [lx1(v) = x2(M)l.

+|S711p
BI(L + af) 0<v<b

Hence

CgI'(dl
I(P1x1)(@) = (Pro) @)l < IISTIMI[(M + DK, + Mb“ﬁ] sup [lx;(v) = ().

Br(1 + apB) 0<v<b

Thus,
I(P1x)(@) — (Prx)(@)|| < L* sup [lx1(v) = 20,

0<v<b

and by assumption 0 < L* < 1, we see that P; is a contraction. To prove that P, is compact, firstly
we prove that P, is continuous on B;. Assume {x,} C B, with x, — x in By, then for every v € J,
w,(v) — w(v) and by (A6)(i), one can get G(v, w,(v)) — G(v,w(v)), when n — co. By the dominated
convergence theorem, one can get

|[P2x, — Pox||

s | [ S v)“_l(Ta(w oS = AS T (- v))B[wn(v) — w()dv

0<w<b 0

+ f i S (@ = )" To(@ = VG, wa()) = G, w()ldvl| — 0,
0

when n — oo, i.e., P, is continuous. Now, we need to verify {P,x : x € By} is an equicontinuous family
of functions. For this, we assume € > 0 be small, 0 < @w; < @,, then

|(Prx)(@2) — (Prx)(@)|
<ISTHIS o(@2) — S (@ )llIxoll

+ f s ||||((w2 M (@ — ) — (@1 = V) Tl — v))o'S_lBu(v)lldV
0
+ f ||8‘1||||((m ) @y = ) — (@) = V) Tl — v))S‘lrrBuw)ndv

+ f ||S‘1||||((wz—v)“‘lmwz—v))S‘lfrBu(v)ndv

N f ||S-‘||||AS-‘(<w2 ) (@ — ) — (@) = V) ol — v))Bu(v)Hdv
0
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+ f ||S—‘||||AS—‘((w2 V) To(@y = v) = (@1 =) ' To(w, —v))Bu(v)ndv

w|—€

+ f ||S-‘||||AS-‘(<w2 V) (s — v))Bu(v)ndv

@

+f _ IS~ (@2 = )" To(@s = v) = (@) = v)* " To(@ = VNG, w)ldv
0

+f IS~ (@2 — V)" ' To(wy — v) — (@1 = v)* ' To(@) = VG, w»))lldv

w|—€

+f IS~ (s — v)* ' Tolws = G, w»))lldy.

@

Observe that

lu)Il < Kafllxll + MIST'ISIIxoll + MIS™ K Ma(k + 1) + IS Ky Ma(k + 1)
Cis(1 +PbP(k + 1)

-1
S = v ap)

2

a-1
@ +1)IIS ||f(b )" hi(T)dT}.

We see that

(P2x)(@2) = (P2x)(@)|
< ISTHIS o(@2) = S a(@)llIxoll

+ f IS~ (@2 = )*  To(@s = v) = (@) — V)" To(@ = VTS IK,
0

COKs{llxll + MISIISHxoll + MIIS_lllKle(k + 1)+ IS K Ma(k + 1)
Ci_gT(1 + BB (k + 1)M, .

BT + af) r( + 1)
+ f IS~ (s = v)* ' Tolwy — v) = (@1 = v)* ' To(@ = VoIS IK2K;

w|—€

+1IS7]

TRl f (b= 7 (D))

OOl ]l + MISTHIISIxoll + MIIS™ K Mok + 1) + [|S7!| K My (k + 1)
CisT(1 + Bb™(k + DM,
BL(1 + ap) "Ta+1)

+ f IS~ (@2 = v)* ™' Tol@ = MIllTlIS™ 1K Ks{llxll + MIS™[ISHlllxoll

wi

b
LIS 1S f (b — 1 he(r)dr)dy
0

Ci_sT(1 + BB (k + 1)M,
BL(1 + ap)

+ MISTH K Mok + 1) + ST K Ma(k + 1) + 1187

—1 a-1
F( +1)| ||f(b )" h(r)dt}dy

+ f ||S‘1||||AS‘1((w2 V) T To(@r =) = (@1 =) To(@) - V))Ksz
0

Cllxll + MISTISHxoll + MIS™ 1K Mok + 1) + IS~ 1K1 Mok + 1)
Cl_ﬁF(l +,8)ba'3(k + 1)M2
BI(1 + ap)

aM b
LIS b s f (b — 1 he(r)dr)dy
0
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¥ f ||S-‘||||AS—‘(<w2 ) (@2 — V) — (@) = V) () — v))Ksz

Ol + MIS™ ISl + MIS™HIK Mok + 1) + [|S7HIKy Ma(k + 1)
CrgT(+ Y™k + DMy aM
BL(1 + ap) T(a+ 1)

n f ||S-1||||AS-1((wZ—v)“-le,(wz—v))Kng

Ol + MIS ISl + MIS™HIK Mok + 1) + ST Ky Ma(k + 1)

CL T +Pb P+ DMy oM (P
pr+ap)  TarD® ”fo (b =D y(n)dr)dy

+ f IS~ (@ = )" To(@s = v) = (@1 = v)* ' To(@) = V)lllu(v)dv
0

+1IS7]

b
IS~ f (b = 1) y(r)dT)dv
0

+1IS7]

+ f IS~ (@2 = v)* ™' To(@s = v) = (@) = v)* ™ To(@) = V)lllu(v)dv

w|—€

+ f IS~ (@ = v)* ™' To(@y = V)il (v)dv.

w|

We check ||(Pyx)(@3) — (P>x)(w)|| tends to zero independently of x € By, when w, — @, with €
sufficiently small because of the compactness of S (@), for @ > 0 (see [34]) implies the continuity of
S (@) for @ > 0 in @ in the uniform operator topology. We can verify that P,x, x € By is continuous
at @ = 0. Therefore, P, maps By into a family of equicontinuous functions. We need to verify that
V(@) = {(P,x)(@) : x € By} is relatively compact in Y. Assume that 0 < @ < b be fixed, 0 < € < @,
for arbitrary 6 > 0, for x € By, we determine

(P’ x)(w) = fé ) E,O)T(@"0)S ™' Sxodb
+a fo o fé ) 0w — )" 'ENOS ' T(w — v)"0)0S™" Bu(v)dbdv
—a fo o f(; ) 0w — )" 'E(OS ' T(w — v)*0)AS ™' Bu(v)dody
+a fo o f6 ) 0w — v)* & (OS ' T (@ — v)*0)G(v, w(v))dOdv
= T(€%6) fé ) ELOT (w0 — €6)S ' Sxydb
+ aT(€76) fo o fé ) 0w — V) NS T(w - v)?0 — €26)cS ™ Bu(v)dody
— aT(€"5) fo o fé ) 0w — V) ENOS ' T(w — v)?0 — €26)AS™ Bu(v)dbdv
+ aT(€76) fo o fé ) 0w — V)" LS T(w — v)?0 — €26)G (v, w(v))dbdy.
Because T(e"5), €6 > 0 is compact, then V(@) = {(PS°x)(w) : x € By} is relatively compact in Y for
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every €,0 < € < @ and for all § > 0. Additionally, for each x € By, one can get
I(P2x)(@) — (P3°x) (@)l

<l f: £O)T (@"6)S™' Sxod6|
+afl fo ) jj 0@ — v)* ' ,(O)S™' T(w - v)*0)0S™ Bu(v)dbdy|
+al fo ’ f6 ) 0(w — V)" é(O)S T(w — v)*0)0 S~ Bu(v)dbdy
- fo o fé ) 0(w — V)" E(OS T(w — v)*0)0 S~ Bu(v)dodv||
el fo ’ f; 0w — v)* &, (O)S™ ' T((w — v)*0)AS ™ Bu(v)dodv)|
+al fo ’ f5 ) (@ — )" é(0)S ' T(w — v)*0)AS ™' Bu(v)dody
- fo o fé ) 0w — V)" éE(OS ' T(w — v)*0)AS ™ Bu(v)dodv||
+al fo i fod 0@ — )" E/(0)S™ ' T(w - v)*O)G(v, w(v)dbdv|
+al fo h [5 i 0@ — v)* ' E(O)S™ T((w - v)*O)G (v, w(v))dbdy
- fo o [; i 0@ - v)* ' E(O)S™ T(@ - v)*O)G(v, w(v)dbdv||
<l jj £OT (@ 0)S™ Sxod6|
+al fo ’ f: 0w — v)* &, (O)S™ ' T(w — v)*0)o S~ Bu(v)dédv||
+afl f h fé i 0@ — )" ,0)S™ T((w - v)"0)0S™ Bu(v)dbdy|
+al fo ’ f: 0(w — V)" E(OS T (w — v)*0)AS ™ Bu(v)dodv||
+al f ’ f6 ) 0w — v)* ' (OS ' T (@ — v)"0)AS™ Bu(v)dodv||
+afl fo ) jj 0@ — v)* ' (O)S™ T((w - v)*O)G (v, w(v)dbdv||
+al f ) f6 i 0@ — v)*'E(O)S™ T(@ - v)*O)G(v, w(v))dbdv|

0 {nJ
< M||X0||||S_l||||3||f £a(0)dO + OzM(f (@ — )" oIS IK2 K
0 0
CNllxll + MISTHIISxoll + MIS™ K Mok + 1) + IS~ IK1 Ma(k + 1)
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Ci_gT(1 + B)bB(k + 1)M,
BL(1 + ap)

—1 a-1
F( +1)| I f (b-1) hk(T)dT}dV) f 0&.(6)dt

+ aM f (@ =) oS 1Kz K5

+1I87l

COfllxll + MIS ISl + MIS™IK Mok + 1) + ST 1Ky Ma(k + 1)
C1_sT(1 + Bb™B(k + )M,
BL(1 + apB)

IS~ f (b-1)" 1hk(T)a’T}a’V) f i 0&o(6)d6
0

+ 1187l

F( + 1)
+ CL’M() f (w - V)Q_IK2K3
0

Ol + MISTISHlxoll + MIS™IK Mok + 1) + ISTHIK Mo (k + 1)
Ci1sT'(1 + Bb*P(k + 1)M,
B + ap)

Rl f (b1 lhk(ﬂdr}dv) f 0,(6)d6

+1I87l

r( +1)

+ G’M()( (w — V)a_1K2K3

w—€

Ol Il + MIS™ ISHIxoll + MIIS™IK Motk + 1) + ISV IK i Ma(k + 1)
C1_sT(1 + B)bB(k + )M,
BL(1 + af)

IS f b0 hrdrlay) f " 6e.(0)d0
0

+1I87l

r( + 1)
+||S‘1||aM f (w—v)“‘lhk(v)dv) f 0,(6)d6o
0 0

+IS! ||aM( f " - v)“-lhk(v)dv) fo 0, (0)do

0 w
< M||X0||||3_1||||S||f fa(e)d9+aM(f (@ — )" oIS IK2 K
0 0

Ol + MISTIISHlxoll + MIS™IK 1 Mok + 1) + ISTHIK Mo (k + 1)
Ci1sI'(1 + Pb*P(k + 1)M,
B + ap)

IIS il f (b -1 1hk(T)a’T}dV) fj 0&o(6)db

+1I87l

r<
+ aM( f (@ — ) oIS KK

w—€

Ol + MISTISHlxoll + MIS™IK Mok + 1) + ST IK My (k + 1)
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Ci_gT(1 + B)bB(k + 1)M,
BL(1 + ap)

b
IS~ f (b—T)“_lhk(T)dT}dv)
0

+1I87l

T —

INa+1)

+ CZM()(f (ZD' - V)Q_IK2K3
0

COfllxll + MIS ISl + MIS™IK Mok + 1) + ST 1Ky Mok + 1)
Ci_sT(1 + B)b™B(k + )M,
BL(1 + apB)

a-1
F( +1)|IS il f (b-1) hk(T)dT}dV) f 0. (0)do

(@

+ CL’Mo( (w - V)a_leKg

+ IS~

Ol + MISIISHlxoll + MIS™IK Mok + 1) + [ISTHIK Mok + 1)
Ci15T(1 + Bb*P(k + 1)M,
B + ap)

——IS7'I| f (b-1)" lhk(T)dT}dV)

+1I87l

r( +1)

+||S‘1||aM f (w—v)"_lhk(v)dv) f 0£,(0)do
0 0

1 e f T - W ()

Hence, there are relative compact sets arbitrary close to V(w@), w > 0. Therefore, V(w), @ > 0 is also
relatively compact in Y. Consequently, with the help of Arzela-Ascoli theorem it can be say that P; is
compact. The above evidence demonstrates that P = P, + P, is a condensing mapping on By, and by
the Theorem 2.10, x(-) exists for P on By and the systems (2.1) and (2.2) have a mild solution. O

Remark 3.2. Many authors have recently investigated the boundary controllability of fractional
evolution differential systems utilizing fractional theories, mild solutions, Caputo fractional
derivatives, and fixed-point techniques. Very particularly, in [1-5], the authors discussed the
existence and boundary controllability outcomes for integer and fractional order systems with and
without delay by referring to multivalued functions, various fixed point theorems, fractional calculus,
and nonlocal conditions. One can extend our current study to the integro-differential systems,
Volterra-Fredholm integro-differential systems with integer and fractional order settings by using
well-known fixed point theorems.

4. Example

Let us assume that € be a bounded, open subset of R”. Consider I be a sufficiently smooth boundary
of Q. Assume that the following fractional differential system:
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Oy (x(@,v) = Ax(@,v)) + F(@, x(@,v), x(b1(@), V), -+ , x(Dp(@), v))]
=Mx(@,v) + G(w, x(@,v), x(a1(@), V), -+, x(a,(@),v)) in Q=(0,b) X,

x(@,0) = u(w,0), on X =(0,b) xXI', @w € [0,b],

x(@,v) =0,x(0,v) = xo(v), forveQ.
In the above, u € LA(X), xo € L*(A), F,G € L*(Q) and 4% is a Caputo fractional partial derivative of
order 0 < @ < 1. We can formulate the above problem as the boundary control problem (2.1) and (2.2)
by suitably taking the space ¥ = Z = LX(Q),X = H> (), U = L*(T),B; = 1. Now S: D(S) C Y - Z
given by Si = i — Ah with D(S) = H*(Q) and

D(cr) = {x € I2(Q): Ay € LZ(Q)}, oy = Ay.

The trace operator 6 is well defined and expressed as 6y = x|r and for y € D(0), Oy € H %I(F) [24].
Define A : D(A) C Y — Z in the following way: AS™'% = AS™'% with D(AS™) = Hj(Q) U H*(Q).
Here H*(Q), H”(Q) are the usual Sobolev space on Q,T'. Then, we introduce A and S in the following
way:

(i) An =3, p*(h,lih,, he D(A), and Sh = 21+ pH (R, Bh,, Tie D(S).

(ii) Foreveryh € Y,
(iii) A? is defined as follows:

On D(A%) ={a) ey, Z;"zl p(h,hp)h, € Y}, hi,(y) = \/isinpv, p=1,2,3,--- be the orthogonal set
of eigen vectors of A. Additionally, for 7z € Y.

IR
S'h=) 5 Tl

—_—

s 2

14
+ p?

(R, Tip)p,

p=1

L 2

T(@)h =Y el (hhy)h,.

p=1

Clearly, AS™! generates a strongly continuous compact semigroup T(w) with |T(w)|| < M, for all
@ > 0. To verify (A2) and (A3), we introduce B : L*(I') — L*(I') by Bu = v,, v, is the unique solution
toAv, =0in Q, v, = uinI'. We now define F and G in the following way:

F(?D', .X('ZD'), X(bl(’ZD')), ) -x(bm(w))) = F('ZU,)((?D', V),)((bl(@), V)9 e ,X(bm(w)’ V))a
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G(@, x(@), x(a)(@)), - -, X(an(@))) = G(@, x (@, V), x(a1(®@), V), -, x(an(@), V)).

We conclude now F, G fulfill the hypotheses (A5) and (A6). Additionally, W~! also exists. Assume
b and the remaining constants fulfill the hypotheses (AS)—(A7). Therefore, all the requirements of the
Theorem (3.1) are fulfilled and (2.1) and (2.2) are controllable.

5. Conclusions

In this article, we mainly focused on the boundary controllability of fractional order Sobolev-type
neutral evolution equations in Banach space. We show our key results using facts from fractional
calculus, semigroup theory, and the fixed point method. Finally, we give an example to illustrate the
theory we have established. In the future, we will focus on the boundary controllability of Hilfer
fractional-order neutral evolution equations and integrodifferential equations in Banach space by using
the fixed point theorem approach.
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