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1. Introduction

In recent years, more and more researchers are interested in the discontinuous differential operators
for its wide application in physics and engineering (see [1–22]). Such problems are connected with
discontinuous material properties, such as heat and mass transfer which can be found in [10], vibrating
string problems when the string loaded additionally with point masses, the heat transfer problems
of the laminated plate of membrane (that is, the plate which is formed by overlap of materials with
different characteristics) and diffraction problems, etc. Lots of important results in this field have
been obtained for the case when the eigenparameter appears not only in the differential equation but
also in the boundary conditions. Particularly, more and more researchers have paid close attention to
Sturm-Liouville problems with the boundary condition depending on eigenparameter and its inverse
problem, asymptotic of eigenvalues and eigenfunctions, oscillation theory, etc. The various physics
applications of this kind of problem are found in many literature, such as Hinton [17], Fulton [16],
Binding [22]. While the general theory and methods of such second-order boundary value problems
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are highly developed (see [6–17], [21–30]), little is known about a general characteristic of the high-
order problems, and the case of fourth-order is also very little [31, 32].

Yang and Wang studied a class of fourth order differential operators with transmission conditions
and containing eigenparameter in the boundary conditions at one endpoint (see [19]), and obtained
Green function, asymptotic formulas of eigenvalues and the completeness of eigenfunctions. In [20],
Erdoǧan S. en studied spectral properties of a fourth order differential operators with transmission
conditions and containing eigenparameter in the boundary conditions at one endpoint, the completeness
of eigenfunctions and the asymptotic formulas of eigenvalues and fundamental solutions are discussed.

In this paper, we shall consider the following fourth-order boundary value transmission problems

lu := (p(x)u′′(x))′′ + q(x)u(x) = λω(x)u(x), x ∈ J = [−1, 0) ∪ (0, 1] (1.1)

with eigenparameter dependent boundary conditions at endpoints

l1u := λu(−1) − u′′′(−1) = 0, (1.2)

l2u := λu′(−1) + u′′(−1) = 0, (1.3)

l3u := λ(γ′1u(1) − γ′2u′′′(1)) − (γ1u(1) − γ2u′′′(1)) = 0, (1.4)

l4u := λ(γ′3u′(1) − γ′4u′′(1)) + (γ3u′(1) − γ4u′′(1)) = 0, (1.5)

and transmission conditions at discontinuous point x = 0

Bu(0+) = B · Bu(0−), (1.6)

where p(x) = p4
1 for x ∈ [−1, 0), p(x) = p4

2 for x ∈ (0, 1]; ω(x) = ω4
1 for x ∈ [−1, 0), ω(x) =

ω4
2 for x ∈ (0, 1], pi > 0 and ωi > 0 are given real numbers (i = 1, 2). The real-valued function

q(x) ∈ L1[J,R], λ ∈ C is a complex eigenparameter, γi, γ
′
i , (i = 1, 2, 3, 4) are real numbers,Bu(x) =

(u(x), u′(x), u′′(x), u′′′(x))T .

B =


δ1 α1 0 α2

δ2 α3 α4 0
δ3 β1 β2 0
δ4 β3 0 β4


is a 4 × 4 real matrix,

We assume that ρ0 =

∣∣∣∣∣∣ δ1 α2

δ4 β4

∣∣∣∣∣∣=
∣∣∣∣∣∣ α3 α4

β1 β2

∣∣∣∣∣∣ > 0, ρ1 =

∣∣∣∣∣∣ γ′1 γ1

γ′2 γ2

∣∣∣∣∣∣ > 0, ρ2 =

∣∣∣∣∣∣ γ′3 γ3

γ′4 γ4

∣∣∣∣∣∣ > 0,

ρ3 =

∣∣∣∣∣∣ α1 α2

β3 β4

∣∣∣∣∣∣ =

∣∣∣∣∣∣ δ2 α4

δ3 β2

∣∣∣∣∣∣ = 0, ρ4 =

∣∣∣∣∣∣ δ1 α1

δ4 β3

∣∣∣∣∣∣=
∣∣∣∣∣∣ δ2 α3

δ3 β1

∣∣∣∣∣∣ > 0.

In order to investigate the problems (1.1)–(1.6), we define the inner product in L2(J) as

〈 f , g〉1 =
ρ0ω

4
1

p4
1

∫ c

a
f gdx +

ω4
2

p4
2

∫ b

c
f gdx, ∀ f , g ∈ L2(J),

where

f (x) =

 f1(x), x ∈ [−1, 0),
f2(x), x ∈ (0,−1].
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It is easy to verify that H1 = L2(J, 〈·, ·〉1) is a Hilbert space.
Here we consider a class of fourth order differential operators with discontinuous coefficient and

containing eigenparameter in the boundary conditions at two endpoints. By using the classical analysis
techniques and spectral theory of linear operator, a new linear operator A associated with the problem
in an appropriate Hilbert space H is defined such that the eigenvalues of the problem coincide with
those of A. The main results of the present paper are to discuss its eigenvalues, obtain asymptotic
formulas for fundamental solutions and characteristic function, prove that the eigenfunctions of A are
complete in H, and give its Green function, which promote and deepen the previous conclusions.

The rest of this paper is organized as follows: In Section 2, we define a new self-adjoint
operator A such that the eigenvalues of such a problem coincide with those of A. In Section 3, we
construct its fundamental solutions, discuss some properties of eigenvalues. In Section 4, we get the
asymptotic formulas for the fundamental solutions and the characteristic function. The completeness
of eigenfunctions are discussed in Section 5. In Section 6, we constructed its Green function.

2. Operator formulation

In this section, we introduce a special inner product in the Hilbert space H = H1
⊕
C4, where

H1 = L2[−1, 0)
⊕

L2(0,−1] ( for any interval I ⊂ R, L2(I) denotes all the complex valued functions
which satisfy

∫
I
| f (x)|2dx < ∞), C4 denotes the Hilbert space of complex numbers, a symmetric

operator A defined on the Hilbert space such that (1.1)–(1.6) can be considered as the eigenvalue
problem of this operator. Namely, we define an inner product on H by

〈F,G〉 = 〈 f , g〉1 + ρ0(〈h1, k1〉2 + 〈h2, k2〉2) +
1
ρ1
〈h3, k3〉2 +

1
ρ2
〈h4, k4〉2

for F := ( f (x), h1, h2, h3, h4), G := (g(x), k1, k2, k3, k4) ∈ H, where 〈h, k〉2 = hk for h, k ∈ C.
For convenience, we shall use the following notations:

M1( f ) = f ′′′(−1), M′
1( f ) = f (−1),

M2( f ) = f ′′(−1), M′
2( f ) = f ′(−1),

N1( f ) = γ1 f (1) − γ2 f ′′′(1), N′1( f ) = γ′1 f (1) − γ′2 f ′′′(1),

N2( f ) = γ3 f ′(1) − γ4 f ′′(1), N′2( f ) = γ′3 f ′(1) − γ′4 f ′′(1).

In the Hilbert space H, we consider the operator A with domain

D(A) ={F = ( f (x), h1, h2, h3, h4) ∈ H| fi(x), f ′i (x) f ′′i (x), f ′′′i (x)(i = 1, 2) are absolutely continuous on
[−1, 0) ∪ (0, 1], l f ∈ H1, B f (0+) = B · B f (0−), h1 = M′

1( f ), h2 = M′
2( f ), h3 = N′1( f ), h4 = N′2( f )}

and the rule

AF = (
1

ω(x)
((p(x) f ′′)′′ + q(x) f ),M1( f ),−M2( f ),N1( f ),−N2( f )) (2.1)

with
F = ( f (x),M′

1( f ),M′
2( f ),N′1( f ),N′2( f )) ∈ D(A).
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Now we rewrite the problems (1.1)–(1.6) in the operator form

AF = λF.

Thus the problems (1.1)–(1.6) can be considered as the eigenvalue problem of the operator A.

Lemma 2.1. The eigenvalues and the eigenfunctions of the problems (1.1)–(1.6) are defined as the
eigenvalues and the first component of corresponding eigenelements of the operator A respectively.

Lemma 2.2. The domain D(A) is dense in H.

Proof. Let F = ( f (x), h1, h2, h3, h4) ∈ H, F⊥D(A) and C∞0 be a functional set such that

ϕ(x) =

ϕ1(x), x ∈ [−1, 0),
ϕ2(x), x ∈ (0, 1],

for ϕ1(x) ∈ C∞0 [−1, 0), ϕ2(x) ∈ C∞0 (0, 1]. Since C∞0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊂ D(A) (0 ∈ C), any
U = (u(x), 0, 0, 0, 0) ∈ C∞0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 is orthogonal to F, namely,

〈F,U〉 = 〈 f , u〉1 = 0.

We can learn that f (x) is orthogonal to C∞0 in H1, this implies f (x) = 0. So for all V =

(v(x),M′
1(v), 0, 0, 0) ∈ D(A), 〈F,V〉 = ρ0h1M′

1(v) = 0. Thus h1 = 0 since M′
1(v) can be chosen as

an arbitrary function. Similarly, we can prove h2 = h3 = h4 = 0. Hence F = (0, 0, 0, 0, 0, ) is null
element in the Hilbert space H. Thus, the orthogonal complement of D(A) consists of only the null
element, and therefore is dense in the Hilbert space H. �

Theorem 2.1. The operator A is self-adjoint in H.

Proof. Let F,G ∈ D(A). Integration by parts yields

〈AF,G〉 − 〈F, AG〉 =ρ0[W( f , g; 0−) −W( f , g;−1)] + [W( f , g; 1) −W( f , g; 0+)]
+ ρ0[M1( f )M′

1(g) − M′
1( f )M1(g) − M2( f )M′

2(g) + M′
2( f )M2(g)]

+
1
ρ1

[N1( f )N′1(g) − N′1( f )N1(g)] −
1
ρ2

[N2( f )N′2(g) − N′2( f )N2(g)],

(2.2)

where, as usual, W( f , g; x) denotes the Wronskians of f and g:

W( f , g; x) = f ′′′(x)g(x) − f (x)g′′′(x) + f ′(x)g′′(x) − f ′′(x)g′(x). (2.3)

By the transmission condition (1.6), we get

W( f , g; 0+) = ρ0W( f , g; 0−). (2.4)

Further, it is easy to verify that

M1( f )M′
1(g) − M′

1( f )M1(g) − M2( f )M′
2(g) + M′

2( f )M2(g) = W( f , g;−1), (2.5)

1
ρ1

[N1( f )N′1(g) − N′1( f )N1(g)] −
1
ρ2

[N2( f )N′2(g) − N′2( f )N2(g)] = −W( f , g; 1). (2.6)
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Now, substituting (2.4)–(2.6) into (2.2) yields that

〈AF,G〉 = 〈F, AG〉 (F,G ∈ D(A)).

Hence A is symmetric.
It remains to show that if 〈AF,W〉 = 〈F,U〉 for all F = ( f (x),M

′

1( f ),M
′

1( f ),N
′

1( f ),N
′

2( f )) ∈ D(A),
then W ∈ D(A) and AW = U, where W = (w(x), h1, h2, h3, h4), U = (u(x), k1, k2, k3, k4), i.e.,
(i) w(i)

1 (x) ∈ ACloc((−1, 0)), w(i)
2 (x) ∈ ACloc((0, 1)) (i = 0, 1, 2, 3), lw ∈ H1;

(ii) h1 = M′
1(w) = w(−1), h2 = M′

2(w) = w′(−1), h3 = N′1(w) = γ′1w(1) − γ′2w′′′(1),
h4 = N′2(w) = γ′3w′(1) − γ′4w′′(1);
(iii) Bw(0+) = B · Bw(0−);
(iv) u(x) = lw;
(v) k1 = M1(w) = w′′′(−1), k2 = −M2(w) = −w′′(−1), k3 = N1(w) = γ1w(1) − γ2w′′′(1),
k4 = −N′2(w) = −(γ3w′(1) − γ4w′′(1)).

For an arbitrary point F ∈ C∞0 ⊕ 04 ∈ D(A) such that

ρ0ω
4
1

p4
1

∫ 0

−1
(l f )wdx +

ω4
2

p4
2

∫ 1

0
(l f )wdx =

ρ0ω
4
1

p4
1

∫ 0

−1
f udx +

ω4
2

p4
2

∫ 1

0
f udx,

that is, 〈l f ,w〉1 = 〈 f , u〉1. According to classical Sturm-Liouville theory, (i) and (iv) hold. By (iv),
equation 〈AF,W〉 = 〈F,U〉, ∀F ∈ D(A), becomes

〈l f ,w〉1 =〈 f , lw〉1 + ρ0(M′
1( f )k1 + M′

2( f )k2 − M1( f )h1 + M2( f )h2)

+
1
ρ1

(N′1( f )k3 − N1( f )h3 + (
1
ρ2

(N′2( f )k4 − N2( f )h4).

However,

〈l f ,w〉1 = 〈 f , lw〉1 + ρ0[W( f , g; 0−) −W( f , g;−1)] + [W( f , g; 1) −W( f , g; 0+)].

So

ρ0(M′
1( f )k1 + M′

2( f )k2 − M1( f )h1 + M2( f )h2) +
1
ρ1

(N′1( f )k3 − N1( f )h3 + (
1
ρ2

(N′2( f )k4 − N2( f )h4)

= ρ0[W( f , g; 0−) −W( f , g;−1)] + [W( f , g; 1) −W( f , g; 0+)].
(2.7)

By Naimark Patching Lemma 2, there is an F ∈ D(A) such that

f (i−1)(−1) = f (i−1)(0−) = f (i−1)(0+) = 0, i = 1, 2, 3, 4,

f (1) = γ′2, f ′(1) = f ′′(1) = 0, f ′′′(1) = γ′1.

For such an F,
M′

1( f ) = M′
2( f ) = M1( f ) = M2( f ) = 0.

W( f , g; 0−) = W( f , g;−1) = W( f , g; 0+) = 0.
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Then from (2.7) we have

1
ρ1

(N′1( f )k3 − N1( f )h3 + (
1
ρ2

(N′2( f )k4 − N2( f )h4) = W( f , g; 1).

On the one hand,

W( f , g; 1) = f ′′′(1)w(1) − f (1)w′′′(1) + f ′(1)w′′(1) − f ′′(1)w′(1) = γ′1w(1) − γ′2w′′′(1) = N′1(w).

On the other hand,

1
ρ1

(N′1( f )k3 − N1( f )h3 + (
1
ρ2

(N′2( f )k4 − N2( f )h4) = −
1
ρ1

(h3(γ1γ
′
2 − γ2γ

′
1) = h3.

So h3 = N′1(w). Similarly, we can prove that h4 = N′2(w), k3 = N1(w), k4 = −N2(w).
For an arbitrary F ∈ D(A) such that

f (i−1)(1) = f (i−1)(0−) = f (i−1)(0+) = 0, i = 1, 2, 3, 4,

f (−1) = f ′(−1) = f ′′′(−1) = 0, f ′′(−1) = 1.

For such an F,
N′1( f ) = N′2( f ) = N1( f ) = N2( f ) = 0,

W( f , g; 0−) = W( f , g; 1) = W( f , g; 0+) = 0.

Then from (2.7) we have

M′
1( f )k1 + M′

2( f )k2 − M1( f )h1 + M2( f )h2 = −W( f , g;−1).

On the one hand,
M′

1( f )k1 + M′
2( f )k2 − M1( f )h1 + M2( f )h2 = h2.

On the other hand,

−W( f , g;−1) = f ′′′(−1)w(−1) − f (−1)w′′′(−1) + f ′(−1)w′′(−1) − f ′′(−1)w′(−1) = w′(−1) = M′
2(w).

So h2 = M′
2(w). Similarly, we can proof h1 = M′

1(w), k1 = M1(w), k2 = −M2(w). So (ii) and (v) hold.
Next choose F ∈ D(A) such that

f (i−1)(1) = f (i−1)(−1) = 0, i = 1, 2, 3, 4,

f (0+) = f ′(0+) = f ′′(0+) = 0, f ′′′(0+) = ρ0,

f (0−) = −α2, f ′(0−) = 0, f ′′(0−) = −α1, f ′′′(0−) = δ1,

thus Mi( f ) = M′
i ( f ) = Ni( f ) = N′i ( f ) = 0 (i = 1, 2), W( f , g;−1) = W( f , g; 1) = 0. Then from (3.1) we

have W( f , g; 0+) = ρ0W( f , g; 0−), that is

ρ0w(0+) = ρ0(δ1w(0−) + α1w(0−) + α2w(0−)),

so
w(0+) = δ1w(0−) + α1w(0−) + α2w(0−).
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However, B is a 4 × 4 real matrix, then using the same method, we can prove

Bw(0+) = B · Bw(0−).

So (iii) holds.
From the above discussion, we get that A is a self-adjoint operator. �

Corollary 2.1. All eigenvalues of the problems (1.1)–(1.6) are real.

Corollary 2.2. Let λ1 and λ2 be two different eigenvalues of the problems (1)–(6). Then the
corresponding eigenfunctions f and g is orthogonal in the sense that

ρ0ω
4
1

p4
1

∫ 0

−1
f gdx +

ω4
2

p4
2

∫ 1

0
f gdx +ρ0(M′

1( f )M′
1(g) + M′

2( f )M′
2(g)) +

1
ρ1

N′1( f )N′1(g) +
1
ρ2

N′1( f )N′1(g)) = 0.

Since all eigenvalues are real, it is necessary to study the real-valued eigenfunctions only. Therefore,
we can now assume that all eigenfunctions are real-valued.

3. Fundamental solutions

Lemma 3.1. Let the real-valued function q(x) be continuous in [−1, 1] and fi(λ) (i = 1, 2, 3, 4) be
given entire functions. Then for ∀λ ∈ C, the Eq (1.1) has a unique solution u(x, λ), satisfying the initial
conditions

u(−1) = f1(λ), u′(−1) = f2(λ), u′′(−1) = f3(λ), u′′′(−1) = f4(λ),

( or u(1) = f1(λ), u′(1) = f2(λ), u′′(1) = f3(λ), u′′′(1) = f4(λ)).

Proof. In terms of existence and uniqueness in ordinary differential equation theory, we can conclude
this conclusion. �

Let φ11(x, λ) be the solution of Eq (1.1) on the interval [−1, 0), satisfying the initial conditions

φ11(−1) = 1, φ′11(−1) = φ′′11(−1) = 0, φ′′′11(−1) = λ.

By virtue of Lemma 3.1, after defining this solution we can define the solution φ12(x, λ) of Eq (1.1)
on the interval (0,1] by the initial conditions

Bφ12(0) = B · Bφ11(0).

Again let φ21(x, λ) still be the solution of (1.1) on the interval [−1, 0), satisfying the initial conditions

φ21(−1) = 0, φ′21(−1) = 1, φ′′21(−1) = −λ, φ′′′21(−1) = 0.

After defining this solution, we can also define the solution φ22(x, λ) of Eq (1.1) on the interval
(0,1] by the initial conditions

Bφ22(0) = B · Bφ21(0).

AIMS Mathematics Volume 7, Issue 6, 11487–11508.
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Analogously, we shall define the solutions χ12(x, λ) and χ11(x, λ) by the initial conditions

χ12(1) = λγ′2 − γ2, χ
′
12(1) = χ′′12(1) = 0, χ′′′12(1) = λγ′1 − γ1,

Bχ11(0) = C · Bχ12(0),

where

C =


β4
ρ0

0 0 −
α2
ρ0

0 β2
ρ0

−
α4
ρ0

0
−
δ2β4
α4ρ0

−
β1
ρ0

α3
ρ0

α2δ2
α4ρ0

−
δ4
ρ0
−
α1β2
α2ρ0

α1α4
α2ρ0

δ1
ρ0


is a 4 × 4 real matrix.

In addition, we shall define the solution χ22(x, λ) and χ21(x, λ), satisfying the initial conditions

χ22(1) = 0, χ′22(1) = λγ′4 + γ4, χ
′′
22(1) = λγ′3 + γ3, χ

′′′
22(1) = 0,

Bχ21(0) = C · Bχ22(0).

Let us consider the Wronskians

W1(λ) :=

∣∣∣∣∣∣∣∣∣∣∣
φ11(x, λ) φ21(x, λ) χ11(x, λ) χ21(x, λ)
φ′11(x, λ) φ′21(x, λ) χ′11(x, λ) χ′21(x, λ)
φ′′11(x, λ) φ′′21(x, λ) χ′′11(x, λ) χ′′21(x, λ)
φ′′′11(x, λ) φ′′′21(x, λ) χ′′′11(x, λ) χ′′′21(x, λ)

∣∣∣∣∣∣∣∣∣∣∣
and

W2(λ) :=

∣∣∣∣∣∣∣∣∣∣∣
φ12(x, λ) φ22(x, λ) χ12(x, λ) χ22(x, λ)
φ′12(x, λ) φ′22(x, λ) χ′12(x, λ) χ′22(x, λ)
φ′′12(x, λ) φ′′22(x, λ) χ′′12(x, λ) χ′′22(x, λ)
φ′′′12(x, λ) φ′′′22(x, λ) χ′′′12(x, λ) χ′′′22(x, λ)

∣∣∣∣∣∣∣∣∣∣∣ ,
which are independent of x and are entire functions. Short calculation gives W2(λ) = ρ2

0W1(λ). Now
we may introduce, in consideration, the characteristic function as W(λ) = W1(λ).

Theorem 3.1. The eigenvalues of the problems (1.1)–(1.6) consist of the zeros of the function W(λ).

Proof. Assume that W(λ) = 0. Then the functions φ11(x, λ), φ21(x, λ) and χ11(x, λ), χ21(x, λ) are linearly
dependent, i.e.,

k1φ11(x, λ) + k2φ21(x, λ) + k3χ11(x, λ) + k4χ21(x, λ) = 0

for some k1 , 0 or k2 , 0 and k3 , 0 or k4 , 0. From this, it follows that k3χ11(x, λ) + k4χ21(x, λ)
satisfies the boundary conditions (1.2) and (1.3). Therefore,

u(x) =

k3χ11(x, λ) + k4χ21(x, λ), x ∈ [−1, 0),
k3χ12(x, λ) + k4χ22(x, λ), x ∈ (0, 1],

is an eigenfunction of the problems (1.1)–(1.6) corresponding to the eigenvalue λ.

AIMS Mathematics Volume 7, Issue 6, 11487–11508.
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Now we let u(x) be any eigenfunction corresponding to eigenvalue λ, but W(λ) , 0. Then the
function u(x) may be represented in the form

u(x) =

c1φ11(x, λ) + c2φ21(x, λ) + c3χ11(x, λ) + c4χ21(x, λ), x ∈ [−1, 0),
c5φ12(x, λ) + c6φ22(x, λ) + c7χ12(x, λ) + c8χ22(x, λ), x ∈ (0, 1],

(3.1)

where at least one of the constants ci (i = 1, 2, · · · , 8) is not zero. Applying the transmission
condition (1.6) and the boundary conditions (1.2)–(1.5) to this representation of u(x), we can get a
homogenous system of linear equations of the variables ci (i = 1, 2, · · · , 8) and taking into account the
initial conditions, it follows that the determinant of this system is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 l1χ11 l1χ21 0 0 0 0
0 0 l2χ11 l2χ21 0 0 0 0
0 0 0 0 l3φ12 l3φ22 0 0
0 0 0 0 l4φ12 l4φ22 0 0

−φ12(0) −φ22(0) −χ12(0) −χ22(0) φ12(0) φ22(0) χ12(0) χ22(0)
−φ′12(0) −φ′22(0) −χ′12(0) −χ′22(0) φ′12(0) φ′22(0) χ′12(0) χ′22(0)
−φ′′12(0) −φ′′22(0) −χ′′12(0) −χ′′22(0) φ′′12(0) φ′′22(0) χ′′12(0) χ′′22(0)
−φ′′′12(0) −φ′′′22(0) −χ′′′12(0) −χ′′′22(0) φ′′′12(0) φ′′′22(0) χ′′′12(0) χ′′′22(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −W2(λ)3.

Therefore, the system has only the trivial solution ci = 0(i = 1, 2, · · · , 8). Thus we get a contradiction,
which completes the proof. �

4. Asymptotic formulae for the fundamental solutions

In this section, we start by proving several lemmas.

Lemma 4.1. Let λ = s4, s = σ + it. Then the following integral equations hold for k = 0, 1, 2, 3,

dk

dxkφ11(x, λ) =
1
2

dk

dxk cos
ω1s(x + 1)

p1
−

1
2

p3
1s

ω3
1

dk

dxk sin
ω1s(x + 1)

p1

+

(
1
4

+
1
4

p3
1s

ω3
1

)
dk

dxk e
ω1 s(x+1)

p1 −

(
1
4

p3
1s

ω3
1

−
1
4

)
dk

dxk e−
ω1 s(x+1)

p1

+
1

2ω3
1 p1s3

∫ x

−1

dk

dxk

(
sin

ω1s(x − y)
p1

−
1
2

e
ω1 s(x−y)

p1 +
1
2

e−
ω1 s(x−y)

p1

)
q(y)φ11(y)dy,

(4.1)

dk

dxkφ12(x, λ) =

(
1
2
φ12(0) −

1
2

p2
2

ω2
2s2

φ′′12(0)
)

dk

dxk cos
ω2sx

p2
+

(
1
2

p2

ω2s
φ′12(0) −

1
2

p3
2

ω3
2s3

φ′′′12(0)
)

×
dk

dxk sin
ω2sx

p2
+

(
1
4
φ12(0) +

1
4

p2

ω2s
φ′12(0) +

1
4

p2
2

ω2
2s2

φ′′12(0) +
1
4

p3
2

ω3
2s3

φ′′′12(0)
)

×
dk

dxk e
ω2 sx

p2 −

(
−

1
4
φ12(0) +

1
4

p2

ω2s
φ′12(0) −

1
4

p2
2

ω2
2s2

φ′′12(0) +
1
4

p3
2

ω3
2s3

φ′′′12(0)
)

dk

dxk e−
ω2 sx

p2

+
1

2ω3
2 p2s3

∫ x

0

dk

dxk

(
sin

ω2s(x − y)
p2

−
1
2

e
ω2 s(x−y)

p2 +
1
2

e−
ω2 s(x−y)

p2

)
q(y)φ12(y)dy,

(4.2)
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dk

dxkφ21(x, λ) =
1
2

p2
1s2

ω2
1

dk

dxk cos
ω1s(x + 1)

p1
+

1
2

p1

ω1s
dk

dxk sin
ω1s(x + 1)

p1

+

(
1
4

p1

ω1s
−

1
4

p2
1s2

ω2
1

)
dk

dxk e
ω1 s(x+1)

p1 −

(
1
4

p1

ω1s
+

1
4

p2
1s2

ω2
1

)
dk

dxk e−
ω1 s(x+1)

p1

+
1

2ω3
1 p1s3

∫ x

−1

dk

dxk

(
sin

ω1s(x − y)
p1

−
1
2

e
ω1 s(x−y)

p1 +
1
2

e−
ω1 s(x−y)

p1

)
q(y)φ21(y)dy,

(4.3)

dk

dxkφ22(x, λ) =

(
1
2
φ22(0) −

1
2

p2
2

ω2
2s2

φ′′22(0)
)

dk

dxk cos
ω2sx

p2
+

(
1
2

p2

ω2s
φ′22(0) −

1
2

p3
2

ω3
2s3

φ′′′22(0)
)

×
dk

dxk sin
ω2sx

p2
+

(
1
4
φ22(0) +

1
4

p2

ω2s
φ′22(0) +

1
4

p2
2

ω2
2s2

φ′′22(0) +
1
4

p3
2

ω3
2s3

φ′′′22(0)
)

×
dk

dxk e
ω2 sx

p2 −

(
−

1
4
φ12(0) +

1
4

p2

ω2s
φ′12(0) −

1
4

p2
2

ω2
2s2

φ′′22(0) +
1
4

p3
2

ω3
2s3

φ′′′22(0)
)

dk

dxk e−
ω2 sx

p2

+
1

2ω3
2 p2s3

∫ x

0

dk

dxk

(
sin

ω2s(x − y)
p2

−
1
2

e
ω2 s(x−y)

p2 +
1
2

e−
ω2 s(x−y)

p2

)
q(y)φ22(y)dy.

(4.4)

Proof. Regarding φ11(x, λ) as the solution of the following non-homogeneous Cauchy problem:
(p(x)u′′)′′(x) + q(x)u(x) = λω(x)u(x),
φ11(−1) = 1, φ′11(−1) = 0,
φ′′11(−1) = 0, φ′′′11(−1) = λ.

Using the method of constant variation, φ11(x, λ) satisfies

dk

dxkφ11(x, λ) =
1
2

dk

dxk cos
ω1s(x + 1)

p1
−

1
2

p3
1s

ω3
1

dk

dxk sin
ω1s(x + 1)

p1

+

(
1
4

+
1
4

p3
1s

ω3
1

)
dk

dxk e
ω1 s(x+1)

p1 −

(
1
4

p3
1s

ω3
1

−
1
4

)
dk

dxk e−
ω1 s(x+1)

p1

+
1

2ω3
1 p1s3

∫ x

−1

dk

dxk

(
sin

ω1s(x − y)
p1

−
1
2

e
ω1 s(x−y)

p1 +
1
2

e−
ω1 s(x−y)

p1

)
q(y)φ11(y)dy.

Then differentiating it with respect to x, we have (4.1). The proof for (4.2)–(4.4) are similar. �

Lemma 4.2. Let λ = s4, s = σ + it. Then the following integral equations hold for k = 0, 1, 2, 3,

dk

dxkφ11(x, λ) = −
1
2

p3
1s

ω3
1

dk

dxk sin
ω1s(x + 1)

p1
+

1
4

p3
1s

ω3
1

dk

dxk

(
e
ω1 s(x+1)

p1 − e−
ω1 s(x+1)

p1

)
+ O(|s|ke|s|

ω1(x+1)
p1 ),

(4.5)
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dk

dxkφ12(x, λ) =
α2

2
φ′′′11(0)

dk

dxk cos
ω2sx

p2
+

p2α4

2ω2s
φ′′11(0)

dk

dxk sin
ω2sx

p2
+
α2

4
φ′′′11(0)

dk

dxk

(
e
ω2 sx

p2 + e−
ω2 sx

p2

)
+

p2α4

4ω2s
φ′′11(c)

dk

dxk

(
e
ω2 sx

p2 − e−
ω2 sx

p2

)
+ O(|s|k+1e|s|[

ω1 p2+ω2 p1
p1 p2

]),

(4.6)

dk

dxkφ21(x, λ) =
1
2

p2
1s2

ω2
1

dk

dxk cos
ω1s(x + 1)

p1
−

1
4

p2
1s2

ω2
1

dk

dxk

(
e
ω1 s(x+1)

p1 + e−
ω1 s(x+1)

p1

)
+ O(|s|k−1e|s|

ω1(x+1)
p1 ),

(4.7)

dk

dxkφ22(x, λ) =
α2

2
φ′′′21(0)

dk

dxk cos
ω2sx

p2
+

p2α4

2ω2s
φ′′21(0)

dk

dxk sin
ω2sx

p2
+
α2

4
φ′′′21(0)

dk

dxk

(
e
ω2 sx

p2 + e−
ω2 sx

p2

)
+

p2α4

4ω2s
φ′′21(0)

dk

dxk

(
e
ω2 sx

p2 − e−
ω2 sx

p2

)
+ O(|s|k+2e|s|[

ω1 p2+ω2 p1
p1 p2

]).

(4.8)
Each of these asymptotic equalities hold uniformly for x ∈ J, as |λ| → ∞.

Proof. Let φ11(x, λ) = |s|e|s|
ω1(x+1)

p1 F(x, λ). We can easily get that F(x, λ) is bounded. So

φ11(x, λ) = O(|s|e|s|
ω1(x+1)

p1 ). Substituting it into (4.1) and differentiating it with respect to x for
k = 0, 1, 2, 3, we obtain (4.5). Next according to transmission condition (1.6), we have

φ12(0) ≈ α2φ
′′′
11(0), φ′12(0) ≈ α4φ

′′
11(0),

φ′′12(0) ≈ β2φ
′′
11(0), φ′′′12(0) ≈ β4φ

′′′
11(0),

as |λ| → ∞. Substituting these asymptotic expressions into (4.2) for k = 0, we get

φ12(x, λ) =
α2

2
φ′′′11(0)

dk

dxk cos
ω2sx

p2
+
α2

4
φ′′′11(0)

dk

dxk

(
e
ω2 sx

p2 + e−
ω2 sx

p2

)
+

p2α4

2ω2s
φ′′11(0)

dk

dxk sin
ω2sx

p2

+
p2α4

4ω2s
φ′′11(0)

dk

dxk

(
e
ω2 sx

p2 − e−
ω2 sx

p2

)
+ O(|s|e|s|[

ω1 p2+ω2 p1 x
p1 p2

])

+
1

2ω3
2 p2s3

∫ x

0

dk

dxk

(
sin

ω2s(x − y)
p2

−
1
2

e
ω2 s(x−y)

p2 +
1
2

e−
ω2 s(x−y)

p2

)
q(y)φ12(y)dy.

(4.9)

Multiplying through by |s|−4e|s|[
ω1
p1

+
ω2 x
p2

], and denoting

F12(x, λ) := O(|s|−4e−|s|[
ω1
p1

+
ω2 x
p2

])φ12(x, λ).

Denoting M(λ) := maxx∈[−1,0)|F12(x, λ)|, from the last formula, short calculation yields M(λ) < M0 for
some M0 > 0. It follows that M(λ) = O(1) as |λ| → ∞, so

φ12(x, λ) = O(|s|4e|s|[
ω1
p1

+
ω2 x
p2

]).

Substituting this back into the integral on (4.9) yields (4.6) for k = 0. The other assertions can be
proved similarly. �
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Theorem 4.1. Let λ = s4, s = σ + it. Then the characteristic function W(λ) has the following
asymptotic representations:
Case 1. γ′2 , 0, γ′4 , 0,

W(λ) = −
α2α4γ

′
2γ
′
4ω

4
2s20

4ρ2
0 p4

2

[1 + (e
ω1 s
p1 + e−

ω1 s
p1 ) cos

ω1s
p1

][1 −
1
2

(e
ω2 s
p2 + e−

ω2 s
p2 ) cos

ω2s
p2

]

+ O(|s|19e2|s|[ω1 p2+ω2 p1
p1 p2

]);

Case 2. γ′2 , 0, γ′4 = 0,

W(λ) = −
α2α4γ

′
2γ
′
3ω

3
2s19

8ρ2
0 p3

2

[1 + (e
ω1 s
p1 + e−

ω1 s
p1 ) cos

ω1s
p1

][(e
ω2 s
p2 + e−

ω2 s
p2 ) sin

ω2s
p2

+ (e
ω2 s
p2 − e−

ω2 s
p2 ) cos

ω2s
p2

]

+ O(|s|18e2|s|[ω1 p2+ω2 p1
p1 p2

]);

Case 3. γ′2 = 0, γ′4 , 0,

W(λ) =
α2α4γ

′
1γ
′
4ω2s17

8ρ2
0 p2

[1 + (e
ω1 s
p1 + e−

ω1 s
p1 ) cos

ω1s
p1

][(e
ω2 s
p2 + e−

ω2 s
p2 ) sin

ω2s
p2
− (e

ω2 s(b−c)
p2 − e−

ω2 s
p2 ) cos

ω2s
p2

]

+ O(|s|16e2|s|[ω1 p2+ω2 p1
p1 p2

]);

Case 4. γ′2 = 0, γ′4 = 0,

W(λ) =
α2α4γ

′
1γ
′
3s16

4ρ2
0

[1 + (e
ω1 s
p1 + e−

ω1 s
p1 ) cos

ω1s
p1

][1 +
1
2

(e
ω2 s
p2 + e−

ω2 s
p2 ) cos

ω2s
p2

]

+ O(|s|15e2|s|[ω1 p2+ω2 p1
p1 p2

]).

Proof. The proof is obtained by substituting asymptotic equalities dk

dxkφ12(1, λ) and dk

dxkφ22(1, λ) into the
representation

W(λ) =
1
ρ2

0

W2(λ) =

∣∣∣∣∣∣∣∣∣∣∣
φ12(1, λ) φ22(1, λ) λγ′2 − γ2 0
φ′12(1, λ) φ′22(1, λ) 0 λγ′4 + γ4

φ′′12(1, λ) φ′′22(1, λ) 0 λγ′3 + γ3

φ′′′12(1, λ) φ′′′22(1, λ) λγ′1 − γ1 0

∣∣∣∣∣∣∣∣∣∣∣ ,
short calculation, we can get the above conclusions. �

Corollary 4.1. The eigenvalues of the problems (1)–(6) are bounded below.

Proof. Putting s2 = it ( t > 0 ) in the above formulae, it follows that W(−t2) → ∞ as t → ∞. Hence
W(λ) , 0 for λ negative and sufficiently large in modulus. �

5. Completeness of eigenfunction

Theorem 5.1. The operator A has only point spectrum, i.e., σ(A) = σp(A).
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Proof. It suffices to prove that if λ is not an eigenvalue of A, then λ ∈ ρ(A). Here we investigate the
equation (A − λ)Y = F ∈ H, where λ ∈ R, F = ( f (x), h1, h2, h3, h4). Consider the initial-value problemly − λω(x)y(x) = f (x)ω(x),

By(0+) = B · By(0−)
, (5.1)

and the system of equations 
M1(y) − λM′

1(y) = h1,

M2(y) + λM′
2(y) = −h2,

N1(y) − λN′1(y) = h3,

N2(y) + λN′2(y) = −h4.

(5.2)

Let

u(x) =

u1(x), x ∈ [−1, 0),
u2(x), x ∈ (0, 1],

be the solution of the equation ly − λω(x)y(x) = 0 satisfying the transmission condition (1.6). Let

v(x) =

v1(x), x ∈ [−1, 0),
v2(x), x ∈ (0, 1],

be a special solution of (5.1). Then (5.1) has general solution in the form

y(x) =

du1(x) + v1(x), x ∈ [−1, 0),
du2(x) + v2(x), x ∈ (0, 1],

(5.3)

where d ∈ C.

Since γ is not an eigenvalue of (1.1)–(1.6), we have

λu1(−1) − u′′′1 (−1) , 0, (5.4)

or
λu′1(−1) + u′′1 (−1) , 0, (5.5)

or
λ(γ′1u2(1) − γ′2u′′′2 (1)) − (γ1u2(1) − γ2u′′′2 (1)) , 0, (5.6)

or
λ(γ′3u′2(1) − γ′4u′′2 (1)) + (γ3u′2(1) − γ4u′′2 (1)) , 0. (5.7)

The second, third, fourth, and fifth components of the equation (A − λ)Y = F involves the Eq (5.2), so
substituting (5.3) into (5.2), and we get

(u′′′1 (−1) − λu1(−1))d = h1 + λv1(−1) − v′′′1 (−1),
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(u′′1 (−1) + λu′1(−1))d = −h2 − λv′1(−1) − v′′1 (−1),

(λ(γ′2u′′′2 (1) − γ′1u2(1)) − (γ2u′′′2 (1) − γ1u2(1)))d = h3 − λ(γ′2v′′′2 (1) − γ′1v2(1)) + γ2v′′′2 (1) − γ1v2(1),

(λ(γ′3u′2(1) − γ′4u′′2 (1)) + (γ3u′2(1) − γ4u′′2 (1)))d = −h4 − λ(γ′3v′2(1) − γ′4v′′2 (1)) + γ4v′′2 (1) − γ3v′2(1).

In view of (5.4)–(5.7), we know that d is a unique solution. Thus if λ is not an eigenvalue of (1.1)–(1.6),
d is uniquely solvable. Hence y is uniquely determined.

The above arguments show that (A− λI)−1 is defined on all of H. We get that (A− λI)−1 is bounded
by Theorem 2.1 and the Closed Graph Theorem. Thus λ ∈ ρ(A). Hence σ(A) = σp(A). �

Lemma 5.1. The eigenvalues of the boundary value problems (1.1)–(1.6) are bounded below, and form
a finite or infinite sequence without finite accumulation point.

Proof. By the Corollary 4.1, we know that the eigenvalues of boundary value problems (1)–(6) are
bounded below. By Theorem 3.1, we obtain that the zeros of the entire function W(λ) are the
eigenvalues of A. And all the eigenvalues of A are real by the self-adjointness of A, that is to say,
for any λ ∈ C with its imaginary part not vanishing, then W(λ) , 0. Therefore, by the distribution of
zeros of entire functions, the conclusion holds. �

Lemma 5.2. The operator A has compact resolvents, i.e., for each δ ∈ R/σp(A), (A− δI)−1 is compact
on H.

Proof. Let {λ1, λ2, · · · } be the eigenvalues of (A−δI)−1, and let {P1, P2, · · · } be the finite rank orthogonal
projection on the corresponding eigensubspace. Since {λ1, λ2, · · · } is a bounded sequence and Pn are
mutual orthogonality,

∑∞
n=1 λnPn is strong convergence to (A− δI)−1, that is,

∑∞
n=1 λnPn = (A− δI)−1. In

light of the number of |λn| > α for any α > 0 is finite and Pn are finite rank, we have that (A − δI)−1 is
compact. �

By the above Lemmas and the spectral theorem for compact operator, we obtain the following
theorem:

Theorem 5.2. The eigenfunctions of the problems (1.1)–(1.6), augmented to become eigenfunctions of
A, are complete in H, i.e., if we let {Φn = (φn(x),M′

1(φn),M′
2(φn),N′1(φn),N′2(φn)); n ∈ N} be a maximum

set of orthonormal eigenfunctions of A, where {φn(x); n ∈ N} are eigenfunctions of the problems (1.1)–
(1.6), then for all F ∈ H, F =

∑∞
n=1〈F,Φn〉Φn.

6. Green function

In this section, we will find the Green function defined by (1.1)–(1.6). For convenience, we
assume that p(x) ≡ 1, ω(x) ≡ 1. Let λ not be an eigenvalue of A, we consider the operator equation
(λI − A)U = F, F = ( f , h1, h2, h3, h4). This operator equation is equivalent to the inhomogeneous
differential equation

− u(4) + qu − λu = f (x) (6.1)

for x ∈ J, subject to the inhomogeneous boundary conditions

λu(−1) − u′′′(−1) = h1, (6.2)
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λu′(−1) + u′′(−1) = h2, (6.3)

λ(γ′1u(1) − γ′2u′′′(1)) − (γ1u(1) − γ2u′′′(1)) = h3, (6.4)

λ(γ′3u′(1) − γ′4u′′(1)) + (γ3u′(1) − γ4u′′(1)) = h4, (6.5)

and transmission condition (1.6).
By applying the standard method of variation of constants, we search the general solution of the

non-homogeneous differential equation (6.1) in the form

y(x, λ) =

c1(x, λ)φ11(x, λ) + c2(x, λ)φ21(x, λ) + c3(x, λ)χ11(x, λ) + c4(x, λ)χ21(x, λ), x ∈ [−1, 0),
c5(x, λ)φ12(x, λ) + c6(x, λ)φ22(x, λ) + c7(x, λ)χ12(x, λ) + c8(x, λ)χ22(x, λ), x ∈ (0, 1].

(6.6)
By using the same techniques as in [2], the general solution of the non-homogeneous differential
equation (6.1) are obtained as

y(x, λ) =

y1(x, λ), x ∈ [−1, 0),
y2(x, λ), x ∈ (0, 1],

(6.7)

where

y1(x, λ) =
1

W1(λ)
(φ11(x, λ)

∫ x

−1
f (ξ)∆1(ξ, λ)dξ + φ21(x, λ)

∫ x

−1
f (ξ)∆2(ξ, λ)dξ

− χ11(x, λ)
∫ x

−1
f (ξ)∆3(ξ, λ)dξ + χ21(x, λ)

∫ x

−1
f (ξ)∆4(ξ, λ)dξ)

+ c1φ11(x, λ) + c2φ21(x, λ) + c3χ11(x, λ) + c4χ21(x, λ), x ∈ [−1, 0),

(6.8)

y2(x, λ) =
1

W2(λ)
(φ12(x, λ)

∫ x

−1
f (ξ)∆5(ξ, λ)dξ + φ22(x, λ)

∫ x

−1
f (ξ)∆6(ξ, λ)dξ

− χ12(x, λ)
∫ x

−1
f (ξ)∆7(ξ, λ)dξ + χ22(x, λ)

∫ x

−1
f (ξ)∆8(ξ, λ)dξ)

+ c5φ12(x, λ) + c6φ22(x, λ) + c7χ12(x, λ) + c8χ22(x, λ), x ∈ (0, 1],

(6.9)

∆1(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ21(ξ, λ) χ11(ξ, λ) χ21(ξ, λ)
φ′21(ξ, λ) χ′11(ξ, λ) χ′21(ξ, λ)
φ′′21(ξ, λ) χ′′11(ξ, λ) χ′′21(ξ, λ)

∣∣∣∣∣∣∣∣∣ , ∆2(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ11(ξ, λ) χ11(ξ, λ) χ21(ξ, λ)
φ′11(ξ, λ) χ′11(ξ, λ) χ′21(ξ, λ)
φ′′11(ξ, λ) χ′′11(ξ, λ) χ′′21(ξ, λ)

∣∣∣∣∣∣∣∣∣ ,
∆3(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ11(ξ, λ) φ21(ξ, λ) χ21(ξ, λ)
φ′11(ξ, λ) φ′21(ξ, λ) χ′21(ξ, λ)
φ′′11(ξ, λ) φ′′21(ξ, λ) χ′′21(ξ, λ)

∣∣∣∣∣∣∣∣∣ , ∆4(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ11(ξ, λ) φ21(ξ, λ) χ11(ξ, λ)
φ′11(ξ, λ) φ′21(ξ, λ) χ′11(ξ, λ)
φ′′11(ξ, λ) φ′′21(ξ, λ) χ′′11(ξ, λ)

∣∣∣∣∣∣∣∣∣ ,
,

∆5(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ22(ξ, λ) χ12(ξ, λ) χ22(ξ, λ)
φ′22(ξ, λ) χ′12(ξ, λ) χ′22(ξ, λ)
φ′′22(ξ, λ) χ′′12(ξ, λ) χ′′22(ξ, λ)

∣∣∣∣∣∣∣∣∣ , ∆6(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ12(ξ, λ) χ12(ξ, λ) χ22(ξ, λ)
φ′12(ξ, λ) χ′12(ξ, λ) χ′22(ξ, λ)
φ′′12(ξ, λ) χ′′12(ξ, λ) χ′′22(ξ, λ)

∣∣∣∣∣∣∣∣∣ ,
∆7(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ12(ξ, λ) φ22(ξ, λ) χ22(ξ, λ)
φ′12(ξ, λ) φ′22(ξ, λ) χ′22(ξ, λ)
φ′′12(ξ, λ) φ′′22(ξ, λ) χ′′22(ξ, λ)

∣∣∣∣∣∣∣∣∣ , ∆8(ξ, λ) =

∣∣∣∣∣∣∣∣∣
φ12(ξ, λ) φ22(ξ, λ) χ12(ξ, λ)
φ′12(ξ, λ) φ′22(ξ, λ) χ′12(ξ, λ)
φ′′12(ξ, λ) φ′22(ξ, λ) χ′′12(ξ, λ)

∣∣∣∣∣∣∣∣∣ .
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c1, c2 · · · c8 are arbitrary constants. Substituting Eqs (6.8) and (6.9) into transmission condition (1.6),
we obtain

c5 =
1

W1(λ)
det

(
By1(0,λ), Bφ21(0,λ), Bχ11(0,λ), Bχ21(0,λ)

)
,

c6 =
1

W1(λ)
det

(
Bφ11(0,λ), By1(0,λ), Bχ11(0,λ), Bχ21(0,λ)

)
,

c7 =
1

W1(λ)
det

(
Bφ11(0,λ), Bφ21(0,λ), By1(0,λ), Bχ21(0,λ)

)
,

c8 =
1

W1(λ)
det

(
Bφ11(0,λ), Bφ21(0,λ), Bχ11(0,λ), By1(0,λ)

)
.

Meanwhile, (
Bφ12(0,λ), Bφ22(0,λ), Bχ12(0,λ), Bχ22(0,λ)

)
(c5, c6, c7, c8)T

= B ·
(
Bφ11(0,λ), Bφ21(0,λ), Bχ11(0,λ), Bχ21(0,λ)

)

(
1

w1(λ)


−

∫ 0

−1
f (ξ)∆1(ξ, λ)dξ

−
∫ 0

−1
f (ξ)∆2(ξ, λ)dξ

−
∫ 0

−1
f (ξ)∆3(ξ, λ)dξ

−
∫ 0

−1
f (ξ)∆4(ξ, λ)dξ

 +


c1

c2

c3

c4

).
By the initial conditions, we get


c5

c6

c7

c8

) =
1

W1(λ)


−

∫ 0

−1
f (ξ)∆1(ξ, λ)dξ

−
∫ 0

−1
f (ξ)∆2(ξ, λ)dξ

−
∫ 0

−1
f (ξ)∆3(ξ, λ)dξ

−
∫ 0

−1
f (ξ)∆4(ξ, λ)dξ

 +


c1

c2

c3

c4

 . (6.10)

So we can rewrite y1(x, λ) in the form

y1(x, λ) =

∫ 1

−1
K1(x, ξ, λ) f (ξ)dξ + c1φ11(x, λ) + c2φ21(x, λ) + c3χ11(x, λ) + c4χ21(x, λ), x ∈ [−1, 0),

where

K1(x, ξ, λ) =


Z1(x,ξ,λ)

W1(λ) , −1 ≤ ξ ≤ x ≤ 0,
0, −1 ≤ x ≤ ξ ≤ 0,
0, −1 ≤ x ≤ 0, 0 ≤ ξ ≤ 1.

Z1(x, ξ, λ) =

∣∣∣∣∣∣∣∣∣∣∣
φ11(ξ, λ) φ21(ξ, λ) χ11(ξ, λ) χ21(ξ, λ)
φ′11(ξ, λ) φ′21(ξ, λ) χ′11(ξ, λ) χ′21(ξ, λ)
φ′′11(ξ, λ) φ′′21(ξ, λ) χ′′11(ξ, λ) χ′′21(ξ, λ)
φ11(x, λ) φ21(x, λ) χ11(x, λ) χ12(x, λ)

∣∣∣∣∣∣∣∣∣∣∣ .
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Substituting (6.10) into (6.9), we have

y2(x, λ) =
1

W1(λ)
(−

∫ 0

−1
φ12(x, λ) f (ξ)∆1(ξ, λ)dξ +

∫ 0

−1
φ22(x, λ) f (ξ)∆2(ξ, λ)dξ

−

∫ 0

−1
χ12(x, λ) f (ξ)∆3(ξ, λ)dξ +

∫ 0

−1
χ22(x, λ) f (ξ)∆4(ξ, λ)dξ)

+
1

W2(λ)
(−

∫ x

0
φ12(x, λ) f (ξ)∆5(ξ, λ)dξ +

∫ x

0
φ22(x, λ) f (ξ)∆6(ξ, λ)dξ

+

∫ x

0
χ12(x, λ) f (ξ)∆7(ξ, λ)dξ −

∫ x

0
χ22(x, λ) f (ξ)∆8(ξ, λ)dξ)

+ c1φ12(x, λ) + c2φ22(x, λ) + c3χ12(x, λ) + c4χ22(x, λ), x ∈ (0, 1].

We can rewrite y2(x, λ) in the form

y2(x, λ) =

∫ 1

−1
K2(x, ξ, λ) f (ξ)dξ + c1φ12(x, λ) + c2φ22(x, λ) + c3χ12(x, λ) + c4χ22(x, λ), x ∈ (0, 1],

where

K2(x, ξ, λ) =


Z2(x,ξ,λ)

W1(λ) , −1 ≤ ξ ≤ 0, 0 ≤ x ≤ 1,
Z3(x,ξ,λ)

W2(λ) , 0 ≤ ξ ≤ x ≤ 1,
0, 0 ≤ x ≤ ξ ≤ 1.

Z2(x, ξ, λ) =

∣∣∣∣∣∣∣∣∣∣∣
φ11(ξ, λ) φ21(ξ, λ) χ11(ξ, λ) χ21(ξ, λ)
φ′11(ξ, λ) φ′21(ξ, λ) χ′11(ξ, λ) χ′21(ξ, λ)
φ′′11(ξ, λ) φ′′21(ξ, λ) χ′′11(ξ, λ) χ′′21(ξ, λ)
φ12(x, λ) φ22(x, λ) χ12(x, λ) χ22(x, λ)

∣∣∣∣∣∣∣∣∣∣∣ ,

Z3(x, ξ, λ) =

∣∣∣∣∣∣∣∣∣∣∣
φ12(ξ, λ) φ22(ξ, λ) χ12(ξ, λ) χ22(ξ, λ)
φ′12(ξ, λ) φ′22(ξ, λ) χ′12(ξ, λ) χ′22(ξ, λ)
φ′′12(ξ, λ) φ′′22(ξ, λ) χ′′12(ξ, λ) χ′′22(ξ, λ)
φ12(x, λ) φ22(x, λ) χ12(x, λ) χ22(x, λ)

∣∣∣∣∣∣∣∣∣∣∣ .
Obviously, the solution for Eq (31) can be represented in the form:

y(x, λ) =

∫ 1

−1
K(x, ξ, λ) f (ξ)dξ + c1φ1(x, λ) + c2φ2(x, λ) + c3χ1(x, λ) + c4χ2(x, λ), x ∈ J,

with

K(x, ξ, λ) =

K1(x, ξ, λ), x ∈ [−1, 0),
K2(x, ξ, λ), x ∈ (0, 1],

φ1(x, λ) =

φ11(x, λ), x ∈ [−1, 0),
φ12(x, λ), x ∈ (0, 1],

φ2(x, λ) =

φ21(x, λ), x ∈ [−1, 0),
φ22(x, λ), x ∈ (0, 1],

χ1(x, λ) =

χ11(x, λ), x ∈ [−1, 0),
χ12(x, λ), x ∈ (0, 1],

χ2(x, λ) =

χ21(x, λ), x ∈ [−1, 0),
χ22(x, λ), x ∈ (0, 1].
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Denoting

U1(y) = λy(−1) − y′′′(−1) = h1,

U1(y) = λy′(−1) + y′′(−1) = h2,

U1(y) = λ(γ′1y(1) − γ′2y′′′(1)) − (γ1y(1) − γ2y′′′(1)) = h3,

U1(y) = λ(γ′3y′(1) − γ′4y′′(1)) + (γ3y′(1) − γ4y′′(1)) = h4.

Substituting y(x, λ) into the above conditions, we have

c1U1(φ1(x, λ)) + c2U1(φ2(x, λ)) + c3U1(χ1(x, λ)) + c4U1(χ2(x, λ)) = −

∫ 1

−1
U1(K) f (ξ)dξ + h1,

c1U2(φ1(x, λ)) + c2U2(φ2(x, λ)) + c3U2(χ1(x, λ)) + c4U2(χ2(x, λ)) = −

∫ 1

−1
U2(K) f (ξ)dξ + h2,

c1U3(φ1(x, λ)) + c2U3(φ2(x, λ)) + c3U3(χ1(x, λ)) + c4U3(χ2(x, λ)) = −

∫ 1

−1
U3(K) f (ξ)dξ + h3,

c1U4(φ1(x, λ)) + c2U4(φ2(x, λ)) + c3U4(χ1(x, λ)) + c4U4(χ2(x, λ)) = −

∫ 1

−1
U4(K) f (ξ)dξ + h4.

As the determinant of this system W2(λ) is not zero, so the variables ci (i = 1, 2, 3, 4) can be unique
solved. Therefore,

c1 =
A1(λ) + H1(λ)

W2(λ)
, c2 =

A2(λ) + H2(λ)
W2(λ)

,

c3 =
A3(λ) + H3(λ)

W2(λ)
, c4 =

A4(λ) + H4(λ)
W2(λ)

,

where

A1(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∫ 1

−1
U1(K) f (ξ)dξ U1(φ2(x, λ)) U1(χ1(x, λ)) U1(χ1(x, λ))

−
∫ 1

−1
U2(K) f (ξ)dξ U2(φ2(x, λ)) U2(χ1(x, λ)) U2(χ1(x, λ))

−
∫ 1

−1
U3(K) f (ξ)dξ U3(φ2(x, λ)) U3(χ1(x, λ)) U3(χ1(x, λ))

−
∫ 1

−1
U4(K) f (ξ)dξ U4(φ2(x, λ)) U4(χ1(x, λ)) U4(χ1(x, λ))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

H1(λ) =

∣∣∣∣∣∣∣∣∣∣∣
h1 U1(φ2(x, λ)) U1(χ1(x, λ)) U1(χ1(x, λ))
h2 U2(φ2(x, λ)) U2(χ1(x, λ)) U2(χ1(x, λ))
h3 U3(φ2(x, λ)) U3(χ1(x, λ)) U3(χ1(x, λ))
h4 U4(φ2(x, λ)) U4(χ1(x, λ)) U4(χ1(x, λ))

∣∣∣∣∣∣∣∣∣∣∣ .
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By the Cramer’s Role, we can solve Ai(λ) and Hi(λ). Substituting ci( i = 1, 2, 3, 4 ) into y(x, λ) yields
that

y(x, λ) =

∫ 1

−1
K(x, ξ, λ) f (ξ)dξ +

1
W2(λ)

(A1(λ)φ1(x, λ) + A2(λ)φ2(x, λ) + A3(λ)χ1(x, λ) + A4(λ)χ2(x, λ)

+
1

W2(λ)
(H1(λ)φ1(x, λ) + H2(λ)φ2(x, λ) + H3(λ)χ1(x, λ) + H4(λ)χ2(x, λ)

=

∫ 1

−1
(K(x, ξ, λ) +

1
W2(λ)

B(x, ξ, λ)) f (ξ)dξ −
1

W2(λ)
H(x, ξ, λ),

where

B(x, ξ, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1(φ1(x, λ)) U1(φ2(x, λ)) U1(χ1(x, λ)) U1(χ2(x, λ)) U1(K)
U2(φ1(x, λ)) U2(φ2(x, λ)) U2(χ1(x, λ)) U2(χ2(x, λ)) U2(K)
U3(φ1(x, λ)) U3(φ2(x, λ)) U3(χ1(x, λ)) U3(χ2(x, λ)) U3(K)
U4(φ1(x, λ)) U4(φ2(x, λ)) U4(χ1(x, λ)) U4(χ2(x, λ)) U4(K)
φ1(x, λ) φ2(x, λ) χ1(x, λ) χ2(x, λ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H(x, ξ, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U1(φ1(x, λ)) U1(φ2(x, λ)) U1(χ1(x, λ)) U1(χ2(x, λ)) h1

U2(φ1(x, λ)) U2(φ2(x, λ)) U2(χ1(x, λ)) U2(χ2(x, λ)) h2

U3(φ1(x, λ)) U3(φ2(x, λ)) U3(χ1(x, λ)) U3(χ2(x, λ)) h3

U4(φ1(x, λ)) U4(φ2(x, λ)) U4(χ1(x, λ)) U4(χ2(x, λ)) h4

φ1(x, λ) φ2(x, λ) χ1(x, λ) χ2(x, λ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Denoting Green function G(x, ξ, λ) = K(x, ξ, λ) + 1
W2(λ) B(x, ξ, λ), then y(x, λ) can be represented

y(x, λ) =

∫ 1

−1
G(x, ξ, λ) f (ξ)dξ −

1
W2(λ)

H(x, ξ, λ). (6.11)

Remark 6.1. Through above discussion, the case of eigenparameter appeared in the boundary
conditions of both endpoints is different from the usual case [3], also different from the case
of eigenparameter appeared in the boundary conditions of one endpoint [19], y(x, λ) is not only
determined by

∫ 1

−1
G(x, ξ, λ) f (ξ)dξ, but also related with 1

W2(λ) H(x, ξ, λ).

7. Conclusions

In this paper, a class of fourth order differential operators with eigenparameter-dependent boundary
conditions and transmission conditions is considered. Using operator theoretic formulation, we
transferred the considered problem to an operator in a modified Hilbert space. We investigated
some properties of this operator, such as self-adjointness, sufficient and necessary conditions of the
eigenvalues, asymptotic formulas for the fundamental solutions and the characteristic functions, the
completeness of eigenfunctions in H and the Green function.
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