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1. Introduction

In [1], Lakatos et al. defined a Markov chain, its state corresponded to the waiting time at the
moments of arrivals. The transition probability matrix of the Markov chain is as follows

0∑
j=−∞

f j f1 f2 f3 · · ·

−1∑
j=−∞

f j f0 f1 f2 · · ·

−2∑
j=−∞

f j f−1 f0 f1 · · ·

...
...

...
...

. . .


,

where the probability f j = P(( j − 1)T < Yn − Zn ≤ jT ), Yn represents the service time of the nth

customer and Zn represents the time difference between the (n + 1)th and the nth customers’ arrival
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time. Obviously, the nth order truncated matrix of the above matrix is a column upper minus lower
Toeplitz (CUML-Toeplitz) matrix [2].

Toeplitz operators and matrices appear in many areas of pure and applied mathematics [3–5].
Toeplitz matrices have important applications in various disciplines including the elliptic Dirichlet-
periodic boundary value problems [6], sinc discretizations of partial and ordinary differential equa-
tions [7–9], coding [10, 11], image and signal processing, numerical analysis, system theory, etc.

Cao and Huang [12] discussed the commutants of two Toeplitz operators. Wang et al. [13] discussed
Toeplitz operators on Fock-Sobolev space with positive measure symbols. By Fock- Carleson measure,
they obtained the characterizations for boundedness and compactness of Toeplitz operators. Yang
and Lu [14] characterized commuting dual Toeplitz operators with bounded harmonic symbols on the
harmonic Bergman space of the unit disk. Zhao and Zheng [15] showed that the spectrum of Toeplitz
operators on the Bergman space with harmonic symbols of affine functions of z and z̄ equals the image
of closed unit disk under the symbol. Ji [16] considered Toeplitz operators and the Hilbert transform
associated with A. He proved that the commutant of left analytic Toeplitz algebra on noncommutative
Hardy space H2(M) is just the right analytic Toeplitz algebra.

Ng et al. [17] presented a modification of G. Labahn-T. Shalom theorem with another (shorter)
proof. Labahn [18] proposed that formulae for the inverse of layered or striped Toeplitz matrices in
terms of solutions of standard equations are observed. The inverse of an invertible Toeplitz matrix was
presented in the form of Toeplitz Bezoutian of two columns in [19]. The Toeplitz inversion formulae
involving circulant matrices have also been presented in [20–22]. In [23], Jiang and Wang present an
innovative patterned matrix, RFPL-Toeplitz matrix. The group inverse of this new patterned matrix
can be represented as the sum of products of lower and upper triangular Toeplitz matrices. The explicit
inverse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices are provided in [24, 25].

It is generally known in [26] that any matrix A ∈ Cn×n is uniquely determined by its displacement,
i.e., ∇0(A) = A−Z0AZT

0 , where Z0 is the lower shift matrix. Furthermore, Gohberg and Olshevsky [27]
provided new formulae for representation of matrices (in particular, the Toeplitz matrices) and their
inverses in the form of sums of products of factor circulants based on the analysis of the factor ϕ-cyclic
displacement of matrices. Here the ϕ-cyclic displacement of a matrix A ∈ Cn×n is defined as

∇ϕ(A) = A − ZϕAZT
1
ϕ

,

where Zϕ is the ϕ-cyclic lower shift matrix [27, 28] (see also [29] [30] [31] for case ϕ = 1).

The main purpose of present work is to derive the inverses of the column upper-minus-lower
Toeplitz matrices and the column upper-minus-lower Hankel matrices based on the construct of new
cyclic displacements of matrices in a more general situation (see (2.1) below for definition). These
formulas involvs the factor (1,−1)-circulants, instead of the factor ϕ-circulants of the Toeplitz matrices
are the implications of the corresponding formulas given in [27], and are useful for the analysis of the
complexity of the inversion.

Based on the characteristics and applications of Toeplitz matrices, we are able to study a class of
new type matrices “close” to Toeplitz matrices. Specifically we deal with a column upper-minus-lower
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(CUML) Toeplitz matrix of the form

TCUML =



t0 t−1 · · · t2−n t1−n

t1 t0 − t1
. . .

. . . t2−n

t2 t1 − t2
. . .

. . .
...

...
...

. . .
. . . t−1

tn−1 tn−2 − tn−1 · · · t1 − t2 t0 − t1


n×n

, (1.1)

where t0, t±1, · · · , t±(n−1) are complex numbers.
Obviously, the entries ti j of the matrix in (1.1) are given by the following formulae:

ti j =

{
ti− j, j = 1 or j > i
ti− j − ti− j+1, 2 ≤ j ≤ i.

(1.2)

Specially, if t1−n = t1, t2−n = t2, · · · , t−1 = tn−1, then TCUML is a row first-minus-last right circulant
matrix, which was first defined in [32].

A column upper-minus-lower (CUML) Hankel matrix is of the form

HCUML =



h0 h1 · · · hn−2 hn−1

h1 . . . . . . hn−1 − hn hn
... . . . . . . hn − hn+1 hn+1

hn−2 . . . . . . ...
...

hn−1 − hn hn − hn+1 · · · h2n−3 − h2n−2 h2n−2


n×n

, (1.3)

where h0, h1, · · · , h2n−2 are complex numbers.
Obviously, the entries hi j of the matrix in (1.3) are given by the following formulas:

hi j =

{
hi+ j−2, j = n or i + j ≤ n
hi+ j−2 − hi+ j−1, i + j > n and j < n.

(1.4)

Specially, if h0 = hn, h1 = hn+1, · · · , hn−2 = h2n−2, then HCUML is called a row last-minus-first
left-circulant matrix, which is firstly defined in [32].

It should be noted that HCUML În is a CUML Toeplitz matrix, where În is the “n × n reversal matrix
[33]”, having ones along the secondary diagonal and zeros elsewhere.

2. The (1,−1)-cyclic displacement of a matrix

The (1,−1)-cyclic displacement of a matrix A ∈ Cn×n is defined as

∇1,−1(A) = A − Φ1,−1AΦ−1
1,−1, (2.1)
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where

Φ1,−1 =



0 0 · · · · · · 0 1

1 −1 . . . 0

0 1 −1 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . . 1 −1 0

0 · · · · · · 0 1 −1


. (2.2)

Obviously, the matrix Φ1,−1 is a row first-minus-last right circulant matrix with the first row
(0, · · · , 0, 1). We call Φ1,−1 the (1,−1)-cyclic lower shift matrix. (1,−1)-cyclic displacement rank
of the matrix A is the number τ = rank∇1,−1(A). If τ is comparatively small, we say that matrix A has
(1,−1)-cyclic displacement structure (with respect to Φ1,−1).

The linear transformation ∇1,−1(·) in Cn×n presented in (2.1), it is clear that for a nonsingular matrix
A ∈ Cn×n, there exists a relation between the (1,−1)-cyclic displacements of the inverse matrix A−1 and
the (1,−1)-cyclic displacement of A, namely

∇1,−1(A) = −A · ∇1,−1(A−1) · Φ1,−1AΦ−1
1,−1. (2.3)

From (2.3), the (1,−1)-cyclic displacement rank is inherited under matrix inversion: rank∇1,−1(A)
= rank∇1,−1(A−1). Using the (1,−1)-cyclic displacement technique, the equation (2.3) provides us with
a way of constructing the (1,−1)-cyclic displacement of the inverse matrix of A. If, in particular, the
(1,−1)-cyclic displacement of A ∈ Cn×n is given as the outer sum

∇1,−1(A) =

τ∑
i=1

qi · sT
i , (2.4)

where qi, si ∈ Cn, i = 1, 2, · · · , τ, τ = rank∇1,−1(A), then from (2.3), the analogous representation for
∇1,−1(A−1) can be made by solving 2τ matrix equations, involving the matrix A and the vectors of outer
sum (2.4):

∇1,−1(A−1) = −

τ∑
i=1

(A−1qi) · (sT
i Φ1,−1A−1Φ−1

1,−1). (2.5)

According to the above statement, we set ŝT
i = sT

i ·Φ1,−1 (i = 1, 2, ..., τ) and let the vectors ci and d̂T
i

be the solutions of the following equations

Aci = qi (i = 1, 2, ..., τ), (2.6)

and

d̂T
i A = ŝT

i (i = 1, 2, ..., τ), (2.7)

furthermore, in view of (2.3), it is not hard to verify that

∇1,−1(A−1) = −

τ∑
i=1

ci · dT
i , (2.8)
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where

dT
i = d̂T

i · Φ
−1
1,−1. (2.9)

Solving the equations

yT
1 A = eT

0 (2.10)

with eT
0 = (1, 0, · · · , 0) ∈ Cn, and

Ay2 = e0 (2.11)

produces the first row and the first column of A−1, respectively. Note that in our consideration the
matrix A is supposed to be nonsingular from the very beginning.

On the other hand, the solvability of Eqs (2.6) and (2.11) implies invertibility of A. Indeed, let
ci (i = 1, 2, · · · , τ) and y2 be the solutions of (2.6) and (2.11), respectively, and let wT A = 0 with
w = (w0,w1, · · · ,wn−1)T ∈ Cn. Then

wT (A − Φ1,−1AΦ−1
1,−1)Φ1,−1

(2.4)
===== wT

τ∑
i=1

qi · sT
i Φ1,−1

(2.6)
===== wT A

τ∑
i=1

ci · sT
i Φ1,−1 = 0,

so that wT Φ1,−1A = 0. From

wT Φ1,−1(A − Φ1,−1AΦ−1
1,−1)Φ1,−1 = wT Φ1,−1A

τ∑
i=1

cisT
i Φ1,−1 = 0,

it follows that wT Φ2
1,−1A = 0. A simple induction gives

wT Φk
1,−1A = 0, k = 0, 1, · · · , n − 1.

In particular, in view of (2.11),

0 = wT Φk
1,−1Ay2 = wT Φk

1,−1e0, k = 0, 1, · · · , n − 1,

i.e.,

w0 = wT e0 = 0, w1 = wT Φ1,−1e0 = wT e1 = 0,
wk = wT Φk

1,−1e0

= wT · (0, (−1)k−1, (−1)k−2C1
k−1, (−1)k−3C2

k−1, · · · ,−Ck−2
k−1, 1, 0, · · · , 0)T = 0,

k = 2, 3, · · · , n − 1,

where Ci
n is binomial coefficient

(
n
i

)
. We can conclude that w = 0 and hence A is nonsingular .

Analogously, we may show that the solvability of equations (2.7) and (2.10) yields the invertibility of
A, as well.

We summarize what we have obtained in the following theorem.

Theorem 1. Let A ∈ Cn×n, and ∇1,−1(A) is given by (2.4). If equations (2.6) and (2.11) [(2.7) and
(2.10), respectively] have solutions ci and y2 [dT

i and yT
1 ], respectively, then A is nonsingular , and

thus (2.7) and (2.10) [(2.6) and (2.11)] are solvable, and ∇1,−1(A−1) is of the form (2.8) with dT
i =

d̂T
i · Φ

−1
1,−1, i = 1, 2, · · · , τ.
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3. Quasi-circulant decompositions of CUML Toeplitz matrices

The row first-minus-last right circulant matrix with the first row wT = [w0 w1 · · · wn−1] is denoted
by RFMLRcircfr(wT ) [32]. In this paper, we denote the row first-minus-last right circulant with the
first column w = [w0 w1 · · · wn−1]T by RFMLRcircfc(w), i.e., the matrix of the form

RFMLRcircfc(w) =



w0 wn−1 wn−2 · · · w1

w1 w0 − w1
. . .

. . .
...

w2 w1 − w2
. . .

. . . wn−2
...

...
. . .

. . . wn−1

wn−1 wn−2 − wn−1 · · · w1 − w2 w0 − w1


.

Whenever necessary, we shall refer such matrices RFMLRcircfr(wT ) and RFMLRcircfc(w) as factor
(1,−1)-circulants. It should be noted that if wT = (w0,w1, · · · ,wn−1), then

RFMLRcircfr(wT ) = RFMLRcircfc(w̃) (3.1)

with w̃ = (w0,wn−1,wn−2, · · · ,w1)T , and that the identity

RFMLRcircfr(wT )RFMLRcircfr(aT ) = RFMLRcircfr(aT )RFMLRcircfr(wT ) (3.2)

and

RFMLRcircfc(w)RFMLRcircfc(a) = RFMLRcircfc(a)RFMLRcircfc(w) (3.3)

hold for any column vector w, a ∈ Cn.
The row skew first-plus-last right circulant matrix with the first row wT = [w0 w1 · · · wn−1] is

denoted by RSFPLRcircfr(wT ) [34–36]. In this paper, we denote the row skew first-plus-last right
circulant with the first column w = [w0 w1 · · · wn−1]T by RSFPLRcircfc(w), i.e., the matrix of the
form

RSFPLRcircfc(w) =



w0 −wn−1 −wn−2 · · · −w1

w1 w0 − w1
. . .

. . .
...

w2 w1 − w2
. . .

. . . −wn−2
...

...
. . .

. . . −wn−1

wn−1 wn−2 − wn−1 · · · w1 − w2 w0 − w1


.

Whenever necessary, we shall refer such matrices RSFPLRcircfr(wT ) and RSFPLRcircfc(w) as
factor (−1, 1)-circulants. It should be noted that if wT = (w0,w1, · · · ,wn−1), then

RSFPLRcircfr(wT ) = RSFPLRcircfc(w̃) (3.4)

with w̃ = (w0 − wn−1 − wn−2 · · · − w1)T , and that the identity

RSFPLRcircfr(wT )RSFPLRcircfr(aT ) = RSFPLRcircfr(aT )RSFPLRcircfr(wT )
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and

RSFPLRcircfc(w)RSFPLRcircfc(a) = RSFPLRcircfc(a)RSFPLRcircfc(w)

hold for any column vector w, a ∈ Cn.
In particular, let TCUML be an n×n CUML Toeplitz matrix with (t0 t−1 · · · t1−n) and (t0 t1 · · · tn−1)T

as its first row and first column, respectively. Considering the (1,−1)-cyclic displacement of TCUML,
we have

∇1,−1(TCUML) = TCUML − Φ1,−1TCUMLΦ−1
1,−1 = x · eT

0 + e0 · zT , (3.5)

where x = (β t1 − t1−n · · · tn−1 − t−1)T , zT = (−β t−1 − tn−1 · · · t1−n − t1), e0 = (1 0 · · · 0)T ∈ Cn

and β may be an arbitrary complex number.
Clearly, (1,−1)-cyclic displacement rank of a CUML Toeplitz matrix is on greater than 2, so that

such TCUML has (1,−1)-cyclic displacement structure if n is sufficiently large.
Furthermore, in the CUML Toeplitz matrix case, ∇1,−1(TCUML) also has a specific form given by

(3.5). Then the Eqs (2.6), (2.7) reduce respectively to

TCUMLc1 = x, TCUMLc2 = e0, (3.6)

and

d̂T
1 TCUML = eT

0 Φ1,−1, d̂T
2 TCUML = zT Φ1,−1. (3.7)

Thus, by (2.8), we have

∇1,−1(T−1
CUML) = −

2∑
i=1

ci · dT
i , (3.8)

where

c1 = T−1
CUMLx, dT

1 = eT
0 Φ1,−1T−1

CUMLΦ−1
1,−1,

c2 = T−1
CUMLe0, dT

2 = zT Φ1,−1T−1
CUMLΦ−1

1,−1.

Then from (2.4) and [30, 31], we easily obtain the following theorem.

Theorem 2. If the equality

∇1,−1(TCUML) =

τ∑
i=1

qi · sT
i , (qi, si ∈ Cn) (3.9)

holds, then

TCUML = RFMLRcircfc(TCUML) +

τ∑
i=1

L(qi) · Circ(sT
i ), (3.10)

where RFMLRcircfc(TCUML) is the row first-minus-last right circulant with the same first column
as that of TCUML, and L(qi) is the lower triangular Toeplitz matrix with the first column qi =

(qi0 qi1 · · · qi,n−1)T , and Circ(sT
i ) is the circulant with the first row sT

i = (si0 si1 · · · si,n−1).
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Proof. Based on the definitions of the row first-minus-last right circulant matrix, lower triangular
Toeplitz matrix and circulant matrix, we know

RFMLRcircfc(TCUML) =



t0 tn−1 tn−2 · · · t1

t1 t0 − t1
. . .

. . .
...

t2 t1 − t2
. . .

. . . tn−2
...

...
. . .

. . . tn−1

tn−1 tn−2 − tn−1 · · · t1 − t2 t0 − t1


n×n

, (3.11)

L(qi) =


qi0 0 · · · 0

qi1 qi0
. . .

...
...

. . .
. . . 0

qi,n−1 · · · qi1 qi0


n×n

, (3.12)

Circ(sT
i ) =


si0 si1 · · · si,n−1

si,n−1 si0
. . .

...
...

. . .
. . . si1

si1 · · · si,n−1 si0


n×n

. (3.13)

According to the Eqs (3.9), (3.11), (3.12) and (3.13), we obtain

RFMLRcircfc(TCUML) +

τ∑
i=1

L(qi) · Circ(sT
i )

=



t0 t−1 · · · t2−n t1−n

t1 t0 − t1
. . .

. . . t2−n

t2 t1 − t2
. . .

. . .
...

...
...

. . .
. . . t−1

tn−1 tn−2 − tn−1 · · · t1 − t2 t0 − t1


n×n

= TCUML.

Which completes the proof. �

The main result of this section is as follows.

Theorem 3. Let ∇1,−1(·) be the linear operator in Cn×n defined by (2.1). Then the following statements
hold:
(i) The equality ∇1,−1(A) = 0 holds if and only if A is a row first-minus-last right circulant matrix.
(ii) If the equation

∇1,−1(X) =

τ∑
i=1

qi · sT
i , (3.14)
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where qi, sT
i (i = 1, 2, · · · , τ) are given vectors, is solvable with respect to X ∈ Cn×n, then

τ∑
i=1

RFMLRcircfc(qi) · RFMLRcircfr(sT
i ) = 0. (3.15)

(iii) If 2τ vectors qi and sT
i (i = 1, 2, · · · , τ) satisfy the condition (3.15), then the equation (3.14) has

the solution

X = RFMLRcircfc(X) +
1
2

τ∑
i=1

RSFPLRcircfc(qi) · RFMLRcircfr(sT
i ), (3.16)

where RFMLRcircfc(X) is the row first-minus-last right circulant with the same first column as that of
X.
(iv) Under the conditions of (iii), the solution X of the equation (3.14) may also be written as

X = RFMLRcircfr(X) +
1
2

τ∑
i=1

RFMLRcircfc(qi) · RSFPLRcircfr(sT
i ), (3.17)

where RFMLRcircfr(X) is the row first-minus-last right circulant with the same first row as that of X.

Proof. (i) Let matrix A = (ai j)n−1
i, j=0 meet the requirement ∇1,−1(A) = 0, i.e., A = Φ1,−1AΦ−1

1,−1. From this
equality it follows that

ai j = ai+1, j+1 i f j , 0
a0 j = an− j,0 i f j , 0
ai0 = a0,n−i i f i , 0
ai1 = ai−1,0 + ai,0 i f i , 0.

By definition, these relations say that A is a row first-minus-last right circulant matrix.

(ii) Let ∇1,−1(X) =
τ∑

i=1
qi · sT

i . Then taking into account (2.1), we have

0 =

n−1∑
j=0

Φ
j
1,−1 · (A − Φ1,−1AΦ−1

1,−1) · (ΦT
1,−1)

=

n−1∑
j=0

τ∑
i=1

(Φ j
1,−1qi) · (sT

i (ΦT
1,−1) j)

=

τ∑
i=1

RFMLRcircfc(qi) · RFMLRcircfr(sT
i ).

The last equality follows from the general identity U · VT =
n−1∑
k=0

ck · dT
k , where ck and dk are the k-th

columns of the matrices U and V , respectively. The assertion (ii) is proved.
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Now we proceed to proving assertion (iii). Suppose that vectors qi, si (i = 1, 2, · · · , τ) satisfy the
condition (3.15) and we compute the (1,−1)-cyclic displacement of the matrix X defined by (3.16), i.
e., perform the (1,−1)-cyclic displacement transformation on both sides of equation (3.16). It follows:

∇1,−1(X) = ∇1,−1(RFMLRcircfc(X)) +
1
2

τ∑
i=1

∇1,−1(RSFPLRcircfc(qi)) · RFMLRcircfr(sT
i )

+
1
2

τ∑
i=1

RFMLRcircfc(qi) · RFMLRcircfr(sT
i )

= ∇1,−1(RFMLRcircfc(X)) +
1
2

τ∑
i=1

∇1,−1(RSFPLRcircfc(qi)) · RFMLRcircfr(sT
i ). (3.18)

It is easy to see that (1,−1)-cyclic displacement for RSFPLRcircfc(r) with the first column r =

[r0 r1 · · · rn−1]T , has the following simple form

∇1,−1(RSFPLRcircfc(r)) = 2(r · eT
0 − e0 · r̃T ), (3.19)

where r̃T = [r0 rn−1 rn−2 · · · r1] is the first row of the RFMLRcircfc(r). Calculating in this way the
(1,−1)-cyclic displacement for each matrix RSFPLRcircfc(qi) on the right hand side of (3.18) and
taking into account that ∇1,−1(RFMLRcircfc(X)) = 0 in view of (i), we have

∇1,−1(X) =

τ∑
i=1

qi · eT
0 · RFMLRcircfr(sT

i ) −
τ∑

i=1

e0 · q̃T
i · RFMLRcircfr(sT

i ), (3.20)

where q̃T
i are the first rows of the matrices RFMLRcircfc(qi) (i = 1, 2, · · · , τ). Therefore, in view of

(3.15) the sum of the last τ terms in (3.20) is equal to zero matrix. Furthermore, eT
0 ·RFMLRcircfr(sT

i ) =

sT
i (i = 1, 2, · · · , τ), and hence the matrix X defined by (3.16) satisfies the equation (3.14), therefore in

view of (3.15) the last row of the matrix X and RFMLRcircfc(X) coincide. The assertion (iii) is now
completely proved.

The assertion (iv) can be proved with the same arguments. �

The proposition (i) of the Theorem 3 shows every complex matrix A is determined by its (1,−1)-
cyclic displacement up to a row first-minus-last right circulant matrix. Therefore, an arbitrary complex
matrix is uniquely determined by its (1,−1)-cyclic displacement and any one of its rows or columns.

4. Inversion decomposition

Theorem 4. Suppose that TCUML be an arbitrary CUML Toeplitz matrix. If there exist solutions ci and
d̂T

i (i = 1, 2) for equations (3.6) and (3.7)respectively, then we have

2∑
i=1

RFMLRcircfc(ci) · RFMLRcircfr(dT
i ) = 0, (4.1)

where dT
i = d̂T

i · Φ
−1
1,−1.
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Proof. According to the special structure of matrix TCUML, it is easy to verify that the TCUML satisfies
the following equation

T T
CUML = ZÎnΦ1,−1 · TCUML · Φ

−1
1,−1 ÎnZ−1, (4.2)

where Z = Circ(0, . . . , 0, 1), i.e. Z is the cyclic lower shift matrix [27], and Φ1,−1 is given by the
equation (2.1). Let Σ = ZÎnΦ1,−1. Then the equation (4.2) can be changed to the following form

T T
CUML = ΣTCUMLΣ−1, (4.3)

with

Σ =



0 0 · · · 0 1
0 . . . 1 −1
... . . . . . . . . . 0

0 1 . . . . . . ...

1 −1 0 · · · 0


.

For TCUML and the representation (3.5) with a given β ∈ C of its (1,−1)-cyclic displacement, we
suppose that there exist solutions ci and d̂T

i (i = 1, 2) for the equations (3.6) and (3.7)respectively, that
is,

TCUMLc1 = x, TCUMLc2 = e0,

and
d̂T

1 TCUML = eT
0 · Φ1,−1, d̂T

2 TCUML = zT · Φ1,−1.

Set, as in equation (2.9),

dT
1 = d̂T

1 · Φ
−1
1,−1, dT

2 = d̂T
2 · Φ

−1
1,−1. (4.4)

Performing transformations to both equations in (4.4) and taking into account the equation (4.3),
and eT

0 = eT
0 ZÎn, zT = −xT ZÎn, we can obtain that vectors dT

1 and dT
2 are related with the solutions

c2 = (c2,0 c2,1 · · · c2,n−1)T and c1 = (c1,0 c1,1 · · · c1,n−1)T of the equations TCUMLc2 = e0 and
TCUMLc1 = x in the following form:

dT
1 = eT

0 · Φ1,−1 · T−1
CUMLΦ−1

1,−1 = cT
2 ZÎn,

dT
2 = zT · Φ1,−1 · T−1

CUMLΦ−1
1,−1 = −cT

1 ZÎn.

These meaning that dT
1 = (c2,0 c2,n−1 · · · c2,1) is the first row of the matrix RFMLRcircfc(c2), and

−dT
2 = (c1,0 c1,n−1 · · · c1,1) is the first row of the matrix RFMLRcircfc(c1).
According to

RFMLRcircfr(c1)RFMLRcircfr(c2) = RFMLRcircfr(c2)RFMLRcircfr(c1).

We have

RFMLRcircfc(c1) = −RFMLRcircfr(dT
2 ),

RFMLRcircfc(c2) = RFMLRcircfr(dT
1 ).

�
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We will now present the main result of the paper.

Theorem 5. Let TCUML be a CUML Toeplitz matrix with ∇1,−1(TCUML) = x · eT
0 + e0 · zT as in (3.5).

(i) If there exist solutions ci (i = 1, 2) and yT
1 for equations (3.6) and (2.10) respectively, then matrix

TCUML is nonsingular and T−1
CUML can be decomposed as follows

T−1
CUML = RFMLRcircfr(yT

1 ) −
1
2

2∑
i=1

RFMLRcircfc(ci) · RSFPLRcircfr(dT
i ), (4.5)

where dT
i = d̂T

i ·Φ
−1
1,−1 (i = 1, 2), d̂T

1 and d̂T
2 are solutions of the equations in (3.7), and RFMLRcircfr(yT

1 )
is a row first-minus-last right circulant matrix with the first row yT

1 .
(ii) If there exist solutions d̂T

i (i = 1, 2) and y2 for equations (3.7) and (2.11) respectively, then matrix
TCUML is nonsingular and another decomposition form for T−1

CUML is as follows

T−1
CUML = RFMLRcircfc(y2) −

1
2

2∑
i=1

RSFPLRcircfc(ci) · RFMLRcircfr(dT
i ), (4.6)

where RFMLRcircfc(y2) is a row first-minus-last right circulant with the first column y2 , and c1 and
c2 are the solutions of the equations (3.6).

Proof. By Theorem 1, the solvability of the corresponding equations (3.6) yields the invertibility of
TCUML then the equations (3.7) are also solvable.

In the following, let us confirm the Eq (4.5). By Theorem 4, we know that vectors ci, dT
i = d̂T

i ·Φ
−1
1,−1

(i = 1, 2) satisfy the condition (4.1), where ci, d̂T
i (i = 1, 2) are the solutions of the equations (3.6)

and (3.7) respectively, and computing the (1,−1)-cyclic displacement of the matrix on the right hand
side of (4.5), denoted by B. The matrices RFMLRcircfc(ci) (i = 1, 2) are row first-minus-last right
circulants, RSFPLRcircfr(dT

i ) are row skew first-plus-last right circulants and therefore are computable.
According to the Eq (4.5), we have

∇1,−1(B) = ∇1,−1(RFMLRcircfr(yT
1 )) −

1
2

2∑
i=1

∇1,−1[RFMLRcircfc(ci) · RSFPLRcircfr(dT
i )]

= ∇1,−1(RFMLRcircfr(yT
1 )) −

1
2

2∑
i=1

RFMLRcircfc(ci) · ∇1,−1[RSFPLRcircfr(dT
i )]. (4.7)

The last identity follows from (2.1) and Theorem 4, as

∇1,−1[RFMLRcircfc(ci) · RSFPLRcircfr(dT
i )]

=RFMLRcircfc(ci) · RSFPLRcircfr(dT
i )

− Φ1,−1RFMLRcircfc(ci)Φ−1
1,−1 · Φ1,−1RSFPLRcircfr(dT

i )Φ−1
1,−1

=RFMLRcircfc(ci)[RSFPLRcircfr(dT
i ) − Φ1,−1RSFPLRcircfr(dT

i )Φ−1
1,−1]

=RFMLRcircfc(ci) · ∇1,−1[RSFPLRcircfr(dT
i )], i = 1, 2.

According to the Eqs (3.19), (4.7) and the fact of ∇1,−1(RFMLRcircfr(yT
1 )) = 0 (see (i) of Theorem

3), we can obtain

∇1,−1(B) =

2∑
i=1

RFMLRcircfc(ci) · d̃i · eT
0 −

2∑
i=1

RFMLRcircfc(ci) · e0 · dT
i , (4.8)
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where d̃i is the first column of the RFMLRcircfr(dT
i ) (i = 1, 2). Therefore, in view of Theorem 4 the

first two terms on the right of (4.8) are equal to the zero matrix. Furthermore, RFMLRcircfc(ci) ·e0 = ci

(i = 1, 2), and hence the matrix B satisfies (4.7), ∇1,−1(B) = −
2∑

i=1
ci ·dT

i , so that by (3.8), ∇1,−1(T−1
CUML) =

∇1,−1(B), therefore in view of (4.1) the first rows of the matrices T−1
CUML and B (or RFMLRcircfr(yT

1 ))
coincide. Thus B = T−1

CUML, i.e., we have the desired result of assertion (i).
The proof of assertion (ii) is similar. �

According to (i) and (ii) of Theorem 5 we could further conclude the following.

Theorem 6. Let TCUML be a CUML Toeplitz matrix with ∇1,−1(TCUML) = x · eT
0 + e0 · zT as in (3.5).

If β ∈ C and there exist solutions c1 and c2 for equation (3.6), then matrix TCUML is nonsingular and
T−1

CUML can be decomposed as follows

T−1
CUML =

1
2
[
RSFPLRcircfc(2e0 − c1) · RFMLRcircfc(c2)

+ RSFPLRcircfc(c2) · RFMLRcircfc(c1)
]
. (4.9)

Proof. First of all, we note that T−1
CUML does exist in view of (i) of Theorem 5, therefore, it suffices

to show that the formula (4.9) holds. Let the vectors c1 and c2 be the solutions of the equations
(3.6). By TCUMLc2 = e0, we have RFMLRcircfc(T−1

CUML) = RFMLRcircfc(c2), furthermore, in view
of the arguments of Theorem 4, RFMLRcircfc(c1) = −RFMLRcircfr(dT

2 ), and RFMLRcircfc(c2)=
RFMLRcircfr(dT

1 ). Now, having these expressions and (4.6), we can obtain the desired result. �

Theorem 6 says that if TCUML is a CUML Toeplitz matrix and the equations (3.6) have solutions c1

and c2, then these solutions are sufficient for restoring the whole matrix T−1
CUML.

Another decomposition of the inverse of a CUML Toeplitz matrix is obtained in the following.

Theorem 7. Let TCUML be a CUML Toeplitz matrix of the form (1.1). If for some γ ∈ C, the equations

TCUMLc2 = e0 and TCUMLd = (γ, t−n+1, · · · , t−1)T (4.10)

are solvable, then TCUML is nonsingular , and T−1
CUML can be expressed as

T−1
CUML =

1
2

[RSFPLRcircfc(e0 + d)RFMLRcircfc(c2)+

RSFPLRcircfc(c2)RFMLRcircfc(e0 − d)]. (4.11)

Proof. Let d ∈ Cn be a solution of the second equation in (4.10). Then the vector c1 = e0 − d solves
the first equation in (3.6) with β = t0 − γ, that is, TCUML(e0 − d) = (t0 − γ, t1 − t1−n, · · · , tn−1 − t−1)T .
Thus the assertions of Theorem 7 are straightforward consequences of Theorem 6. �

The special structure of CUML Toeplitz matrices and CUML Hankel matrices show that there is a
relationship between them. Thus we also get the inverse decompositions of CUML Hankel matrices.

Remark 1. Let HCUML = (hi, j)n−1
i, j=0 be a CUML Hankel matrix defined by the Eq (1.3). Then there

exists an n × n CUML Toeplitz matrix TCUML such that TCUML = HCUML În, and HCUML is nonsingular
if and only if TCUML is. In that case the inverse of matrix HCUML is H−1

CUML = ÎnT−1
CUML, and Theorem 5,

6 and 7 are applicable to describe the formulas on representation of the inverse of HCUML.
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5. Conclusions

In this paper, we mainly obtained the inverse formula for CUML Toeplitz matrices by constructing
the corresponding displacement of the matrices. By the relationship between CUML Toeplitz matrices
and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also given. These
obtained results can be used to study queuing theory model based on Markov process.
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