
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(7): 11635–11646.
DOI:10.3934/math.2022648
Received: 11 June 2021
Revised: 23 December 2021
Accepted: 10 April 2022
Published: 15 April 2022

Research article

A new very simply explicitly invertible approximation for the standard
normal cumulative distribution function

Jessica Lipoth1, Yoseph Tereda2, Simon Michael Papalexiou3 and Raymond J. Spiteri2,∗

1 Department of Electrical and Computer Engineering, College of Engineering, University of
Saskatchewan, 57 Campus Dr, Canada

2 Department of Computer Science, College of Arts and Science, University of Saskatchewan, 176
Thorvaldson Building, 110 Science Place, Canada

3 Department of Civil Engineering, University of Calgary, Canada

* Correspondence: Email: spiteri@cs.usask.ca; Tel: +1-306-966-2909; Fax: +1-306-966-4884.

Abstract: This paper proposes a new very simply explicitly invertible function to approximate the
standard normal cumulative distribution function (CDF). The new function was fit to the standard
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1. Introduction

The normal probability density function (PDF) is given by

φµ,σ(x) =
1

√
2πσ2

exp
(
−

(x − µ)2

2σ2

)
,

where µ is the mean of the distribution and σ is the standard deviation. The normal distribution plays
an important role in research for the natural and social sciences, providing models for phenomena
occurring in biology, quantum mechanics, finance, optics, and stochastic modelling. Examples
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of models that utilize the normal distribution include human blood pressure [1], electron velocity
distributions [2], and risk assessment in finance [3].

The standard normal PDF occurs for µ = 0 and σ = 1. Henceforth, we refer to the “standard normal
PDF” φ0,1(x) as the “normal distribution” for simplicity. The cumulative distribution function (CDF)
of the normal distribution is given by

Φ0,1(z) =

∫ z

−∞

φ0,1(x) dx =
1
√

2π

∫ z

−∞

exp
− x2

2

 dx.

No method is known to evaluate the normal CDF using only elementary functions. Fortunately,
many software libraries exist that can produce high-quality numerical approximations to Φ0,1(z), e.g.,
the cdf command in MATLAB [4]. However, it may be desirable to have explicit functions (especially
very simply explicitly invertible ones [5]) to efficiently approximate Φ0,1(z). Several of these
approximations have been published and offer varying degrees of accuracy. These approximations
are typically not very simply explicitly invertible; i.e., having only one appearance of the argument z
and the existence of inverse that consists only of elementary functions. In general, explicitly invertible
quantile functions (i.e., the inverse of the CDF) facilitate Monte Carlo simulations and the generation
of random numbers following desired distributions. Specifically, the CDF of the standard normal
distribution plays a crucial role in the theory of transformations of random variables and in stochastic
modelling methods aiming to preserve any desired marginal distribution and correlation structure [6].
In such cases, explicit expressions of the CDF can facilitate numerical computations.

We propose a new approximate function for the normal CDF as given by

F(z; c) =

1 + c1

ln 1 + exp
(
−

z
c5

+ c3

)c2

−c4

, (1.1)

where c = (c1, c2, . . . , c5) is a vector of design parameters to be chosen such that F(z; c) is a good
approximation to Φ0,1(z). The starting point to construct this equation was the logistic distribution,

F(x) =

1 + exp
(
−

x − α
β

)−1

,

which was then progressively generalized to include more parameters to offer more flexibility. This
approximate function is very simply explicitly invertible and can be constructed to possess errors
that are superior to the most accurate simply and very simply explicitly invertible normal CDF
approximations published. The parameters, c, were determined via global optimization, which was
performed using both MATLAB’s Global Optimization Toolbox [4] and BARON [7].

This paper is organized as follows. Section 2 contains an extensive (but non-exhaustive) summary
of published normal CDF approximations. Section 3 provides a brief description of the procedure used
to solve for the design parameters, c. Section 4 discusses the results from various fits of the function,
including the determined parameters and the resulting errors in the fits and their inverses. Section 5
provides a practical example of where such an approximation may be useful and compares the run-time
with that of MATLAB’s built-in normal cdf. Section 6 concludes the paper by summarizing the main
findings.
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2. Summary of published approximations

Table 1 presents a summary of published approximations to the normal CDF. The table is not
exhaustive; however, the samples included provide a broad representation of functions used to
approximate the normal CDF for z ≥ 0, with the identity Φ0,1(−z) ≡ 1 − Φ0,1(z) used for values
z < 0. Explicitly invertible approximations are denoted with an asterisk (*).

There is generally a tradeoff between the accuracy and the explicit invertibility of a function
designed to approximate the normal CDF. Highly accurate approximations of the normal CDF tend to
rely on complicated expressions or multi-term polynomials to achieve their level of accuracy (e.g., [16],
[20], [21], [22], [29], [30]). In fact, many normal CDF approximations proposed in recent years are
simply previously published approximations whose accuracy has been improved through the addition
of more terms in a polynomial expansion. For example, [30] is an improvement of [10], achieving
a significantly smaller maximum absolute error through the addition of a multi-term polynomial.
The improvement reported in [29] over [8] was achieved similarly. Although high accuracy may be
desirable when approximating the normal CDF, complicated approximate functions generally cannot
be inverted explicitly and thus cannot be conveniently used to approximate the inverse normal CDF.
Such is the case of [29]: the function proposed has a better maximum absolute error than that proposed
in [8], but it is no longer explicitly invertible.

Explicitly invertible approximations of the normal CDF are often relatively simpler expressions
with fewer degrees of freedom for the purposes of fitting (e.g., [5], [8], [11], [23], [25], [27], [28]).
Consequently, explicitly invertible approximations tend to possess larger maximum absolute errors.
To the best of the authors’ knowledge, the best explicitly invertible approximation to the normal CDF
is from [14] with a maximum absolute error of 7.17e–5. Similarly, the most accurate published very
simply explicitly invertible approximation of the normal CDF is the particularly elegant one given by
Soranzo and Epure [5] (see Table 1) with a maximum absolute error of 1.3e–04. Section 4 of this
paper shows that all maximum absolute errors of the proposed function Equation (1.1) reported here
are superior to both of these approximations, with the best maximum absolute errors having a value of
2.73e–05, almost five times smaller than that of [5] and twice as small as that of [14].

3. Optimization problem and solution procedure

3.1. Definition of the optimization problem

The function F(z; c) is constructed by solving an optimization problem to minimize the ordinary
(unweighted) least-squares residual

r(c) =

N∑
n=0

(
Φ0,1(zn) − F(zn; c)

)2
, (3.1)

where N denotes the total number of sample points zn to be fit, c denotes a vector of unknown
parameters to be optimized, Φ0,1(z) denotes the normal CDF as approximated by MATLAB’s built-
in cdf function, and F(z; c) denotes the newly proposed approximate function given by Equation (1.1).

We minimize the residual because it is a computable and smooth function of c. However, we assess
the quality of the approximate function F(z; c) by estimating the maximum absolute error (MAE). The
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Table 1. A sampling of published normal CDF approximations. Explicitly invertible
functions denoted with asterisks (*).

Author, Year [Citation] Proposed Approximation Maximum Absolute Error

Pólya, 1949* [8] Φ∗(z) = 1
2

1 +

(
1 − exp

(
−2z2

π

)) 1
2

 3.00e–03*

Cadwell, 1951 [9] Φ(z) = 1
2

[
1 − exp

(
−2z2

π
−

2(π−3)
3π2 z4

)] 1
2

7.00e–04

Hart, 1957 [10] Φ(z) = 1 − 1
√

2π

exp
(
− z2

π

)
z+0.8 exp(−0.4z) 4.30e–03

Tocher, 1963* [11] Φ∗(z) =
exp

(√
8
π z

)
1+exp

(√
8
π z

) 1.77e–02*

Abramowitz and Stegun, 1964 [12] Φ(z) = 1 −
[
a1

1
1+pz − a2

(
1

1+pz

)2
+ a3

(
1

1+pz

)3
]

exp
(
− z2

2

)
√

2π
1.00e-05

Page, 1977 [13] Φ(z) = 0.5
1 + tanh

(√
2
π
z
(
1 + 0.044715z2)) 1.79e–04

Derenzo, 1977* [14] Φ(z) = 1 − 0.5
(
exp

(
−

(83z+351)z+562
703

z +165

))
7.17e–05∗

Hamaker, 1978 [15] Φ(z) = 1 − 0.5
√

1 − exp
(
−0.806z (1 − 0.018z)2

)
6.23e–04

Hawkes, 1982 [16] Φ(z) = 0.5 − 0.5
1 − exp

(
−

2(z−7.5166e−03z3+3.1737e−04z5−2.9657e−06z7)2

π

) 1
2

1.70e–05

Lin, 1989 [17] Φ(z) = 1 − 1
2 exp

(
−0.717z − 0.416z2

)
6.20e–03

Vedder, 1993* [18] Φ(z) =

1 + exp
(
−

(
8
π

)1/2
x −

(
2
π

)1/2
(4−π)

3π x3

)−1

3.13e–04*

Bagby, 1995 [19] Φ(z) = 1
2

1 − 1
30

(
7 exp

(
− z2

2

)
+ 16 exp

(
−z2

(
2 −
√

2
))

+
(
7 + π

4 z2
)

exp
(
−z2

)) 1
2

3.00e–04

Waissi and Rossin, 1996 [20] Φ(z) =
1

1+exp
(
−
√
π(0.9z+0.0418198z3−0.0004406z5)

) 4.31e–05

Bryc, 2002a [21] Φ(z) =
(4−π)z+

√
2π(π−2)

(4−π)z2
√

2π+2πz+2
√

2π(π−2)
exp

(
− z2

2

)
7.10e–04

Bryc, 2002b [21] Φ(z) = z2+5.575192695z+12.77436324
√

2πz3+14.38718147z2+31.53531977z+25.54872648
exp

(
− z2

2

)
1.90e–05

Shore, 2005 [22] Φ(z) = 0.5
[
1 + g(−z) − g(z)

]
; see footnotea for g(z) 6.00e–07

Kundu et al., 2006* [23] Φ∗(z) =

(
1 − exp

[
− exp

(
0.3820198z + 1.07925

)])12.8
3.00e–04*

Aludaat and Alodat, 2008* [24] Φ∗(z) = 0.5 + 0.5
√

1 − exp
(
−

√
π
8 z2

)
1.97e–03 *

Bowling et al., 2009a* [25] Φ∗(z) =
1

1+exp(−1.702z) 9.50e–03*

Bowling et al., 2009b [25] Φ(z) =
1

1+exp(−0.07056z3−1.5976z) 1.40e–04

Vazquez et al., 2012 [26] Φ(z) =
1

1+exp
(
− 358

23 z+111 arctan
(

37z
294

)) 9.00e–05

Soranzo and Epure, 2014* [5] Φ∗(z) = 2−221−41
z

10
1.3e–04*

Abderrahmane and Boukhetala, 2016 [27] Φ(z) = 1 − 0.39894
[

exp(−0.5078z2)
z+0.79758 exp(−0.4446z)

]
2.72e–04

Abderrahmane and Boukhetala, 2016* [27] Φ∗(z) = 0.5 + 0.5
√

1 − exp
(
−0.62306179z2) 1.62e–03*

Eidous and Al-Saman, 2016* [28] Φ∗(z) = 0.5 + 0.5
√

1 − exp
(
−5

8z2
)

1.81e–03*

Matic et al., 2018 [29] Φ(z) = 1
2 +

sgn(z)
2

√
1 − exp

(
−2z2

π

(
1 + a1z2 + a2z4 + a3z6 + a4z8 + a5z10

))
5.79e–06

Eidous and Abu-Shareefa, 2019 [30] Φ(z) = 1 − 1
√

2π

exp
(
− z2

2

)
z+
√

2
π exp(−y(z)z)

; see footnoteb for y(z) 4.23e–08

Shchigolev, 2019 [31] Φ(z) = 1
2 + 1

√
π

[
7 −

(
7 + 3

√
2z + 5

4z2 +
√

2
4 z3 + 1

8z4
)

exp
(
− z2
√

2

)]
4.50e–04

ag(z) = exp
− log(2) exp

(
α
λ

S 1

(
(1 + S 1z)

λ
S 1 − 1

)
+ S 2z

)
by(z) = 0.455428 − 0.0329012z − 0.00681111z2 + 0.00300713z3 − 0.00039299z4 − 0.00004552z5 + 0.00002614z6 + 0.00000412z7 + 0.00000025z8
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MAE is defined as
max
z∈R

∣∣∣Φ0,1(z) − F(z; c)
∣∣∣ , (3.2)

where Φ0,1(z) is given by MATLAB’s built-in normal cdf. In practice, Equation (3.2) cannot be
evaluated exactly. Hence, the MAE in this study is estimated by uniformly sampling the absolute
error on the fitting domain with 5N sample points (i.e., five times as many points used for fitting).

To adequately cover the value of z most likely to be used in practice, the zn was chosen to be N = 141
uniformly spaced points on a fitting domain 0 ≤ z ≤ 7. Values of Φ0,1(z) for z > 7 can be taken to be
0 to high accuracy. Because Φ0,1(z) has an odd symmetry about the point (0, 1/2), i.e., it satisfies the
property

Φ0,1(−z) = 1 − Φ0,1(z), (3.3)

it is reasonable to fit an approximate function to Φ0,1(z) for z ≥ 0 then obtain all values for z < 0 from
Equation (3.3). Fits at points over the domain −7 ≤ z ≤ 7 with a uniform sample spacing and N = 141
were attempted, but they yielded MAEs no better than the one given in [5].

An important property of the normal CDF is Φ0,1(0) = 0.5. As can be seen in Section 4, an
unconstrained minimization of eq. (3.1) will not satisfy this property. To rectify this shortcoming, the
constraint F(0; c) = 0.5 was explicitly introduced into fits for eq. (1.1). Of the three results presented
in Section 4, two were fit subject to this constraint.

3.2. Optimization algorithms and solution procedure

A potential global minimum of Equation (3.1) was determined using both the GlobalSearch
algorithm from MATLAB’s Global Optimization Toolbox and BARON (via the MATLAB-BARON
interface).

The GlobalSearch algorithm [32] is a heuristic algorithm based on the assumption that all basins
of attraction of a minimum are spherical. It locates a potential global minimum by generating random
start points and then using those start points to locally optimize within multiple basins of attraction.
Each set of start points is assigned a score based on a scoring algorithm. If the score does not meet
a specified set of standards, the points are deemed unlikely to improve the solution and are discarded
without running the local optimization. Thus, GlobalSearch does not run a local optimization from all
generated start points; rather, it only runs local optimization on start points it deems likely to improve
the solution. The solutions from each local optimization are stored in an array, and the best solution is
returned at the end of the search.

BARON [33] is a “Branch and Reduce” algorithm. Instead of utilizing randomly generated start
points to run local solvers across the search domain, BARON subdivides the problem by branching on
selected variables and defining subdomains of the search space within nodes. For each node, BARON
relaxes the given objective function, providing a lower bound for a minimum solution that exists within
the given subdomain of the search space. BARON then selects upper bounds for the node. If a lower
bound for a node is larger than any given upper bound for a different node, BARON discards the node.
Further reduction of the search space is performed during the pre- and post-processing of each node.
Branching, bounding, and reducing continues until BARON locates a potential global minimum.

It is generally impossible to guarantee that the solution returned by a numerical routine such as
GlobalSearch or BARON is the true global minimum of a given objective function. In order to increase
the likelihood of obtaining the global minimum of Equation (3.1), both algorithms were run multiple
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times. The smallest residual found within those runs is reported as the best solution. GlobalSearch
was run 10 000 times from 10 000 randomly generated starting points, whereas BARON was run 1 000
times from 1 000 randomly generated starting points. To ensure the results are reproducible, each run
is assigned a unique seed.

Different bounds for each element of c were selected for the different algorithms. For the fits
utilizing GlobalSearch, the choice c ∈ [−104, 104] was made. In order to enhance the performance of
BARON, tighter bounds were selected for each parameter based on the parameter’s sensitivity (i.e., how
much variance each parameter causes in the objective function, Equation (3.1)). In order to identify
sensitive parameters in the approximate function Equation (1.1), sensitivity analysis was performed on
Equation (3.1) using the Variogram Analysis of Response Surfaces (VARS) software toolbox [34]. The
analysis showed parameters c3 and c5 to contribute to 97.4% of overall variance in Equation (3.1), and
therefore, tighter bounds were selected for c3 and c5 relative to the rest of the parameters (except for
c1, for which previous runs of the optimization problem indicated that there was no need to increase
bounds outside of 0 and 1). The lower and upper bounds for Equation (1.1) are shown in Table 2. Final
bound selection is based on results of previous optimizations of the problem using GlobalSearch.

Table 2. BARON parameter bounds for Equation (1.1).

Bound c1 c2 c3 c4 c5

Lower 0 0 –5 0 0
Upper 1 60 5 30 1

The above procedure was applied to the unconstrained and constrained cases for Equation (1.1); the
resulting parameter vectors of best fit are presented in Section 4. To ensure a fair comparison, the MAE
given for the best explicitly invertible CDF approximations in [14] and [5] were recalculated using the
definition given above. The MAEs calculated by this method were 7.17e–5 and 1.27e–04, respectively,
with the latter respecting the bound 1.3e–04 reported in [5]. We offer no theoretical guarantee of global
optimality; however, the results reported are superior to those that have been published to date in terms
of estimated MAE.

4. Results

The function defined by eq. (1.1) was fit to MATLAB’s built-in normal cdf function using either
GlobalSearch or BARON, as per the procedure described in Section 3. Table 3 contains the best-fit
parameter vectors from three separate fits for 1.1. Each vector of best-fit parameters is reported with
its corresponding residual, MAE, and location of the MAE. The table also specifies the solver used for
each fit: either GlobalSearch (GS) or BARON (BA). Fits that were subject to the constraint F(0; c) =

0.5 are denoted with superscript (†). Section 4.1 provides further discussion on the unconstrained fit;
Section 4.2 provides further discussion on the two fits subject to the constraint F(0; c) = 0.5.

Table 3. Results from fitting (1.1) to MATLAB’s built-in normal cdf.
Solver c1 c2 c3 c4 c5 Residual MAE MAE Location

GS 0.00165264063 3.41198528753 3.27828832050 7.36525492695 0.82347307439 1.33e–04 3.39e–05 0.00

GS† 0.00141349455 3.143479998875 3.12017824876 13.4751284391 0.80551656318 2.73e–04 5.08e–05 3.02

BA† 0.00161826615 3.38692114553 3.26862849061 7.80500878654 0.82116764005 1.42e–04 2.73e–05 0.17
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4.1. Unconstrained fit

The first fit of Equation (1.1) was performed without any additional constraints. As can be seen
in Table 3, the smallest residual found by the procedure outlined in Section 3 is 1.33e–04. The
corresponding MAE is 3.39e–05. This MAE is superior to the best MAE for published very simply
explicitly invertible CDF approximations, given by [5], by about a factor of four.

The results for the unconstrained fit given in Table 3 are from the GlobalSearch procedure. BARON
returned a similar solution to GlobalSearch, and thus, the result was omitted. A plot of the absolute
errors for the unconstrained fit are given in Figure 1. The plot clearly shows the MAE occurring at the
origin. We refer to Table 3 for the corresponding parameters of best fit.

Figure 1. Absolute error for the unconstrained GlobalSearch procedure.

4.2. Constrained fits

For fitting Equation (1.1) subject to the constraint F(0) = 0.5, BARON and GlobalSearch returned
differing results, thus are both included in Table 3. The smallest residual found using the GlobalSearch
procedure is 2.73e–04, with a corresponding MAE of 5.08e–05, located at the point z = 3.02. The
smallest residual found by the BARON procedure is 1.42e–04, with a corresponding MAE of 2.73e–
05, located at the point z = 0.17.

All MAEs mentioned above are superior to the best MAE given by published explicitly invertible
normal CDF approximations. Each of these fits returned a larger residual than those found in
Section 4.1; however, each of these fits satisfies the condition F(0; c) = 0.5 within an error much
less than the MAE. Furthermore, the results from the constrained BARON procedures offer the lowest
MAE ever reported for an analytically invertible normal CDF approximation.

Although the results from the constrained GlobalSearch run do not provide the smallest MAE or
smallest residual, they are still worthwhile to consider. The purpose of the normal CDF is to calculate
the probability that a random variable is less than or equal to z. Therefore, the further from the origin the
MAE occurs, the more likely the MAE will lie outside of values of z to be relevant for many practical
applications. The constrained GlobalSearch results offers and approximation with a reasonable MAE
that potentially occurs outside of the range of interest of z for many practical applications.

Plots of the absolute errors for the constrained BARON and GlobalSearch procedures are given
in Figure 2. We note the differing locations of the MAE for each result and refer to Table 3 for
corresponding parameters.

AIMS Mathematics Volume 7, Issue 7, 11635–11646.
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(a) Fit using GlobalSearch (b) Fit using BARON

Figure 2. Absolute errors for the constrained procedures.

4.3. Sensitivity analysis

To recall, a sensitivity analysis using the VARS software toolbox applied to Equation (1.1) yielded
that only two parameters (c3 and c5) accounted for almost all the variance in Equation (3.1). A
sensitivity analysis is also applied to the model of Soranzo and Epure [5]; see Table 1. The values
22, 41, and 10 in the function are treated as being the result of a fitting procedure; i.e.,

ΦSE(z; c) = 2−c
1−c

z/c3
2

1 , (4.1)

where c = (c1, c2, c3) = (22, 41, 10). The sensitivity analysis yields that the three parameters
in Equation (4.1) contribute approximately equal amounts to the overall variance in Equation (3.1).
Accordingly, the model can be made no less simple through a reduction in the number of parameters
while still maintaining its effectiveness in terms of goodness of fit. The model Equation (1.1) appears
more parsimonious from this perspective, with only two important degrees of freedom in its parameter
set.

4.4. Accuracy of the inverse

Finally, we assess the accuracy of the inverses produced by the leading explicitly invertible
functions. Specifically, we consider the explicitly invertible function from [14], the very simply
explicitly invertible function from [5], and the very simply explicitly invertible function eq. (1.1) with
parameter values of the unconstrained fit given in the first row of Table 3. The magnitudes of the errors
are shown in Table 4 for the three commonly used probabilities p = 0.9, 0.95, and 0.99. We see that the
error obtained from the simply explicitly invertible function eq. (1.1) is generally superior to the simply
explicitly invertible function of Soranzo and Epure [5]. Otherwise, the explicitly invertible function of
Dorenzo [14] appears to have the best error performance.

AIMS Mathematics Volume 7, Issue 7, 11635–11646.
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Table 4. Magnitude of the errors in the inverse from [14], [5], and (1.1).

Probability [14] [5] (1.1)
0.90 2.23e–4 4.63e–5 7.41e–5
0.95 1.09e–4 5.49e–4 5.76e–5
0.99 6.09e–5 3.14e–3 4.94e–4

5. Application example

To demonstrate the use of the approximate function and compare the runtime of the approximate
function to that of MATLAB’s built-in normal cdf, we choose to compute an example of a double
integral involving the CDF of the standard normal distribution, which plays a crucial role in stochastic
modelling and generation of time series and random spatiotemporal fields with desired characteristics
[6, 35]. Specifically, it is well known that any nonlinear transformation g applied to a bivariate
normal variable (Z(t),Z(τ)) correlated by ρZ(τ) leads to a random variable (g(Z(t)), g(Z(τ))) with
correlation ρg(Z)(τ) that is always smaller than ρZ(τ) by the maximal property of the bivariate normal
distribution [36]. A popular modelling strategy in time series generation involves generating Gaussian
time series and transforming them into ones with a desired distribution; this is achieved by applying
the transformation Qχ(Φ(Z(t))), where Qχ is the quantile of the desired marginal. Because this
transformation is nonlinear, to generate time series with non-Gaussian marginal distributions and
desired correlations, one has to estimate the decrease of this correlation (for details, see [6]). The
correlation coefficient of the process having a non-Gaussian marginal is given by ρX(τ) =

E(X(t)X(τ))−µ2
x

σ2
x

,
and to estimate the correlation decrease due to the Qχ(Φ(Z(t))) transformation, one has to estimate the
double integral

E(χ(t)χ(τ)) =

∫ ∞

−∞

∫ ∞

−∞

Qχ(Φ(z(t))Qχ(Φ(z(τ))ϕZ(t)Z(τ)(z(t), z(τ); ρZ(τ)) dz(t) dz(τ), (5.1)

where Qχ is the inverse of the marginal distribution of random variable χ(t), Φ is the standard normal
CDF, Z(t) is a standard Gaussian process following the standard normal distribution, ϕZ(t)Z(τ) is the
bivariate probability density function of Z(t) and Z(τ), and ρZ is the correlation coefficient between
Z(t) and Z(τ) = Z(t − τ).

For the purposes of this example, Qχ was chosen to be the inverse of the marginal of the gamma
distribution function, and ρZ was chosen to be 0.8. The autocovariance defined in Equation (5.1) was
evaluated 100 000 times using Equation (1.1) and 100 000 times using MATLAB’s built-in normal cdf;
the time it took to perform the 100 000 evaluations was recorded for both functions. This process was
repeated ten times, and the minimum evaluation time for each function was selected for comparison.
The minimum time to perform 100 000 evaluations for the approximate function was 2 053 seconds.
The minimum time for MATLAB’s built-in cdf to perform 100 000 evaluations was 2 138 seconds.
Thus, using Equation (1.1) is approximately 5% faster than using MATLAB’s built-in normal cdf
for this problem. The solution to Equation (5.1) computed by MATLAB’s built-in normal cdf was
0.00623672 and the solution to Equation (5.1) computed by the approximate function was 0.00622242.
The relative percentage difference between the solutions is 0.23%, showing that using Equation (1.1)
does not result in an appreciable loss of accuracy for this example.
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6. Conclusions

Many published explicitly invertible approximate functions for the normal CDF currently exist in
the literature. The most accurate of these functions that we found that is also very simply explicitly
invertible is given by Soranzo and Epure [5], possessing an MAE of 1.27e–04. This paper proposes
a new very simply explicitly invertible approximation to the normal CDF, eq. (1.1), which was fit to
MATLAB’s built-in cdf function using both MATLAB’s Global Optimization Toolbox and BARON.

Results from three separate fits of Equation (1.1) are presented in this paper: an unconstrained fit
and two fits subject to the constraint F(0) = 0.5. Each of the results possesses characteristics that make
them noteworthy. As expected, the result from the unconstrained fit provides the smallest residual.
The result for the constrained fit using the BARON procedure provides the smallest MAE. The result
for the constrained fit using the GlobalSearch procedure provides an MAE occurring furthest from the
origin. Regardless of these properties, all three fits resulted in MAEs superior to the best MAE for
published very simply explicitly invertible normal CDF approximations by factors of about four or
five. Furthermore, the best approximation has an MAE that is about a factor of two smaller than the
best explicitly invertible normal CDF approximation. The approximate function is also shown to run
approximately 5% faster than MATLAB’s built-in normal cdf.

By presenting more than a single result with the best MAE, we provide researchers with a set of very
simply explicitly invertible normal CDF approximations that possess differing characteristics. Thus,
researchers may evaluate the options presented in this paper and may choose an approximation best
suited to their needs.
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