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a contour integral. If A is self-adjoint, then the resolvent family can also be represented by resolution
of identity of A. And we give some examples as an application of our result.

Keywords: integral representation; stability; distributed order calculus; functional calculus; resolvent
families
Mathematics Subject Classification: 26A33, 45K05, 47A10, 47A60, 45D05

1. Introduction

In this paper, we consider the following abstract Cauchy problem with the distributed order
derivative:

D(µ)u(t) = −Au(t), t > 0
u(0) = x0 ∈ X,

(1.1)

where X is a Banach space and µ satisfies the same condition as [16], that is

µ ∈ L1(0, 1),
∫ 1

0

µ(α)
α

dα < ∞,

the resolvent family of Eq (1.1) is denoted by f (t, µ, A) (if A is a constant λ, then f (t, µ, λ) is the
resolvent family of this equation). We obtain the decay estimate of the solution if A generates an
exponentially stable semigroup, we prove that the operator norm of the resolvent family is controlled
by k(t), which is at least logarithmic decay. And faster decay of µ near zero will lead to the faster
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decay of the solution. And if A is an invertible sectorial operator with some spectral conditions, then
we obtain another representation of the solution, by use of contour integral or spectral measure instead
of subordination principle. To the author’s knowledge, this is the first time to consider the analyticity
of resolvent family f (t, µ, λ) with respect to parameter λ, rather than parameter t, then by using the
contour method and spectral measure together with some basic estimates proved by [12,14,16,17], we
obtain the stability and representation of distributed order resolvent family. This method was already
used to get the decay estimate and stability of fractional resolvent family, see more details at [7, 25]
and reference therein.

Distributed order differential equation with constant coefficient:

D(µ)u(t) = −λu(t), t > 0, λ > 0,
u(0) = x0 ∈ X

(1.2)

is studied by [3, 4, 14, 16, 17, 21–23] and reference therein. And the logarithmic decay of f (t, µ, λ) is
obtained by different methods. For example, A. N. Kochubei [14] use the Karamata-Feller Tauberian
theorem, while A.Kubica [16] use the Laplace transform techniques. Inspired by these papers, we got
our main results which are obtained by contour integral method.

In [21–23], multi-term fractional equations with initial-boundary value has been considered. If we
let function µ in (1.2) be the linear combination of the Dirac delta function, that is:

µ(α) =

n∑
i=1

λiδαi ,

where λi > 0 and δαi is the Dirac delta function with 0 < α1 < α2 < · · · < αn ≤ 1, then Eq (1.2)
becomes:

n∑
i=1

λiDαiu(t) = −λu(t), t > 0

u(0) = x0 ∈ X.

(1.3)

And the classical solution of this equation is represented by the multinomial Mittag-Leffler function.
By exploiting several properties of this function, the polynomial decay of the solution is proved and
can not be faster than t−β, β > α1.

In [14], the author shows that if µ(α) satisfies some regularity conditions, the distributed order
derivative of f can be defined as:

D(µ) f (t) =
d
dt

(k ∗ ( f − f (0)))(t)

for every continuous function f (t), where

k(t) =

∫ 1

0

s−α

Γ(α)
µ(α)dα

is a positive decreasing function and plays an important role in the distributed order calculus. The
author also got the asymptotic estimates of k(t) under the condition µ(α) ∈ C3[0, 1] and the asymptotic
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estimates of k̂(p) =
∫ ∞

0
e−ptk(t)dt under the condition µ(α) ∈ C2[0, 1]. By using these results, author

proved the completely monotonicity and decay estimate of solution. And author also consider the
following ultra-slow equation:

D(µ)u(t, x) = ∆u(t, x), x ∈ R, t > 0.

Many useful estimates of the fundamental solution of this equation were obtained here.
Assuming only µ ∈ L1, µ , 0, A. Kubika and K. Ryszewska proved very important results [16]

that the operator norm of the resolvent family can be controlled by k(t). Thus, the change of µ near-
zero influence the decay estimate of k(t), and then influence the decay estimate of the solution [16,
Propositon 2]. Based on these results, extending the constant coefficient to the abstract densely defined,
linear coefficient operator, we draw our conclusion.

The subordination principle is a useful tool to investigate the properties of the resolvent family,
It was first proved by [2, Theorem 3.1] for fractional differential equations and then generalized to
distributed order differential equations with abstract densely defined, linear operator. In [3], the Author
proved the subordination identity of the solution of Eq (1.2):

u(t, λ) =

∫ ∞

0
φ(t, τ)e−λτdτ, t > 0,

where φ(t, τ) is a probability density function, satisfies

φ(t, τ) ≥ 0,
∫ ∞

0
φ(t, τ)dτ = 1.

And in [4], the constant coefficient λ is replaced by a densely defined, linear operator A, then the author
renewal the subordination identity if A generates a bounded semigroup T (t):

u(t, A) =

∫ ∞

0
φ(t, τ)T (τ)dτ, t > 0.

The order of the articles is as follows: Some preliminaries of distributed order calculus, notations,
and some important results in scalar type are provided in Section 2. The proof of decay estimates of
solution operator in Banach space is given in Section 3. In Section 4, we first prove the analyticity
and boundedness of f (t, µ, λ) with respect to the variable λ, then by use of contour integral method we
get the integral representation result of resolvent family, and by using representation we have proved,
some approximation results are given here. Spectral measure representation of resolvent is given in
Section 5.

2. Preliminaries

Throughout this paper,<(λ) and =(λ) means the real and imaginary part of a complex number λ. X
is a Banach space, H is a Hilbert space. L(X) is the space of all bounded and linear operators on X. We
always assume that A is a densely defined, closed, and linear operator on X, with N(A), D(A), R(A) its
kernel, domain, and range, respectively. While σ(A), ρ(A) denotes the spectrum and resolvent family
of A. As usual, ∗ denotes the convolution on R+:

( f ∗ g)(t) =

∫ t

0
f (t − s)g(s)ds. k ∈ L1(R+), f ∈ L1(R+, X)
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and f̂ (λ) denote the Laplace-transform of a exponentially bounded function f ∈ L1(R+, X), defined by

f̂ (λ) =

∫ ∞

0
e−λt f (t)dt,

if this integral is convergent.
Next, we give two important definitions. The first one is the definition of sectorial operator on

Banach space X.

Definition 2.1. [12, Chapter 2] Let ω ∈ [0, π). An operator A on X is called sectorial of angle ω, in
short, A ∈ sect(ω), if

(1) σ(A) ⊂ Σω, where Σω := {z ∈ C : | arg z| < ω};
(2) M(A, ω′) := sup

{
‖λR(λ, A)‖ : λ ∈ C \ Σω′

}
< ∞ for all ω′ ∈ (ω, π).

And we call
ω(A) := min {0 ≤ ω < π : A ∈ sect(ω)}

the spectral angle of A.

The second one is the definition of fractional integral and fractional derivative in Caputo sense: Let
α > 0, m = dαe the smallest integer bigger than α and

gα(t) =

 tα−1

Γ(α) t > 0,

0 t ≤ 0,

where Γ(a) is the Gamma function. Then the fractional integral of order α > 0 is defined by

Jα f (t) := (gα ∗ f )(t), f ∈ L1(I), t ∈ I ⊆ R+

and the Caputo fractional derivative of order α is defined by

Dα f (t) = Jdαe−αDdαe f (t).

For a non-negative and measurable function µ : [0, 1] −→ R we define the distributed-order
derivative with order µ by

D(µ) f (t) =

∫ 1

0
(Dα f )(t)µ(α)dα.

If function f (t) is continuous, then the preceding definition can be simplified as follows [14]:

D(µ) f (t) =
d
dt

((k ∗ f )(t) − f (0)k(t)),

where

k(t) =

∫ 1

0

t−α

Γ(1 − α)
µ(α)dα.

This function is Laplace-transformable, and the Laplace-transform of this function is given by

k̂(λ) =

∫ ∞

0
e−λtk(t)dt =

∫ 1

0
λα−1µ(α)dα.
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We always assume that function µ satisfies condition:∫ 1

0
µ(α)dα = cµ > 0,

∫ 1

0

µ(α)
α

dα < ∞, µ(α) ∈ (0, 1). (2.1)

There are many functions satisfies Eq (2.1), for example, µ(α) = αβ, β ∈ (0,∞), and it is worth
mentioning that according to [16], there exists a constant γ ∈ (0, 1

2 ) such that:∫ 1−γ

γ

µ(α)dα =
1 − γ

2
cµ > 0 (2.2)

for example, if we choose µ(α) = α, then Eq (2.2) is valid for every γ ≤ 1
3 .

Next we lay some results for the following distributed-order differential equation,

D(µ)u(t) = −λu(t), t > 0, λ > 0,
u(0) = x0,

(2.3)

which will be useful in this paper.

Lemma 2.2. [16] Suppose that λ > 0 and µ satisfies (2.1), then the unique absolutely continuous
solution of (2.3) is given by

u(t) = f (t, µ, λ)x0 :=
λx0

π

∫ ∞

0
e−rt G(r, λ)

r
dr,

where

G(r, λ) =

∫ 1

0
rα sin(απ)µ(α)dα

(λ +
∫ 1

0
rα cos(απ)µ(α)dα)2 + (

∫ 1

0
rα sin(απ)µ(α)dα)2

.

To get the decay estimate of f (t, µ, λ), the following important lemma is needed.

Lemma 2.3. [16] Let pλ = min
{
( λ

4cµ
)

1
δ , 1

}
, where δ ∈ (0, 1) is small enough such that

∫ δ

0
µ(α)dα ≤ λ

4
and cµ is defined in condition (2.1), then for r ∈ (0, pλ] we have∣∣∣∣∣∣

∫ 1

0
rα cos(απ)µ(α)dα

∣∣∣∣∣∣ ≤ λ

2
,

and for r ∈ (pλ,∞) we have ∫ 1

0
rα sin(απ)µ(α)dα ≥ c1 min

{
r1−γ, r−γ

}
.

By using this lemma, some decay estimates of f (t, µ, λ) is obtained in [16, Proposition 2].

Proposition 2.4. [16, Proposition 2] If µ satisfies condition 2.1. Then for t large enough the following
estimate holds

| f (t, µ, λ)| ≤ |k(t)| ≤
c

ln(t)
, (2.4)
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where c is a constant depends only on µ. Furthermore, when a is some fixed number from the interval
(0, 1),

(1) if k, b > 0 and µ(α) ≤ bαk a.e. on (0, a), then |k(t)| ≤ c
(lnt)k+1 ;

(2) if k, b, β,m > 0 and µ(α) ≤ bαke−
β
αm a.e. on (0, a), then for any q ∈ (0, 1)

|k(t)| ≤ c
Γ(k + 1)

(1 − q)k+1(lnt)k+1 exp(−m
1

m+1 (1 +
1
m

)(qmβ)
1

m+1 (lnt)
m

m+1 );

(3) if b > 0 and µ(α) ≤ bexp(−e
1
α ) a.e. on (0, a), then |k(t)| ≤ c

tlnlnt ;
(4) if a ∈ (0, 1) and supp(µ) ⊆ [a, 1], then |k(t)| ≤ c

ta .

The first estimates in Proposition 2.4 was generalized to the following problem

D(µ)u(t) = Lu(t), in Ω × (0,T )
u(0) = u0 in Ω

u|∂Ω = 0 for t ∈ (0,T )
(2.5)

with L is uniformly elliptic [16]. In this paper, we will consider more general cases. More precisely,
we will replace L by a general sectorial operator.

Next we recall the definition of resolvent families [32] with kernel a(t).

Definition 2.5. A family {R(t)} is called a resolvent family for sectorial operator A with kernel a(t) ∈
L1

loc(R+), if
(1) R(t)x : R+ → X is continuous for every x ∈ X and R(t) = I;
(2) R(t)D(A) ⊂ D(A) and AR(t)x = R(t)Ax for all x ∈ D(A) and t ≥ 0;
(3) the resolvent equation

R(t)x = x − (a ∗ R(t))(t)Ax

holds for every x ∈ D(A).

For example, f (t, µ, λ) is a resolvent family for operator Ax := λx with kernel

a(t) := ℵ(t) =
1
π

∫ ∞

0
e−tr

∫ 1

0
rα sin(απ)µ(α)dα

(
∫ 1

0
rα cos(απ)µ(α)dα)2 + (

∫ 1

0
rα sin(απ)µ(α)dα)2

dr,

where (k ∗ ℵ)(t) = 1 (the form and some interesting estimate of ℵ(t) is given by [14]).
Finally, we would like to give a brief introduction to a special function, the Mittag-Leffler

function [2], which plays an important role in fractional calculus.
The Mittag-Leffler function is defined as follows

Eα,β(z) =

∞∑
n=0

zn

Γ(αn + β)
=

1
2πi

∫
C

µα−βeµ

µα − z
dµ, z ∈ C,

where C is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|
1
α counter clockwise.

For short, Eα(z) := Eα,1(z) is an entire function and satisfies

DαEα(wtα) = wEα(wtα).

The most interesting properties of this function is its asymptotic expansion.
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Lemma 2.6. Let 0 < α < 2, β > 0, then

Eα,β(z) =
1
α

z
1−β
α exp(z

1
α ) −

N−1∑
n=1

z−n

Γ(β − αn)
+ O(|z|−N),

∣∣∣arg(z)
∣∣∣ ≤ 1

2
απ

and

Eα,β(z) = −

N−1∑
n=1

z−n

Γ(β − αn)
+ O(|z|−N),

∣∣∣arg(−z)
∣∣∣ ≤ (1 −

1
2
α)π

as z→ ∞.

3. Decay estimate for resolvent family

Now we consider the abstract distributed order equation:

D(µ)u(t) = −Au(t), t > 0
u(0) = x0,

(3.1)

and an operator family f (t, µ, A) is called a distributed order resolvent family if it satisfies the
Definition 2.5 with a(t) = ℵ(t).

In [3], the subordination identity of the solution of the equation is obtained:

f (t, µ, A) =

∫ ∞

0
φ(t, τ)T (τ)dτ, t > 0 (3.2)

where φ(t, τ) is a probability density function, satisfies

φ(t, τ) ≥ 0,
∫ ∞

0
φ(t, τ)dτ = 1.

So if A generates a bounded semigroup, it is easy to see that f (t, µ, A)x is Laplace-transformable for
every x ∈ X:

k̂(λ)R(λk̂(λ),−A)x =

∫ ∞

0
e−λt f (t, µ, A)xdt, λ > 0 x ∈ H.

So by using of Laplace transform, subordination principle, and imitating the method used in [24,
Theorem 5.2] and [26, Propositon 3.3] we can easily get the following propositions.

Proposition 3.1. Let f (t, µ, A) be a distributed ordre resolvnet family on X with µ(α) ∈ C[0, 1] and
µ(0) , 0. If

‖ f (t, µ, A)‖ ≤ Mt−δ as t −→ ∞

for some constant M and δ ∈ (0, 1), then X = {0}.

Proof. If condition is satisfied, then there exist a constant N such that

‖ f (t, µ, A)‖ ≤ Nt−δ

for every t > 0, so we have the following inequality for every x ∈ X,∥∥∥k̂(λ)R(λk̂(λ),−A)x
∥∥∥ ≤ ∥∥∥∥∥∫ ∞

0
e−λt f (t, µ, A)dt

∥∥∥∥∥ ‖x‖
AIMS Mathematics Volume 7, Issue 7, 11663–11686.
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≤

∫ ∞

0
e−λt ‖ f (t, µ, A)‖ dt‖x‖

≤ Nλδ−1‖x‖.

This means that ∥∥∥R(λk̂(λ),−A)
∥∥∥ ≤ N|

1

k̂(λ)
|λδ−1.

Since µ(0) , 0, it follows from [14, Proposition 2.2] that

k̂(λ) ∼ µ(0)λ−1(ln
1
λ

)−1,

then
lim
λ→0

R(λk̂(λ),−A)x = 0,

for x is arbitary, consequently, D(A) = {0}, as ρ(A) , ∅, then X = {0}. �

Proposition 3.2. If f (t, µ, A) is a distributed resolvent operator generated by A, and if A also generates
an exponential stable semigroup T (t), that is, there exist two positive constant M,w such that

‖T (t)‖ ≤ Me−wt, t > 0,

then
‖ f (t, µ, A)x‖ ≤ M‖x‖k(t),

for every x ∈ X and M is a constant and k(t) is defined in Proposition 2.4.

Proof. By using subordination principle (3.2), we have:

‖ f (t, µ, A)‖ = ‖

∫ ∞

0
φ(t, τ)T (τ)dτ‖

≤ M
∫ ∞

0
φ(t, τ)e−wτdτ

= M f (t, µ,w),

then the conclusion comes from Proposition 2.4. �

We end this section with two examples.

Example 3.3. Consider equation:

D(µ)
t u(t, x) = ∆u(t, x), t > 0

u(0, x) = φ(x) ∈ L1
0(R),

(3.3)

with additional condition µ(α) ∼ aαv as α −→ 0 and a > 0, v > 1, and

∆ : W2,1
0 (R) ⊆ W1,1

0 (R) −→ L1
0(R).
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Then from [14], the classical solution of Eq (3.3) is

u(t, x) =

∫
R

Z(t, x − ξ)φ(ξ)dξ.

and Z(t, x) is obtained by Laplace transform in x and Fourier transform in t and has the following
estimates [14]:

|Z(t, x)| ≤ C
∫ ∞

0
e−qrtr−1 |lnr|−

1+v
2 e−a|x||lnr|−

1+v
2 dr,

and ∣∣∣∣∣ d
dx

Z(t, x)
∣∣∣∣∣ ≤ C

∫ ∞

0
e−qrtr−1 |lnr|−(1+v) e−a|x||lnr|−

1+v
2 dr,

with q < 0. Then we have,

‖u(t, x)‖L1
0(R) ≤ ‖φ(x)‖L1

0(R) |Z(t, x)|L∞

≤ C ‖φ(x)‖L1
0(R)

∫ ∞

0
e−qrtr−1 |lnr|−

1+v
2 dr

= C ‖φ(x)‖L1
0(R) (

∫ 1
2

0
+

∫ ∞

1
2

)e−qrtr−1 |lnr|−
1+v

2 dr

≤ C ‖φ(x)‖L1
0(R) (e−

qt
2 + t−1(lnt)

1−v
2

+(lnt)−
1+v

2

∫ ∞

1
2t

e−qkk−1(lnk)−
1+v

2 dk),

and similarily ∥∥∥∥∥ d
dx

u(t, x)
∥∥∥∥∥

L1(R)
≤ C ‖φ(x)‖L1

0(R) (e−
qt
2 + t−1(lnt)1−v

+(lnt)−(1−v)
∫ ∞

1
2t

e−qkk−1(lnk)−1−vdk).

Thus,
‖u(t, x)‖W1,1

0 (R) ≤ C(lnt)−1−v as t −→ ∞.

Or consider other additional condition, supp(µ) ⊆ [δ, 1], then,

k̂(λ) =

∫ 1

0
λαµ(α)dα < Cλδ,

thus through the same calculation as [14, Theorem 4.3] we have

|Z(t, x)| ≤ C
∫ ∞

0
e−qrtr

δ
2−1e−p|x|r

δ
2 dr,

and ∣∣∣∣∣ d
dx

Z(t, x)
∣∣∣∣∣ ≤ C

∫ ∞

0
e−qrtrδ−1e−p|x|r

δ
2 dr,

for some p, q > 0. Thus, we can get

‖u(t, x)‖W1,1
0 (R) ≤ Ct−δ as t −→ ∞.

Both of these two estimates coincide with our theorem.
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4. Contour integral representation of resolvent family

As we all know that a bounded analytic semigroup or a bounded analytic fractional resolvent
operator can be seen as the result of functional calculus, that is, if −A is an operator with sectorial
angle ω(−A) < π

2 , then
T (t) := e−λt(−A) = etA,

or if ω(−A) < απ
2 for some α ∈ (0, 2), then fractional resolvent operator S α(t) can defined by

S α(t) := Eα(−λtα)(−A) = Eα(Atα).

since e−λt and Eα(−λtα) are both entire function and satisfies some boundedness conditions (see more
details in [12]). If f (t, µ, λ) satisfies the boundedness condition and analytic in a sector, then we may
use functional calculus to represent the distributed order resolvent operator

f (t, µ, A)x := f (t, µ, λ)(A)x,

but unfortunately, this is not valid since f (t, µ, λ) is not analytic in any sector.

Proposition 4.1. For every sector Σθ = {λ : |arg(λ)| < θ}, there is a λ0 ∈ Σθ, such that f (t, µ, λ) is
diverges at λ0 for every t > 0.

Proof. Since
∫ 1

0
rα sin(απ)µ(α)dα =

∫ 1

0
rα cos(απ)µ(α)dα = 0 as r = 0, and

lim
r→∞

∫ 1

0
rα sin(απ)µ(α)dα∫ 1

0
rα cos(απ)µ(α)dα

= 0

then for every θ > 0, there must exist at least one λ0 ∈ Σθ and a positive constant r0, such that

λ0 = −

∫ 1

0
rα0 cos(απ)µ(α)dα + i

∫ 1

0
rα0 sin(απ)µ(α)dα

so we have

| f (t, µ, λ0)|

=
∣∣∣∣λ0

π

∫ ∞

0

e−rt

r

∫ 1

0
rα sin(απ)µ(α)dα

(λ0 +
∫ 1

0
rα cos(απ)µ(α)dα)2 + (

∫ 1

0
rα sin(απ)µ(α)dα)2

dr
∣∣∣∣

=
|λ0|

π

∣∣∣∣ ∫ ∞

0

e−rt

r

∫ 1

0
rα sin(απ)µ(α)dα

(λ0 +
∫ 1

0
rα cos(απ)µ(α)dα)2 + (

∫ 1

0
rα sin(απ)µ(α)dα)2

dr
∣∣∣∣

=
|λ0|

π

∫ ∞

0

e−rt

r

∫ 1

0
rα sin(απ)µ(α)dα

|(λ0 +
∫ 1

0
rα cos(απ)µ(α)dα)2 + (

∫ 1

0
rα sin(απ)µ(α)dα)2|

dr

=
|λ0|

π

∫ ∞

0

e−rt

r
G0(r)

∫ 1

0
rα sin(απ)µ(α)dαdr,

AIMS Mathematics Volume 7, Issue 7, 11663–11686.
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where

G0(r)

= |(λ0 +

∫ 1

0
rα cos(απ)µ(α)dα)2 + (

∫ 1

0
rα sin(απ)µ(α)dα)2)|−1

=
∣∣∣∣(∫ 1

0
(rα − rα0 ) cos(απ)µ(α)dα)2 − (

∫ 1

0
rα0 sin(απ)µ(α)dα)2

+(
∫ 1

0
rα sin(απ)µ(α)dα)2

+2i(
∫ 1

0
rα0 sin(απ)µ(α)dα)(

∫ 1

0
(rα − rα0 ) cos(απ)µ(α)dα)

∣∣∣∣−1
,

we choose |r − r0| small enough such that

|rα − rα0 | ≤ M|r − r0|rα−1
0 ,

then we have

G0(r) ≥
M(r0, r)
|r − r0|

,

where M(r0, r) is not equal to zero, thus we have

| f (t, µ, λ0)| ≥
M(r0, r)|λ0|

π

∫ ∞

0

e−rt

r

∫ 1

0
rα sin(απ)µ(α)dα

|r − r0|
dr.

Obviously, f (t, µ, λ) is diverges at λ0. �

Though f (t, µ, λ) is not analytic in any sector, it may analytic in some areas, and the contour integral
method may be used. Now we prove the main result of this section, at first we give the following
definition.

Definition 4.2. We say a pair of positive number (ω, ε) satisfies condition (I) if it satisfies following
three conditions,

(1) ω, ε ∈ (0,∞).
(2) ε ≤ ω

4 .
(3) There exist two positive constants δ < 1(δ is given in Lemma 2.3) and r1 ≤ min{ωδ, ω} such

that: ∣∣∣∣∣∣ω +

∫ 1

0
rα cos(απ)µ(α)dα

∣∣∣∣∣∣ > ε, r ∈ (0, r1),

and ∣∣∣∣∣∣
∫ 1

0
rα sin(απ)µ(α)dα

∣∣∣∣∣∣ > 2,ε r ∈ (r1,∞).

Remark 4.3. For ε small enough, the existence of r1 is obvious, so for every ω > 0, there always exist
a constant ε such that (ω, ε) satisfies condition (I).
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Now we are in position to prove the analyticity of f (t, µ, λ) for λ ∈ Σ(ω, ε), where (ω, ε) satisfies
condition (I) and

Σ(ω, ε) :=
{
λ ∈ C|<(λ) > ω, |=(λ)| < ε

}
.

We first prove the boundedness and decay estimate of f (t, µ, λ).

Lemma 4.4. Assume (ω, ε) satisfies condition (I) and µ satisfies conditon (2.1). Then there exist a
constant N, such that for every t > 0 and λ ∈ Σ(ω, ε),

| f (t, µ, λ)| ≤ k(t)
N
|λ| + 1

.

The estimate of function k(t) is given in Proposition 2.4.

Proof. We define b(r) =
∫ 1

0
rα cos(απ)µ(α)dα and c(r) =

∫ 1

0
rα sin(απ)µ(α)dα for abbreviation.

We first assumeω > 1. By condition (I) we have<(λ)δ > ωδ > max{r1, 1}, for every 0 < r < <(λ)δ:∫ 1

0
rα cos(απ)µ(α)dα >

∫ 1

1
2

rα cos(απ)µ(α)dα >
−1
2
<(λ),

and
1
2
|λ| < <(λ) ≤ |λ| .

Then, we divide function f (t, µ, λ) into two parts:

| f (t, µ, λ)| ≤
|λ|

π

∫ ∞

0
e−rt |G(r, λ)|

r
dr

≤
|λ|

π
(
∫ <(λ)δ

0
+

∫ ∞

<(λ)δ
)
e−rt

r
|G(r, λ)| dr

:= f1 + f2,

for every 0 < r < <(λ)δ:

<(λ +

∫ 1

0
rα cos(απ)µ(α)dα)2 := <(λ + b(r))2

= <(<(λ) + b(r) + i=(λ))2

= (<(λ) + b(r))2 − (=(λ))2

>
(<(λ))2

4
− (=(λ))2 > 0,

and there exist a constant L satisfies:∣∣∣(λ + b(r))2
∣∣∣ > |λ|2

16
− (=λ)2 >

|λ|2

L
.

So,

f1 ≤
|λ|

π

∫ <(λ)δ

0

e−rt

r
L∣∣∣λ2
∣∣∣
∫ 1

0
rα sin(απ)µ(α)dαdr
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≤
L
π |λ|

∫ ∞

0

e−rt

r
c(r)dr

≤ C
1
|λ|

k(t),

because (ω, ε) satisfies condition (I), if r ≥ <(λ)δ > r1, then

|(λ + b(r))2 + c(r)2| ≥ (<(λ) + b(r))2 − (=(λ))2 + c(r)2

> c(r)2 − (=(λ))2

> c(r)2 − ε2

>
3
4

c(r)2.

So there is a constant C satisfies:
|G(r, λ)| < C

1
c(r)

.

Assume n ∈ N and nδ > 2,

f2 ≤ C
|λ|

π

∫ ∞

<(λ)δ

e−rt

r
1

c(r)
dr

≤ C
|λ|

π

∫ ∞

<(λ)δ

e−rt

r
r−γdr

≤ C
|λ|

π

1
<(λ)γδ

∫ ∞

1
e−<(λ)δsts−γ−1ds

≤ C
|λ|

π

1
<(λ)γδ

∫ ∞

1
e−<(λ)δstsn−1ds

≤ C |λ|1−(n+γ)δ t−n.

So our conclusion valid when ω > 1, if ω < 1, consider operator (1 + 1
ω

)A instead of A. �

Next we prove the analyticity of f (t, µ, λ).

Proposition 4.5. If (ω, ε) satisfies condition (I), then for every t > 0, f (t, µ, λ) is analytic in Σ(ω, ε).

Proof. We define b(r) =
∫ 1

0
rα cos(απ)µ(α)dα and c(r) =

∫ 1

0
rα sin(απ)µ(α)dα for abbreviation.

For every λ0 ∈ Σ(ω, ε) and r ∈ R+, there exist a constant M(λ0) satisfies:

max
r∈R+

{
1

(λ0 + b(r))2 + c(r)2 ,
b(r)

(λ0 + b(r))2 + c(r)2

}
≤ M(λ0). (4.1)

We first prove f (t, µ, λ) is differentiable in Σ(ω, ε). Let λ, λ0 ∈ Σ(ω, ε),

f (t, µ, λ) − f (t, µ, λ0) =
λ − λ0

π

∫ ∞

0

e−rt

r
G(r, λ0)dr

+
λ

π

∫ ∞

0

e−rt

r
(G(r, λ) −G(r, λ0))dr.
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So,

f (t, µ, λ) − f (t, µ, λ0))
λ − λ0

=
1
π

∫ ∞

0

e−rt

r
G(r, λ0)dr

+
λ

π

∫ ∞

0

e−rt

r
G(r, λ) −G(r, λ0)

λ − λ0
dr

=
1
π

∫ ∞

0

e−rt

r
G(r, λ0)dr

+
λ

π

∫ ∞

0

e−rt

r
G(r, λ0)

λ0 + λ + 2b(r)
(λ + b(r))2 + c2(r)

dr.

So,

lim
λ→λ0

f (t, µ, λ) − f (t, µ, λ0))
λ − λ0

=
1
π

∫ ∞

0

e−rt

r
G(r, λ0)dr +

λ0

π

∫ ∞

0

e−rt

r
G(r, λ0)

2λ0 + 2b(r)
(λ0 + b(r))2 + c2(r)

dr.

When t > 0, by inequality (4.1), preceding equality is meaningful, and thus f (t, µ, λ) is differentiable
in Σ(ω, ε). In order to prove that f (t, µ, λ) is analytic, we only need to check whether f (t, µ, λ) satisfies
Cauchy-Riemann condition, and this can be done directly. �

By Proposition 4.5 and Lemma 4.4, if operator A satisfies some special conditions, then distributed
order resolvent family f (t, µ, A) can be represented by contour integral.

Theorem 4.6. Let A be an invertible sectorial operator and µ satisfies condition (2.1). Suppose there
exist (ω, ε), (ω1, ε1) satisfies condition (I), such that σ(A) ⊆ Σ(ω, ε) ⊆ Σ(ω1, ε1). Define f (t, µ, A):

f (t, µ, A) :=


∫

Γω1 ,ε1
f (t, µ, λ)R(λ, A)dλ, t > 0,

I, t = 0,

where Γ(ω1, ε1) is the positive oriented boundary of Σ(ω1, ε1). Then f (t, µ, A)x0 is a weak solution of
Eq (3.1), strongly continuous in (0,∞), and satisfies:

‖ f (t, µ, A)x0‖ ≤ Ck(t). (4.2)

Proof. We have already prove the decay estimate and analyticity of f (t, µ, λ), so inequality (4.2) can
be proved directly.

‖ f (t, µ, A)‖ ≤ k(t)C
∫

Γω1 ,ε1

1
|λ|(1 + |λ|)

|dλ| ≤ Ck(t).

Now we prove the strongly continuity of f (t, µ, A)x. for every ε, t > 0, let t1 satisfies:

0 < t1 − t < min{tnε, ε},

let δ here coincident with δ in Lemma 4.4, and let n satisfies nδ > 2 + δ, if t , 0, then assume t < t1,
ω > 1, by proof of Lemma 4.4 and mean-value theorem,

| f (t1, µ, λ)x0 − f (t, µ, λ)x0| ≤ |x0|
1
π

∫ ∞

0
|
e−rt1 − e−rt

r
||λ||G(r, λ)|dr
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≤ |x0|
N
|λ|

∫ Re(λ)δ

0

e−rt − e−rt1

r
c(r)dr

+|x0|
|λ|

π

∫ ∞

Re(λ)δ

e−rt − e−rt1

r
dr

< |x0|
N
|λ|

∫ Re(λ)δ

0

e−rt − e−rt1

r
c(r)dr

+
t1 − t

tn |x0|
N

<(λ)nδ−1+γδ−δ

≤ N
|x0|

|λ|
ε.

Constant N is independent of λ, t, and depend on the value of µ and γ. So we have:

‖ f (t1, µ, A)x − f (t, µ, A)x‖ ≤ ‖x‖Nε
∫

Γω1 ,ε1

1
|λ|
‖R(λ, A)‖ |dλ| < Cε.

Constant C is depend on the value of µ and (ω1, ε1).
If t = 0, because

f (t, µ, A)x =

∫
Γω1 ,ε1

f (t, µ, λ)R(λ, A)xdλ,

and ∫
Γω1 ,ε1

f (t, µ, λ)
λ

xdλ = 0,

and for every t > 0,

‖ f (t, µ, λ)R(λ, A)x‖ ≤ ‖x‖
M

(1 + |λ|)2 ,

and the right hand side of the preceding inequality is integrable on Γω1,ε1 , and

f (t, µ, λ)x→ x as t → 0.

Then by dominant convergence theorem, for every x ∈ D(A),

lim
t→0

f (t, µ, A)x = lim
t→0

∫
Γω1 ,ε1

( f (t, µ, λ)R(λ, A)x −
f (t, µ, λ)

λ
x)dλ

=

∫
Γω1 ,ε1

1
λ

R(λ, A)Axdλ = x.

Then we prove that f (t, µ, A) is the resolvent family of equation. Since f (t, µ, λ) satisfies D(µ) f = λ f
and ∫ ∞

0
e−at f (t, µ, A)x0dt =

∫ ∞

0
e−at

∫
Γω1 ,ε1

f (t, µ, λ)R(λ, A)x0dλdt

=

∫
Γω1 ,ε1

∫ ∞

0
e−at f (t, µ, λ)dtR(λ, A)x0dλ

AIMS Mathematics Volume 7, Issue 7, 11663–11686.



11678

=

∫
Γω1 ,ε1

k̂(a)

âk(a) − λ
R(λ, A)x0dλ

= k̂(a)R(âk(a),−A)x0.

Then by the uniqueness of Laplace transform and the uniqueness of the solution, we have:

D(µ) f (t, µ, A)x = −A f (t, µ, A)x,

and for every x ∈ D(A),
f (0, µ, A)x = x.

This concludes the proof. �

At the end of this section, we give an application of the integral expression proved by Theorem 4.6,
we will use this representation to prove the approximation property of distributed order resolvent
family, and these approximation properties also show the uniqueness of the resolvent family.

Example 4.7. By [12, Proposition 3.1.15], if A is a sectorial operator satisfies Theorem 4.6, then for
every α ∈ (0, 1), Aα satisfies Theorem 4.6 and for every x ∈ D(A),

lim
α→1

Aαx = Ax,

and

‖Aαx − Ax‖ ≤ |
sin(απ)
απ

|(Lα sup
t≤L
‖(t + A)−1Ax − x‖ +

α

α + 1
Lα+1‖x‖

+
α

1 − α
Lα−1(M‖Ax‖ + ‖x‖)),

where L ∈ R+. Since Aα and A resolvent commute, then for every x ∈ D(A),

‖ f (t, µ, Aα)x − f (t, µ, A)x‖ ≤
∫

Γ

| f (t, µ, λ|‖R(λ, Aα‖‖Rλ, A‖|dλ|‖Aαx − Ax‖.

Because both Aα and A satisfy the sectorial estimate, then we have

‖ f (t, µ, Aα)x − f (t, µ, A)x‖ ≤ M(µ)k(t)‖Aαx − Ax‖.

The above inequality shows that we not only prove the approximation property of the resolvent family
but also give the approximation rate by Theorem 4.6.

Another important kind of approximation is the Yosida approximation, that is,

lim
n→∞

nA(n + A)−1x := lim
n→∞

Anx = Ax,

for every x ∈ D(A), moreover, if −A generaes a semigroup e−tA, then for every x ∈ X we have

e−tAx = lim
n→∞

e−tnA(n+A)−1
x.

And some results about the approximation rate of Yosida approximation are given in many literatures
such as [9, 10] and references therein.
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Example 4.8. Let −A be an operator which satisfies the condition of Theorem 4.6, and An be the Yosida
approximation of A, then for every x ∈ D(A2),

‖Ax − Anx‖ = ‖A2(n + A)−1x‖ ≤
1
n
‖A2x‖.

So we have

‖ f (t, µ, Aα)x − f (t, µ, An)x‖ ≤
∫

Γ

| f (t, µ, λ|‖R(λ, Aα‖‖Rλ, A‖|dλ|‖Anx − Ax‖

≤
M(µ)k(t)

n
‖A2x‖.

By Theorem 4.6 and preceding inequality, we can get the approximation rate of Yosida approximation
of distributed order resolvent family.

5. Spectral measure representation of resolvent family

If A is a densely defined sectorial operator on Hilbert space H, assume A is invertible and self-
adjoint, then there exists a constant w, such that σ(A) ⊂ [w,∞). So there exists a resolution of identity
E(λ), such that:

〈Ax, y〉 =

∫ ∞

w
λdEx,y(λ) =

∫ ∞

w
λd〈E(λ)x, y〉, x ∈ D(A), y ∈ H.

More properties about resolution of identity can be found in [33]. In literature [36], the author gives
some examples to show how resolution of identity and spectral measure integral works.

Example 5.1. [36] Let A is a densely defined non-negative self-adjoint operator on L2(Ω), E(λ) is the
resolution of identity of operator A.

The heat-diffusion semigroup generated by A can be written as:

e−tA =

∫ ∞

0
e−tλdE(λ), t > 0,

and this semigroup is a contraction semigroup.
The positive fractional powers of operator A is Aδ, δ ∈ (0, 1), D(Aδ) ⊆ D(A),

Aδ =

∫ ∞

0
λδdE(λ) =

1
Γ(−δ)

∫ ∞

0
(e−tA − I)

dt
t1+δ

.

The negative fractional powers of operator A is A−δ, δ > 0,

A−δ =

∫ ∞

0
λ−δdE(λ) =

1
Γ(δ)

∫ ∞

0
e−tA dt

t1−δ .

Let function f (t, µ, λ) be the resolvent family of distributed order equation with operator A = λ,
then f (t, µ, λ) is measurable on interval [w,∞). Define operator f (t, µ, A):

f (t, µ, A) :=
∫ ∞

w
f (t, µ, λ)dE(λ),
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this definition means
〈 f (t, µ, A)x, y〉 =

∫ ∞

w
f (t, µ, λ)dEx,y(λ),

and

D( f (t, µ, A)) =

{
x ∈ H;

∫ ∞

w
|( f (t, µ, λ))|2 dEx,x(λ) < ∞

}
.

We first prove the decay estimate of f (t, µ, A).

Theorem 5.2. f (t, µ, A) is well defined and D( f (t, µ, A)) = H. If µ satisfies (2.1), then

‖ f (t, µ, A)‖ < N(
1
t

+ k(t)),

N is a constant independent of t, and may change line by line.

Proof. We use notation pλ = min
{
( λ

4M )
1
δ , 1

}
as we used in Lemma 2.3. First we assume

0 <
∫ 1

0
µ(α)dα = M < 1,

and δ satisfies: ∫ δ

0
µ(α)dα <

w
4
,

and there exist a constant γ ∈ (0, 1
2 ) such that:∫ 1−γ

γ

µ(α)dα =
1 − γ
γ

M > 0,

the existence of these constants is proved in [16].
Let x, y ∈ H, we divide 〈 f (t, µ, A)x, y〉 into two parts,

〈 f (t, µ, A)x, y〉 =

∫ ∞

ω

λ

π

∫ ∞

0
e−rt G(r)

r
drdEx,y(λ)

= (
∫ 1

ω

+

∫ ∞

1
)
λ

π

∫ ∞

0
e−rt G(r)

r
drdEx,y(λ)

:= φ1 + φ2,

and divide φ1 into two parts,

φ1 =

∫ 1

ω

λ

π
(
∫ pλ

0
+

∫ ∞

pλ
)e−rt G(r)

r
drdEx,y(λ)

:= φ11 + φ12.

Estimate φ11 and φ12 separately, by using estimates (41) and (49) from [16]

G(r) ≤
4
λ2

∫ 1

0
rα sin(απ)dα, r ∈ (0, pλ),
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and ∫ pλ

0
e−rt

∫ 1

0
rα sin(απ)dα

dr
r
< k(t),

|φ11| ≤

∫ 1

ω

∫ pλ

0

λ

π
e−rt G(r)

r
drd

∣∣∣Ex,y(λ)
∣∣∣

≤

∫ 1

ω

λ

π

4
λ2 k(t)d

∣∣∣Ex,y(λ)
∣∣∣

≤ Nk(t) ‖x‖ ‖y‖ .

|φ12| ≤

∫ 1

ω

λ

π

∫ ∞

pλ
e−rt

M min
{
r−γ, rγ−1

}
r

drd
∣∣∣Ex,y(λ)

∣∣∣
≤

N
t

∫ 1

0
λp−γ−1

λ e−pλtd
∣∣∣Ex,y(λ)

∣∣∣
≤

N
t
‖x‖ ‖y‖ .

In order to estimate φ2, we divide φ2 into four parts,

φ2 =

∫ ∞

1

λ

π
(
∫ pλ

0
+

∫ 1

pλ
+

∫ λ

1
+

∫ ∞

λ

)e−rt G(r)
r

drdEx,y(λ)

:= φ21 + φ22 + φ23 + φ24,

and estimate these four parts separately,

|φ21| ≤

∫ ∞

1

λ

π

∫ pλ

0
e−rt G(r)

r
drd

∣∣∣Ex,y(λ)
∣∣∣

≤

∫ ∞

1

4
πλ

k(t)d
∣∣∣Ex,y(λ)

∣∣∣
≤ Nk(t) ‖x‖ ‖y‖ .

By definition of pλ,

|φ22| ≤

∫ ∞

1

λ

π

∫ 1

pλ
e−rt G(r)

r
drd

∣∣∣Ex,y(λ)
∣∣∣

≤

∫ ∞

1

λ

π

∫ 1

pλ
e−rtrγ−2drd

∣∣∣Ex,y(λ)
∣∣∣

=

∫ 4M

1

λ

π

∫ 1

pλ
e−rtrγ−2drd

∣∣∣Ex,y(λ)
∣∣∣

≤

∫ 4M

1

λ

π

∫ 1

pλ
e−rtdrpγ−2

λ d
∣∣∣Ex,y(λ)

∣∣∣
≤

N
t

∫ 4M

1
λpγ−2

λ d
∣∣∣Ex,y(λ)

∣∣∣
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≤
N
t
‖x‖‖y‖.

In order to estimate φ23, we shall use inequality
∫ 1

0
µ(α)dα = M < 1 to estimate G(r), bacause

−

∫ 1

0
cos(πα)µ(α)dα ≤

∫ 1

0
|cos(πα)| µ(α)dα < M < 1,

and since r ∈ (1, λ), ∣∣∣∣∣∣
∫ 1

0
rα cos(πα)µ(α)dα

∣∣∣∣∣∣ ≤ Mλ,

then we have

λ +

∫ 1

0
rα cos(πα)µ(α)dα ≥ (1 − M)λ ≥ 0,

then by the representation of G(r, λ), we have

G(r, λ) ≤

∫ 1

0
rα sin(πα)µ(α)dα

(1 − M)2λ2 ≤
Nr
λ2 ,

so

|φ23| ≤

∫ ∞

1

λ

π

∫ λ

1
e−rt G(r)

r
drd

∣∣∣Ex,y(λ)
∣∣∣

≤ N
∫ ∞

1

1
πλ

∫ λ

1
e−rtdrd

∣∣∣Ex,y(λ)
∣∣∣

≤
N
t
‖x‖ ‖y‖ .

Finally we estimate φ24,

|φ24| ≤

∫ ∞

1

λ

π

∫ ∞

λ

e−rt G(r)
r

drd
∣∣∣Ex,y(λ)

∣∣∣
≤

∫ ∞

1

λ

π

∫ ∞

λ

e−rtr−1−γdrd
∣∣∣Ex,y(λ)

∣∣∣
≤

∫ ∞

1
λ−γ

∫ ∞

λ

e−rtdrd
∣∣∣Ex,y(λ)

∣∣∣
=

∫ ∞

1
λ−γ

e−λt

t
d
∣∣∣Ex,y(λ)

∣∣∣
≤

1
t

∫ ∞

1
e−λtd

∣∣∣Ex,y(λ)
∣∣∣

≤
1
t
‖x‖ ‖y‖ .

So for every x, y ∈ H,

〈 f (t, µ, A)x, y〉 ≤ N(
1
t

+ k(t)) ‖x‖ ‖y‖ .
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This means
‖ f (t, µ, A)‖ ≤ N(

1
t

+ k(t)).

If
∫ 1

0
µ(α)dα = K > 1, then we consider operator A

K+1 instead of A and this end the proof. �

Next we prove f (t, µ, A) satisfies following three conditions:
(1) f (t, µ, A) is strongly continuous and f (0, µ, A) = I.
(2) f (t, µ, A)D(A) ⊆ D(A), and for every x ∈ D(A), f (t, µ, A)Ax = A f (t, µ, A)x.
(3) For every x ∈ D(A), D(µ) f (t, µ, A)x = −A f (t, µ, A)x.
By proof of Theorem 5.2, condition (1) is satisfied.
Set x ∈ D(A), y ∈ H,

〈
e−sA f (t, µ, A)x − f (t, µ, A)x

s
, y〉 =

∫ ∞

0

e−sλ − I
s

f (t, µ, λ)dEx,y(λ)

=

∫ ∞

0
f (t, µ, λ)

e−sλ − I
s

dEx,y(λ)

= 〈 f (t, µ, A)
e−sAx − x

s
, y〉.

Then 〈 f (t, µ, A)Ax, y〉 = 〈A f (t, µ, A)x, y〉, since y ∈ H is arbitrary, f (t, µ, A)D(A) ⊆ D(A), and for every
x ∈ D(A), f (t, µ, A)Ax = A f (t, µ, A)x.

Finally, let x ∈ D(A), y ∈ H,

〈D(µ) f (t, µ, A)x, y〉 =

∫ ∞

0
D(µ) f (t, µ, λ)dEx,y(λ)

=

∫ ∞

0
−λ f (t, µ, λ)dEx,y(λ)

= 〈−A f (t, µ, A)x, y〉.

Combining these conclusions, we have proved that f (t, µ, A) is the resolvent family generated by
operator A.

So we have the following theorem.

Theorem 5.3. Let A is a densely defined self-adjoint operator on Hilbert space H, if there exist a
constant w > 0, such that σ(A) ⊂ [w,∞), and function µ satisfies condition (2.1). Then for every
x ∈ D(A), distributed order equation

D(µ)u(t) = −Au(t),
u(0) = x,

(5.1)

has an unique solution f (t, µ, A)x, given by

f (t, µ, A)x =

∫ ∞

0
f (t, µ, λ)dE(λ)x.

And exists a constant N satisfies:

‖ f (t, µ, A)‖ ≤ N(
1
t

+ k(t)).
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Remark 5.4. Since every non-negative self-adjoint operator is a sectorial operator, contour integral can
also be used here, and obtain the same decay estimate. Here we use the spectral measure to illustrate
two things. First, the representation of the resolvent family is not unique, although resolvent family is
unique. Second, the decay speed of the resolvent family not only depends on µ but also depends on the
spectral of A.

6. Appendix

In addition to the references mentioned in this article, the following literature on this topic provides
applications for Caputo fractional calculus and distributed order differential equation: In paper [6, 11,
37], arthurs give some qualitative analyses applications about Caputo fractional calculus; distributed
order differential equations with different initial value or boundary value were considered by [15, 20];
many applications about distributed order differential equations, such as numerical analysis and control
theory, were given by [5, 13, 27–30].

7. Conclusions

In this paper, we proved the analyticity and decay estimate of f (t, µ, λ) with respect to λ and then
use this property to prove the contour integral representation of f (t, µ, A). If A is self-adjoint, then we
represent f (t, µ, A) by resolution of identity of A, and some examples are given.
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