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1. Introduction

In [1], Lakatos et al. defined a Markov chain, its state corresponded to the waiting time at the
moments of arrivals. The transition probability matrix of the Markov chain is as follows

_ZO:fj h L f
Jj=—c0
S fof fi b

S hof oS

where the probability f; = P((j — DT < Y, - Z, < jT), Y, represents the service time of the nth

customer and Z, represents the time difference between the (n + 1)th and the nth customers’ arrival
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time. Obviously, the nth order truncated matrix of the above matrix is a column upper minus lower
Toeplitz (CUML-Toeplitz) matrix [2].

Toeplitz operators and matrices appear in many areas of pure and applied mathematics [3-5].
Toeplitz matrices have important applications in various disciplines including the elliptic Dirichlet-
periodic boundary value problems [6], sinc discretizations of partial and ordinary differential equa-
tions [7-9], coding [10, 11], image and signal processing, numerical analysis, system theory, etc.

Cao and Huang [12] discussed the commutants of two Toeplitz operators. Wang et al. [13] discussed
Toeplitz operators on Fock-Sobolev space with positive measure symbols. By Fock- Carleson measure,
they obtained the characterizations for boundedness and compactness of Toeplitz operators. Yang
and Lu [14] characterized commuting dual Toeplitz operators with bounded harmonic symbols on the
harmonic Bergman space of the unit disk. Zhao and Zheng [15] showed that the spectrum of Toeplitz
operators on the Bergman space with harmonic symbols of affine functions of z and 7 equals the image
of closed unit disk under the symbol. Ji [16] considered Toeplitz operators and the Hilbert transform
associated with 2. He proved that the commutant of left analytic Toeplitz algebra on noncommutative
Hardy space H?(M) is just the right analytic Toeplitz algebra.

Ng et al. [17] presented a modification of G. Labahn-T. Shalom theorem with another (shorter)
proof. Labahn [18] proposed that formulae for the inverse of layered or striped Toeplitz matrices in
terms of solutions of standard equations are observed. The inverse of an invertible Toeplitz matrix was
presented in the form of Toeplitz Bezoutian of two columns in [19]. The Toeplitz inversion formulae
involving circulant matrices have also been presented in [20-22]. In [23], Jiang and Wang present an
innovative patterned matrix, RFPL-Toeplitz matrix. The group inverse of this new patterned matrix
can be represented as the sum of products of lower and upper triangular Toeplitz matrices. The explicit
inverse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices are provided in [24,25].

It is generally known in [26] that any matrix A € C"™" is uniquely determined by its displacement,
i.e., Vo(A) = A —ZyAZ!' where Z, is the lower shift matrix. Furthermore, Gohberg and Olshevsky [27]
provided new formulae for representation of matrices (in particular, the Toeplitz matrices) and their
inverses in the form of sums of products of factor circulants based on the analysis of the factor ¢-cyclic
displacement of matrices. Here the ¢-cyclic displacement of a matrix A € C™" is defined as

V,(A) =A- ZwAZE,

where Z, is the ¢-cyclic lower shift matrix [27,28] (see also [29] [30] [31] for case ¢ = 1).

The main purpose of present work is to derive the inverses of the column upper-minus-lower
Toeplitz matrices and the column upper-minus-lower Hankel matrices based on the construct of new
cyclic displacements of matrices in a more general situation (see (2.1) below for definition). These
formulas involvs the factor (1, —1)-circulants, instead of the factor ¢-circulants of the Toeplitz matrices
are the implications of the corresponding formulas given in [27], and are useful for the analysis of the
complexity of the inversion.

Based on the characteristics and applications of Toeplitz matrices, we are able to study a class of
new type matrices “close” to Toeplitz matrices. Specifically we deal with a column upper-minus-lower
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(CUML) Toeplitz matrix of the form

fo I e by fi-n
5] Io—h Iy
Tcume=| 1, =t . - : , (1.1)
. ‘.
In-1 2=t -+ L=l Ip—1h

nxn

where 79, 1.1, -+, t(n—1) are complex numbers.
Obviously, the entries #;; of the matrix in (1.1) are given by the following formulae:

) e j=1lorj>i
= { fij—tije, 2< j <. (1.2)

Specially, if t,_, = t;,tob_, = tn, -+, t_1 = t,_1, then Ty 1S a row first-minus-last right circulant
matrix, which was first defined in [32].
A column upper-minus-lower (CUML) Hankel matrix is of the form

]’L() h1 te hn-z hn—l
hl hn—l —hn hn
Heymr = : hy = By Ny > (1.3)
l’ln_z . o
hn—l - hn hn - hn+1 e th—3 - hln—Z h2n—2

nxn

where hg, hy, - - - , hy,_, are complex numbers.
Obviously, the entries h;; of the matrix in (1.3) are given by the following formulas:

_ h,-+.,-_2,j:n0ri+an
hlj_{ hi+j—2_hi+j—l’ i+j>nandj<n. (14)
Specially, if hy = h,, hy = hye1, -+ hyo = hyyn, then Heyyyy 1s called a row last-minus-first

left-circulant matrix, which is firstly defined in [32].

It should be noted that Heypl, is a CUML Toeplitz matrix, where I, is the “n X n reversal matrix
[33]”, having ones along the secondary diagonal and zeros elsewhere.

2. The (1, —1)-cyclic displacement of a matrix
The (1, —1)-cyclic displacement of a matrix A € C™" is defined as
Vi-1(A)=A- (Dl,—lA(DLl_l, (2.1)
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where
0 0 0 1
1 -1 0
o 1 -1 "-. :
(D]’_] = . . . . . . . (22)
: 1 -1 O
0O -+ -+ 0 1 =1

Obviously, the matrix ®;_; is a row first-minus-last right circulant matrix with the first row
0,---,0,1). We call ®;_, the (1,—1)-cyclic lower shift matrix. (1,—1)-cyclic displacement rank
of the matrix A is the number 7 = rankV; _;(A). If 7 is comparatively small, we say that matrix A has
(1, —=1)-cyclic displacement structure (with respect to @; _;).

The linear transformation V; _;(-) in C™" presented in (2.1), it is clear that for a nonsingular matrix
A € C™" there exists a relation between the (1, —1)-cyclic displacements of the inverse matrix A~! and
the (1, —1)-cyclic displacement of A, namely

Vici(A)=-A-Vi_ (A7) - @ADL, (2.3)

From (2.3), the (1, —1)-cyclic displacement rank is inherited under matrix inversion: rankV; _;(A)
=rankV; _;(A™"). Using the (1, —1)-cyclic displacement technique, the equation (2.3) provides us with
a way of constructing the (1, —1)-cyclic displacement of the inverse matrix of A. If, in particular, the
(1, —1)-cyclic displacement of A € C™" is given as the outer sum

Vi) = a-s], (24)
i=1

where q;, s; € C",i =1,2,--- ,7, 7 = rankV, _;(A), then from (2.3), the analogous representation for
V,_1(A™") can be made by solving 27 matrix equations, involving the matrix A and the vectors of outer
sum (2.4):

Vi == (A" g (] @ADL, (2.5)

i=1

According to the above statement, we set§] =s! - ®;_; (i = 1,2,...,7) and let the vectors ¢; and &iT
be the solutions of the following equations

Aci=q; (i=1,2,..,7), (2.6)
and
d’A=5" (i=1,2,..1), (2.7)

furthermore, in view of (2.3), it is not hard to verify that

Vi@ h==> ¢ d, (2.8)
i=1
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where
da/ =d] - o', (2.9)
Solving the equations
YiA=¢) (2.10)
with el = (1,0,---,0) € C", and
Ayr =€ (2.11)

produces the first row and the first column of A~!, respectively. Note that in our consideration the
matrix A is supposed to be nonsingular from the very beginning.

On the other hand, the solvability of Eqs (2.6) and (2.11) implies invertibility of A. Indeed, let
¢, i = 1,2,---,7) and y, be the solutions of (2.6) and (2.11), respectively, and let w'A = 0 with
w = (Wo, Wi, - ,Wu_1) € C". Then

WA - D ADT )0 == w Y g sT0 L == WA D ¢es[ Dy =0,
i=1 i=1
so that w/®; ;A = 0. From
T -1 — ! N T —
w q)17_1(A — (Dl,—lAq)l,_l)(Dl,—l =W (D],_lA Z C;S; (I)17_1 = 0,
i=1
it follows that WT(D%’_IA = 0. A simple induction gives
woi_A=0,k=0,1,--,n—1.
In particular, in view of (2.11),
0=wd)_ Ay, =w'® e, k=0,1,--- ,n—1,
i.e.,
Wy = WTe() = O, W = WT(I)l,_le() = wTe1 = O,
wie=w O] _ e
= WT ) (07 (_l)k_la (_1)k_2C]1_]a (_1)k_3C]%_]a R _Ci:%a 17 0’ ) O)T = 07
k=2,3,---,n—-1,

where C) is binomial coefficient ( i ) We can conclude that w = 0 and hence A is nonsingular .

Analogously, we may show that the solvability of equations (2.7) and (2.10) yields the invertibility of
A, as well.
We summarize what we have obtained in the following theorem.

Theorem 1. Let A € C™, and V,_,(A) is given by (2.4). If equations (2.6) and (2.11) [(2.7) and
(2.10), respectively] have solutions ¢; and y, [d] and y! ], respectively, then A is nonsingular , and
thus (2.7) and (2.10) [(2.6) and (2.11)] are solvable, and V,_1(A™") is of the form (2.8) with d! =
' -ol,i=12,-,7

AIMS Mathematics Volume 7, Issue 7, 11647-11662.



3. Quasi-circulant decompositions of CUML Toeplitz matrices

The row first-minus-last right circulant matrix with the first row w’ = [wy w; ---

first column w = [wy w

RFMLRcircfc(w) =

Whenever necessary, we shall refer such matrices RFMLRcircfr(w’ ) and RFMLRcircfc(w) as factor
(1, =1)-circulants. It should be noted that if w’ = (wg, wy, - - -

Wo
Wi

w2

Wn-1

Wn-1
wo — Wi
Wi —Wws
Wp-2 — Wp-1

Wiy —ws

,Wp_1), then

RFMLRcircfr(w’) = REMLRcircfc(W)

with W = (Wo, W,_1, Wy_2, -+ ,w;)T, and that the identity

RFMLRcircfr(w’ )REMLRcircfr(a’ ) = REMLRcircfr(a’ )REMLRcircfr(w’)

and

RFMLRcircfc(w)RFMLRcircfc(a) = RFMLRcircfc(a)RFMLRcircfc(w)

hold for any column vector w,a € C".
The row skew first-plus-last right circulant matrix with the first row w = [wy w,
denoted by RSFPLRcircfr(w’) [34-36]. In this paper, we denote the row skew first-plus-last right

circulant with the first column w = [wy w; wn-117 by RSFPLRcircfc(w), i.e., the matrix of the

form

RSFPLRcircfc(w) =

Whenever necessary, we shall refer such matrices RSFPLRcircfr(w”) and RSFPLRcircfc(w) as
factor (—1, 1)-circulants. It should be noted that if w’ = (wg, wy, - -

Wo
w1

%)

Whp-1

—Wp-1
Wo — Wi
Wi — w2

Wy-2 — Wy

—Wp-2

Wi —ws

RSFPLRcircfr(w!) = RSFPLRcircfc(W)

withw =Wy — W,y —Wy_p ---

RSFPLRcircfr(w’ )RSFPLRcircfr(a’) = RSFPLRcircfr(a’ )RSFPLRcircfr(w’)

AIMS Mathematics

—wy)T, and that the identity
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Wi

Wp-2

Wp-1
wWo — Wq

*, Wu_1), then

w,_1] 1s denoted
by RFMLRcircfr(w”) [32]. In this paper, we denote the row first-minus-last right circulant with the
- w,-1]T by REMLRcircfc(w), i.e., the matrix of the form
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and
RSFPLRcircfc(w)RSFPLRcircfc(a) = RSFPLRcircfc(a)RSFPLRcircfc(w)

hold for any column vector w,a € C".

In particular, let Ty be an nxn CUML Toeplitz matrix with (ty t_; -+ ti_,)and (fo t; -+ t,_1)T
as its first row and first column, respectively. Considering the (1, —1)-cyclic displacement of Ty,
we have

Vi-i(Teumr) = Tcumr — (Dl,—lTCUML(Df,l_l =x-e +e -2, (3.5)

where x = (ﬂ Hh— Hheyp - 1 — l_])T, 2! = (—ﬁ t1—t, - ti.p,—t),e=(10 --- O)T e C"
and 8 may be an arbitrary complex number.

Clearly, (1, —1)-cyclic displacement rank of a CUML Toeplitz matrix is on greater than 2, so that
such Teypy has (1, —1)-cyclic displacement structure if # is sufficiently large.

Furthermore, in the CUML Toeplitz matrix case, V; _1(Tcyamr) also has a specific form given by
(3.5). Then the Eqgs (2.6), (2.7) reduce respectively to

Tcumrer =X, TcumrCz = €, (3.6)
and
a1TTCUML = egdh,_l, agTCUML = ZT(Dl,—l. (3.7)
Thus, by (2.8), we have
2
Vi (Tehy) == ) ¢ d], (3.8)

i=1
where
¢ = ToppX df = eg(DL—lTEll]MLq)l_,l—l’
¢ = Teyppeo, d; = ZTq)l,—lTElleLq)l_,l—l-
Then from (2.4) and [30,31], we easily obtain the following theorem.
Theorem 2. [f the equality

Vi-i(Teumr) = Z q; - S,-T, (qi, si € C") (3.9)
i=1
holds, then
TCUML = RFMLRCiI'CfC(TCUML) + Z L(ql) . CiI'C(S;F), (310)

i=1

where REMLRcircfc(Tcyyy) is the row first-minus-last right circulant with the same first column
as that of Tcymi, and L(q;) is the lower triangular Toeplitz matrix with the first column q; =
(g0 gn -+ qin-1)", and Circ(s]) is the circulant with the first row s| = (sip syt ==+ Sin-1)-

AIMS Mathematics Volume 7, Issue 7, 11647-11662.
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Proof. Based on the definitions of the row first-minus-last right circulant matrix,
Toeplitz matrix and circulant matrix, we know

to In-1 In v h
h Io—1h
RFMLRCiI‘CfC(TCUML) = ) th— b th—>
L1
-1 2=ty o+ hi—h -l ) .
go 0 -+ 0
1 qo e
Lg)=| ™ % :
: o0
din-1 " 4 qio /.,
Si0 Sit ot Sin-1
: T Sin-1 Si0
Circ(s; ) = _ .
: ’ Sil
Sit ot Sip-1 Sio /.,
According to the Eqgs (3.9), (3.11), (3.12) and (3.13), we obtain
T
RFMLRcircfo(Tcypz) + ) | L(g;) - Cire(s])
i=1
fo I T Iy fi-n
h Io—h Ihn
=l 5 -1t : =Tcumr-
I
In-1 ia—Ipr -0 hi—h fo— 1

nxn

Which completes the proof.

The main result of this section is as follows.

lower triangular

, (3.11)

(3.12)

(3.13)

Theorem 3. Let V| _(-) be the linear operator in C™" defined by (2.1). Then the following statements

hold:

(i) The equality V| _1(A) = 0 holds if and only if A is a row first-minus-last right circulant matrix.

(ii) If the equation

V(X)) = Z q-s;,
P

(3.14)

AIMS Mathematics Volume 7, Issue 7, 11647-11662.
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where q;, sl.T (i=1,2,---,71) are given vectors, is solvable with respect to X € C™", then

Z RFMLRcircfe(q;) - RFMLRcircfr(siT) =0. (3.15)
i=1

(iii) If 27 vectors q; and s' (i = 1,2,--- ,7) satisfy the condition (3.15), then the equation (3.14) has
the solution
1 T
X = RFMLRcircfe(X) + 3 Z RSFPLRcircfe(q;) - RFMLRcircfr(siT), (3.16)
i=1

where REMLRcircfc(X) is the row first-minus-last right circulant with the same first column as that of
X.

(iv) Under the conditions of (iii), the solution X of the equation (3.14) may also be written as
1 T
X = RFMLRcircfr(X) + 3 Z RFMLRcircfe(q;) - RSFPLRcircfr(siT), (3.17)
i=1
where REMLRcircfr(X) is the row first-minus-last right circulant with the same first row as that of X.

Proof. (i) Let matrix A = (q; j)?,}:lo meet the requirement V; _;(A) =0, 1.e., A = <I>1,_1Ad)i1_1. From this
equality it follows that

aij = Qiy1,j+1 if j#0
apj = An-jo if j#0
ajp = Ao p—i ifi#0

a1 = dj—10 T aip lf i #0.

By definition, these relations say that A is a row first-minus-last right circulant matrix.

.
@ LetV,1(X)=>q;- sl.T. Then taking into account (2.1), we have
i=1

—_

n—

0= @

1 (A - ®1,—1A(D1_,1—1) ) ((DIT,—I)

S~
- o

= (@] _,q) - (] (@] _D))

J

(=]
—

i=

~N 0

= » RFMLRcircfe(q,) - REMLRcircfr(s! ).

ll
—

n—1
The last equality follows from the general identity U - VT = Y ¢ - d,f, where ¢; and d; are the k-th
k=0

columns of the matrices U and V, respectively. The assertion (iz_') is proved.

AIMS Mathematics Volume 7, Issue 7, 11647-11662.
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Now we proceed to proving assertion (ii7). Suppose that vectors q;, s; (i = 1,2,---,7) satisfy the
condition (3.15) and we compute the (1, —1)-cyclic displacement of the matrix X defined by (3.16), i.
e., perform the (1, —1)-cyclic displacement transformation on both sides of equation (3.16). It follows:

1 T
Vi-1(X) = V; _1(RFMLRcircfc(X)) + 3 E V,.-1(RSFPLRcircfe(q;)) - RFMLRcircfr(siT)
i=1

1 T
+3 > RFMLReircfe(q;) - REMLRcircfr(s] )
i=1

1 T
= V-1 (RFMLRcircfc(X)) + 3 Z V,.-1(RSFPLRcircfe(q;)) - RFMLRcircfr(siT). (3.18)

i=1

It is easy to see that (1,—1)-cyclic displacement for RSFPLRcircfc(r) with the first column r =
[ro r1 -+ rn,_1]”, has the following simple form

V.- 1(RSFPLRcircfc(r)) = 2(r - e — ey - F'), (3.19)

where ¥ = [ry r,_; 7,2 - r1] is the first row of the RFMLRcircfc(r). Calculating in this way the
(1, —1)-cyclic displacement for each matrix RSFPLRcircfc(q;) on the right hand side of (3.18) and
taking into account that V, _;(RFMLRcircfc(X)) = 0 in view of (i), we have

Vi1(X) = > g€ - REMLRcircfr(s]) = > €y - - REMLRcircfr(s), (3.20)

i=1 i=1

where q/ are the first rows of the matrices REMLRcircfe(q;) (i = 1,2, -+, 7). Therefore, in view of
(3.15) the sum of the last 7 terms in (3.20) is equal to zero matrix. Furthermore, eg -RFMLRcircfr(sl.T) =
sl.T (i=1,2,---,71), and hence the matrix X defined by (3.16) satisfies the equation (3.14), therefore in
view of (3.15) the last row of the matrix X and RFMLRcircfc(X) coincide. The assertion (iif) is now
completely proved.

The assertion (iv) can be proved with the same arguments. O

The proposition (i) of the Theorem 3 shows every complex matrix A is determined by its (1, —1)-
cyclic displacement up to a row first-minus-last right circulant matrix. Therefore, an arbitrary complex
matrix is uniquely determined by its (1, —1)-cyclic displacement and any one of its rows or columns.

4. Inversion decomposition

Theorem 4. Suppose that Tcyyy be an arbitrary CUML Toeplitz matrix. If there exist solutions ¢; and
(AllT (i = 1,2) for equations (3.6) and (3.7)respectively, then we have

2
Z RFMLRcircfc(c;) - RFMLRcircfr(d! ) = 0, 4.1)

P
whered! =d! - @' .

AIMS Mathematics Volume 7, Issue 7, 11647-11662.
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Proof. According to the special structure of matrix T ¢y, it is easy to verify that the Ty satisfies
the following equation

TgUML = Zinq)l,—l “Tceumr (Dl_,l_linz_l, 4.2)

where Z = Circ(0,...,0,1), i.e. Z is the cyclic lower shift matrix [27], and ®;_; is given by the
equation (2.1). Let T = ZI,®, _,. Then the equation (4.2) can be changed to the following form

Teume = ETcomE™", (4.3)
with
0 0 0 1
0 1 -1
s = 0
1
1 =1 0 - 0

For Tcyyr and the representation (3.5) with a given 8 € C of its (1, —1)-cyclic displacement, we
suppose that there exist solutions ¢; and &iT (i = 1,2) for the equations (3.6) and (3.7)respectively, that
18,

Tcymrer =X, Tcumi€z = €,

and
AT _ T AT _.T
d] Tcumr = € - D, 4, dz Tcymr =2 - @ ;.

Set, as in equation (2.9),
df =d -@;',, d} =d] - @], (4.4)

Performing transformations to both equations in (4.4) and taking into account the equation (4.3),
and e] = e} ZI,, 27 = —x"ZI,, we can obtain that vectors d] and d] are related with the solutions
C = (CQ’() (653 Cz,n_l)T and C = (Cl’() Ciq Cl,n_l)T of the equations TCUMLC2 = € and
Tcymrcr = X in the following form:

T _ T -1 1 To%
dy =€, Q-1 Teyp Qi = 21,

T _ T 1 ol - T
dy =2 - @iy Teyp @iy = —€¢, Zla.

These meaning that le = (c20 Cap-1 -+ C21) 1s the first row of the matrix RFMLRcircfc(c;), and
—-d} = (cip cip1 -+ c1y) is the first row of the matrix REMLRcircfe(c).
According to

RFMLRcircfr(c; )RFMLRcircfr(c,) = RFMLRcircfr(c,)RFMLRcircfr(c;).
We have

RFMLRcircfc(e;) = ~RFMLRcircfr(d?),
RFMLRcircfe(c,) = RFMLRcircfr(le).

O

AIMS Mathematics Volume 7, Issue 7, 11647-11662.
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We will now present the main result of the paper.

Theorem S. Let Tcyy be a CUML Toeplitz matrix with Vi _(Teymr) = X - eg +ey-z asin(3.5)
(i) If there exist solutions ¢; (i = 1,2) and y' for equations (3.6) and (2.10) respectively, then matrix
Tcuyy is nonsingular and TE,IJ v can be decomposed as follows

1 2
Tz = REMLRcirefr(y]) — 3 Z RFMLRcircfc(c;) - RSFPLRcircfr(d! ), (4.5)
i=1

where dl.T = (AilTCDI‘l_  (=1,2), &1T and (Aig are solutions of the equations in (3.7), and RFMLRCirCfr(le)
is a row first-minus-last right circulant matrix with the first row y'.

(ii) If there exist solutions (AiiT (i = 1,2) and y, for equations (3.7) and (2.11) respectively, then matrix
Tcume is nonsingular and another decomposition form for TEIIJ vy 1S as follows

2
1
TEZ, v = REMLRcircfe(y,) — 3 Z RSFPLRcircfc(c;) - RFMLRcircfr(diT), (4.6)
i=1
where REMLRcircfc(y,) is a row first-minus-last right circulant with the first column y, , and ¢, and
¢, are the solutions of the equations (3.6).

Proof. By Theorem 1, the solvability of the corresponding equations (3.6) yields the invertibility of
Tcuu then the equations (3.7) are also solvable.

In the following, let us confirm the Eq (4.5). By Theorem 4, we know that vectors c;, dl.T = (All.T . (I)il_1
(i = 1,2) satisfy the condition (4.1), where c;, af (i = 1,2) are the solutions of the equations (3.6)
and (3.7) respectively, and computing the (1, —1)-cyclic displacement of the matrix on the right hand
side of (4.5), denoted by B. The matrices RFMLRcircfc(c¢;) (i = 1,2) are row first-minus-last right
circulants, RSFPLRcircfr(d”) are row skew first-plus-last right circulants and therefore are computable.
According to the Eq (4.5), we have

1

2
) — 3 Z V, -1[RFMLRcircfe(c;) - RSFPLRcircfr(diT)]

i=1

Vi_1(B) = V,_j(RFMLRcircfr(y] )

1 2
= V,_1(RFMLRcircfr(y!)) — 5 Z RFMLRcircfe(c;) - Vi [RSFPLRcircfr(d])].  (4.7)
i=1
The last identity follows from (2.1) and Theorem 4, as
V, _1[RFMLRcircefc(c;) - RSFPLRcircfr(diT)]
=RFMLRcircfc(c;) - RSFPLRcircfr(d!)
— @, _;RFMLRcircfe(e)®;" | - @ RSFPLRcircfr(d] )@, ",
=RFMLRcircfc(c;)[RSFPLRcircfr(d] ) — ®; _;RSFPLRcircfr(d; )®;' ]
=RFMLRcircfc(c;) - Vl’_l[RSFPLRCiI‘CfI‘(diT)], i=1,2.

According to the Eqgs (3.19), (4.7) and the fact of VL_](RFMLRcircfr(le)) = 0 (see (i) of Theorem
3), we can obtain

2 2
V,_i(B) = Z RFMLRcircfe(c;) - d; - ef — Z RFMLRGcircfe(c;) - e - d7, (4.8)

i=1 i=1
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where d; is the first column of the RFMLRcircfr(diT) (i = 1,2). Therefore, in view of Theorem 4 the
first two terms on the right of (4.8) are equal to the zero matrix. Furthermore, RFMLRcircfc(c;)- ey = ¢;

2
(i = 1,2), and hence the matrix B satisfies (4.7), V, _1(B) = — Y, ¢;-d!, so that by (3.8), Vi _1(To(4y,) =
i=1

Vi-1(B), therefore in view of (4.1) the first rows of the matrices T¢;,,,, and B (or RFMLRcircfr(y]))
coincide. Thus B = ng] w1 1-€., we have the desired result of assertion (i).

The proof of assertion (ii) is similar. O
According to (i) and (ii) of Theorem 5 we could further conclude the following.

Theorem 6. Let Tcyyr be a CUML Toeplitz matrix with Vi _(Tcymr) = X - eg +ey-z' asin (3.5).
If B € C and there exist solutions ¢, and ¢, for equation (3.6), then matrix Tcyyy is nonsingular and
Ty can be decomposed as follows

1
T&l] ML :E[RSFPLRcircfc(Zeo — ¢;) - RFMLRecircfc(c,)
+ RSFPLRcircfc(e,) - REMLRcircfe(c)]. 4.9)

Proof. First of all, we note that Tg,leL does exist in view of (i) of Theorem 5, therefore, it suffices
to show that the formula (4.9) holds. Let the vectors ¢; and ¢, be the solutions of the equations
(3.6). By Tcymrce, = ey, we have RFMLRcircfc(Tgllj ) = RFMLRcircfe(c,), furthermore, in view
of the arguments of Theorem 4, RFMLRcircfc(c;) = —RFMLRcircfr(dg ), and RFMLRcircfc(c,)=
RFMLRcircfr(le). Now, having these expressions and (4.6), we can obtain the desired result. |

Theorem 6 says that if Ty, 1s @ CUML Toeplitz matrix and the equations (3.6) have solutions ¢,

and ¢, then these solutions are sufficient for restoring the whole matrix 7, -

Another decomposition of the inverse of a CUML Toeplitz matrix is obtained in the following.

Theorem 7. Let Tcyy be a CUML Toeplitz matrix of the form (1.1). If for some y € C, the equations
Tcumier = € and Teypyrd = (7, 1pat, - 1 11)" (4.10)

are solvable, then Tcyyy is nonsingular , and TE%] v can be expressed as

1
TELI,ML = E[RSFPLRcircfc(eo + d)RFMLRcircfc(c,)+
RSFPLRcircfc(c,)RFMLRcircfc(ey — d)]. 4.11)

Proof. Letd € C" be a solution of the second equation in (4.10). Then the vector ¢; = ey — d solves
the first equation in (3.6) with 8 = ty — vy, that is, Teyyz(eo — d) = (fg — Yo t1 — tipy*+ > tay — t-1)T.
Thus the assertions of Theorem 7 are straightforward consequences of Theorem 6. m|

The special structure of CUML Toeplitz matrices and CUML Hankel matrices show that there is a
relationship between them. Thus we also get the inverse decompositions of CUML Hankel matrices.

Remark 1. Let Heyy = (h;, J')Z;:lo be a CUML Hankel matrix defined by the Eq (1.3). Then there
exists an n X n CUML Toeplitz matrix T¢cyyy such that Tepy = Heymil,, and Hegyy is nonsingular
if and only if Ty is. In that case the inverse of matrix Heyyyyp 18 HE%]ML = IA,,TE}]ML, and Theorem 5,
6 and 7 are applicable to describe the formulas on representation of the inverse of Hcy ;.
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5. Conclusions

In this paper, we mainly obtained the inverse formula for CUML Toeplitz matrices by constructing
the corresponding displacement of the matrices. By the relationship between CUML Toeplitz matrices
and CUML Hankel matrices, the inverse formula for CUML Hankel matrices is also given. These
obtained results can be used to study queuing theory model based on Markov process.
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