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1. Introduction

In recent years, more and more researchers are interested in the discontinuous differential operators
for its wide application in physics and engineering (see [1-22]). Such problems are connected with
discontinuous material properties, such as heat and mass transfer which can be found in [10], vibrating
string problems when the string loaded additionally with point masses, the heat transfer problems
of the laminated plate of membrane (that is, the plate which is formed by overlap of materials with
different characteristics) and diffraction problems, etc. Lots of important results in this field have
been obtained for the case when the eigenparameter appears not only in the differential equation but
also in the boundary conditions. Particularly, more and more researchers have paid close attention to
Sturm-Liouville problems with the boundary condition depending on eigenparameter and its inverse
problem, asymptotic of eigenvalues and eigenfunctions, oscillation theory, etc. The various physics
applications of this kind of problem are found in many literature, such as Hinton [17], Fulton [16],
Binding [22]. While the general theory and methods of such second-order boundary value problems
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are highly developed (see [6—17], [21-30]), little is known about a general characteristic of the high-
order problems, and the case of fourth-order is also very little [31,32].

Yang and Wang studied a class of fourth order differential operators with transmission conditions
and containing eigenparameter in the boundary conditions at one endpoint (see [19]), and obtained
Green function, asymptotic formulas of eigenvalues and the completeness of eigenfunctions. In [20],
Erdogan Sen studied spectral properties of a fourth order differential operators with transmission
conditions and containing eigenparameter in the boundary conditions at one endpoint, the completeness
of eigenfunctions and the asymptotic formulas of eigenvalues and fundamental solutions are discussed.

In this paper, we shall consider the following fourth-order boundary value transmission problems

lu:= (p(x)u”(x))” + g(x)u(x) = Aw(x)u(x), xeJ=[-1,0)U(0,1] (1.1)

with eigenparameter dependent boundary conditions at endpoints

hu = Au(=1) —u”"(=1) = 0, (1.2)
bu := Au'(-1) +u”"(-1) = 0, (1.3)
lu = A(yyu(l) = you” (1)) = (yiu(l) = y2u” (1) = 0, (1.4)
Ly 2= Ay3u’ (1) = yau (1) + (y3u'(1) = y4u” (1)) = 0, (1.5)

and transmission conditions at discontinuous point x = 0

B,(0+) =B - B,(0-), (1.6)

where p(x) = p{ for x € [-1,0), p(x) = pj for x € (0,1]; w(x) = wi for x € [-1,0), w(x) =
a)g for x € (0,1], p; > 0 and w; > O are given real numbers (i = 1,2). The real-valued function
g(x) € L'[J,R], A € C is a complex eigenparameter, Yi, v, (i = 1,2,3,4) are real numbers,B,(x) =

((x), ' (x), u” (), w” ()T

51 (03] 0 (0%}
B = 52 a3 a4 0
03 B1 B O
0 B3 0 By
is a 4 X 4 real matrix,
01 @ @ ay YL "N Y V3
We assume that py = = > 0, =71 > 0, =73 > 0,
po ‘54 Ba B B2 Pl ‘72 Y2 P Yy V4
a; aj 52 (07} 61 (03] 52 (0%}
= = = O, = = > 0.
P21 By B 03 B P16 B ‘53 Bi

In order to investigate the problems (1.1)—(1.6), we define the inner product in L*(J) as

4 c 4 b
Powy W, 2
fseh = o f?d?“r? fedx, Vf, g e L°(J),

1 2

where

_[fiw, xe[-1,0),
700 = {fz(x), x€(0,-1].
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It is easy to verify that H; = L?(J, (-, -),) is a Hilbert space.

Here we consider a class of fourth order differential operators with discontinuous coefficient and
containing eigenparameter in the boundary conditions at two endpoints. By using the classical analysis
techniques and spectral theory of linear operator, a new linear operator A associated with the problem
in an appropriate Hilbert space H is defined such that the eigenvalues of the problem coincide with
those of A. The main results of the present paper are to discuss its eigenvalues, obtain asymptotic
formulas for fundamental solutions and characteristic function, prove that the eigenfunctions of A are
complete in H, and give its Green function, which promote and deepen the previous conclusions.

The rest of this paper is organized as follows: In Section 2, we define a new self-adjoint
operator A such that the eigenvalues of such a problem coincide with those of A. In Section 3, we
construct its fundamental solutions, discuss some properties of eigenvalues. In Section 4, we get the
asymptotic formulas for the fundamental solutions and the characteristic function. The completeness
of eigenfunctions are discussed in Section 5. In Section 6, we constructed its Green function.

2. Operator formulation

In this section, we introduce a special inner product in the Hilbert space H = H; P C*, where
H; = L’[-1,0) & L*(0, —1] ( for any interval I C R, L*(I) denotes all the complex valued functions
which satisfy f] |f(x)Pdx < o0), C* denotes the Hilbert space of complex numbers, a symmetric
operator A defined on the Hilbert space such that (1.1)-(1.6) can be considered as the eigenvalue
problem of this operator. Namely, we define an inner product on H by

1 1
(F,G) ={f,gn +po{hi, ki) + (ha, ka)r) + p_1<h3’k3>2 + p_2<h4’k4>2

for F := (f(x), hi, ha, h3, hs), G := (8(x), ki, ko, ks, ks) € H, where (h, k), = hk for h,k € C.
For convenience, we shall use the following notations:

Mi(f) = [ (=D, Mi(f) = f(=D),

My(f) = f7(=1), My(f) = f'(-1),
Ni(f) =i f(D) = yaf (D), Ni(f) =y (D) =2/ (D),
No(f) = y3f (D) = vaf" (1), N3(f) = y3f' (1) = o f” ().
In the Hilbert space H, we consider the operator A with domain
D(A) ={F = (f(x), hy, hy, h3, hy) € H| fi(x), /(%) f"(x), £/ (x)(i = 1,2) are absolutely continuous on
[-1,0) U (0,1], If € Hy, B{(0+) = B- By(0-), hy = M{(f), hy = M3(f), hs = N{(f), hs = N ()}

and the rule

1
AF = (——=((p)f")" + q(0) ), Mi(f), =Ma(f), N1 (f), =N2(f)) 2.1)

w(x)
with
F = (f(x), Mi(f), M5(f), Ni(f), N5(f)) € D(A).
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Now we rewrite the problems (1.1)—(1.6) in the operator form

AF = AF.
Thus the problems (1.1)—(1.6) can be considered as the eigenvalue problem of the operator A.

Lemma 2.1. The eigenvalues and the eigenfunctions of the problems (1.1)—(1.6) are defined as the
eigenvalues and the first component of corresponding eigenelements of the operator A respectively.

Lemma 2.2. The domain D(A) is dense in H.
Proof. Let F = (f(x), hy, hy, h3, hy) € H, F1D(A) and C’ be a functional set such that

¢1(x), x € [-1,0),
w(x) =
2(x), x € (0, 1],
for ¢1(x) € CJ[-1,0), p2(x) € C;(0,1]. Since C; @ 0@ 00 0® 0 Cc D) (0 € C), any
U = (u(x),0,0,0,0) e C; 00 0® 0@ 0 is orthogonal to F, namely,
<F3U> = <f,u>] = 0

We can learn that f(x) is orthogonal to Cj in Hj, this implies f(x) = 0. So for all V =
(v(x), M}(v),0,0,0) € D(A), (F,V) = pohyM;(v) = 0. Thus h; = 0 since M}(v) can be chosen as
an arbitrary function. Similarly, we can prove h, = h; = hy = 0. Hence F = (0,0,0,0,0,) is null
element in the Hilbert space H. Thus, the orthogonal complement of D(A) consists of only the null
element, and therefore is dense in the Hilbert space H. O

Theorem 2.1. The operator A is self-adjoint in H.
Proof. Let F,G € D(A). Integration by parts yields

(AF,G) = (F,AG) =po[W(/,%:0-) = W(£, & = D] + [W(£, & 1) - W(£,;0+)]
+ o Mi(DM}(@) = M{(DMi(E) = Ma(HMIE) + MANME@] (5

1 _ _ 1 _ _
+ p—l[Nl(f)Nf(g) - N{(/IN:(®)] - p—z[Nz(f)Né(g) — Ny (f)N2(8)],
where, as usual, W(f, g; x) denotes the Wronskians of f and g:

W(f, g x) = [ (0)g(x) — f(x)g" (x) + f'(x)g" (x) — [ (0)g' (). (2.3)

By the transmission condition (1.6), we get

W(f,8:0+) = poW(f,g8;0-). 2.4)
Further, it is easy to verify that
M(fIM(3) — Mi(FIM1(8) — Ma(/IM3(Z) + My(f)M2(3) = W(f.g; 1), (2.5)
1 1
p—l[Nl(f)Ni(E) - Ni(/)N1(®)] - p—z[Nz(f)Né(E) - N (NN(9)] = -W(f. g D). (2.6)
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Now, substituting (2.4)—(2.6) into (2.2) yields that

(AF,G) = (F,AG) (F,G € D(A)).

Hence A is symmetric.

It remains to show that if (AF, W) = (F, U) for all F = (f(x), M,(f), M,(f), N,(f), N\(f)) € D(A),
then W € D(A) and AW = U, where W = (W(x), hy, hy, h3, hy), U = (u(x), ki, ko, k3, ks), 1.€.,
(i) W' (x) € AC1oe((—1,0)), WP (x) € AC1Lc((0,1)) (i = 0,1,2,3), Iw € Hy;

(i) hy = Mi(w) = w(- 1) hz = M (w) = w'(=1), h3 = N{(w) =y w(l) — y;w"’ (1),

hy = Ny(w) = y3w'(1) — y,w"(1);

(iii) B,,(0+) = B - BW(O—);

1v) u(x) =

(V) ki = Mi(w) = w”(=1), ky = =Ma(w) = —w"(=1), ks = Ni(w) = y1w(l) = 2w’ (1),
ky = =Ny(w) = —=(y3w'(1) — yaw”(1)).

For an arbitrary point F € Cy & 0* € D(A) such that

e f <lf>wdx+— f (i yids = P f—dx+— f fidx,

pl

that is, ({f,w); = ( f,u)1. According to classical Sturm-Liouville theory, (i) and (iv) hold. By (iv),
equation (AF, W) = (F,U), VF € D(A), becomes

(Lf, Wy =(f, wyy + po(M (ks + Mb(Fky — Mi(f)hy + Ma(f)ha)
1 — — 1 _ _
+ p—l(N{(f)lQ - Ni(f)hs + (p—z(Nﬁ(f)kzt = Nao(f)ha).

However,

{Afwir = (s wy + polW(f, 8:0-) = W(f, g = D]+ [W(f, g 1) — W(f, g 0+)].
So

_ _ _ _ 1 _ _ 1 _ _
po(M(Hki + My(f)ka — My(f)hy + Ma(f)hy) + p—l(Ni(f)ks - Ni(Hhs + (p—z(Nﬁ(f)]ﬂ — Nao(f)hs)
= po[W(f,g:0-) - W(f,g-DI+[W(f, g 1) - W(f, g 0+)]

(2.7)
By Naimark Patching Lemma 2, there is an F' € D(A) such that

VD = f00-) = P04 =0, 1= 1,2,3,4,

f) =5, ff(D)=f"(1)=0, f7() =v].
For such an F,

M (f) = My(f) = Mi(f) = Mx(f) =0
W(f,8:0-) = W(f,g:—1) = W(f,g;0+) = 0.
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Then from (2.7) we have

1 _ 1 _ _
p—l(N{(f)ks = Ni(f)Hhs + (p—z(Né(f)kzx = Na(fHhy) = W(f, g D).

On the one hand,

W(f,g: D = f"(Hw(l) = F(w” (1) + f/(Hw" (1) = f/ (D' (1) = yiw(l) — y;w" (1) = Ni(w).
On the other hand,

1 — — 1 — — 1 — —
p—l(Nf(f)]Q - Ni(Hhs + (p—z(Né(f)kzt = Na(f)h) = —p—l(h3(717§ -2y} = hs.
So h3 = N{(w). Similarly, we can prove that hy = Ni(w), k3 = Ni(w), k4 = —=Na(w).
For an arbitrary F' € D(A) such that
fR) = £700-) = f7P040) =0, i=1,2,3,4,
fE) =D =71 =0, f/(-1) = 1.

For such an F,

Ni(f) = N3(f) = Ni(f) = No(f) = 0,
W(f,8:0-)=W(f,g 1) =W(fg0+)=0.
Then from (2.7) we have

M (ki + My(f)ka — My(f)hy + Ma(f)hy = —W(f,g; —1).

On the one hand, B B _ o
M (Hky + Mi(fky — Mi(fh + Ma(fHha = hy.

On the other hand,
-W(f.g:=D = f""(=Dw(=1) = f(=DW"'(=1) + f'(=Dw"(=1) = f"(=Dw'(=1) = W'(=1) = My(w).
So hy = M(w). Similarly, we can proof hy = M[(w), ky = M (w), ky = —M>(w). So (i1) and (v) hold.
Next choose F' € D(A) such that
) = fA=1)=0,i=1,2,3,4,
f(O+) = f/(0+) = f7(0+) = 0, f"(0+) = po,
f(0-) = —ay, f'(0-) =0, f'(0-) = —ay, f(0-) =0,

thus M;(f) = M (f) = Ni(f) = N/(f) =0 (i = 1,2), W(f,g;—1) = W(f,g; 1) = 0. Then from (3.1) we
have W(f, g;0+) = poW(f, g;0-), that is

Pow(0+) = po(0w(0-) + ayw(0-) + aow(0-)),
SO

w(0+) = 6;w(0-) + a;w(0-) + a,w(0-).
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However, B is a 4 X 4 real matrix, then using the same method, we can prove

B,,(0+) = B - B,,(0-).
So (iii) holds.
From the above discussion, we get that A is a self-adjoint operator. O

Corollary 2.1. All eigenvalues of the problems (1.1)—(1.6) are real.

Corollary 2.2. Let A, and A, be two different eigenvalues of the problems (1)—(6). Then the
corresponding eigenfunctions f and g is orthogonal in the sense that

Pow?
pi
Since all eigenvalues are real, it is necessary to study the real-valued eigenfunctions only. Therefore,
we can now assume that all eigenfunctions are real-valued.

0 4 1 1 1
f | f?dH% fo Fad+ oMM )+ MM + N (PN )+ =N/} = O
- 2

3. Fundamental solutions

Lemma 3.1. Let the real-valued function q(x) be continuous in [—1,1] and f;(1) (i = 1,2,3,4) be
given entire functions. Then for VA € C, the Eq (1.1) has a unique solution u(x, A), satisfying the initial
conditions

u(=1) = fi(D), u'(=1) = o), u”(=1) = (D), v (=1) = fu(),
Coru(l) = fi(), u'(1) = fo(D), u”(1) = f5(), u”(1) = fu(2)).

Proof. In terms of existence and uniqueness in ordinary differential equation theory, we can conclude
this conclusion. m|

Let ¢11(x, 1) be the solution of Eq (1.1) on the interval [—1, 0), satisfying the initial conditions

$11(=1) = 1, ¢},(=1) = ¢,(=1) = 0, ¢}{(-1) = 4.

By virtue of Lemma 3.1, after defining this solution we can define the solution ¢1,(x, 1) of Eq (1.1)
on the interval (0,1] by the initial conditions

B¢12(0) =B- B¢11(O)'

Again let ¢, (x, A) still be the solution of (1.1) on the interval [—1, 0), satisfying the initial conditions

$21(=1) =0, ¢, (=1) = 1, ¢5,(=1) = =4, ¢3;(=1) = 0.

After defining this solution, we can also define the solution ¢,,(x, 1) of Eq (1.1) on the interval
(0,1] by the initial conditions

B,,(0) = B- B¢21(O)'

AIMS Mathematics Volume 7, Issue 6, 11487-11508.
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Analogously, we shall define the solutions y»(x, 1) and y;(x, 1) by the initial conditions

xi2(1) = Ay, —v2, x1(D) = x15(1) =0, x15(1) = Ay — 1,
B,,,(0) = C- B,,(0),

where

Bs 0 0 -
PO PO

0 B _a

— PO PO

C= _0Bs B a @b
@sp0 ) po @apo

_ 04 _@fr aias 01

PO @200  @2P0 PO

is a 4 X 4 real matrix.
In addition, we shall define the solution y,,(x, 4) and y»(x, 1), satisfying the initial conditions
x22(1) = 0, x5 (1) = Ay, + ¥4, x5 (1) = Ay5 + ¥3, x5,(1) =0,
Ble(O) =C- B)(zz(())'

Let us consider the Wronskians

A1, D) dn(x, D) xulx, ) xalx, )
&) 95, (D) x; (A x5 (x, )

W= g ) d0 e d) e ) (6D
S ) LD I xxd)
and
O12(x, ) dn(x, ) xi(x, ) xanlx,)
W oo | B B8 D () ()

¢,],2(xa /1) ¢/212(x9 /1) Xll’z(x’ /l) X&lz(x’ /1) ’

P, ) ¢(x, ) xh(xA) x5(x, )

which are independent of x and are entire functions. Short calculation gives W)(1) = pg Wi(1). Now
we may introduce, in consideration, the characteristic function as W(1) = W;(A).

Theorem 3.1. The eigenvalues of the problems (1.1)—(1.6) consist of the zeros of the function W(AQ).

Proof. Assume that W(1) = 0. Then the functions ¢;;(x, 1), ¢»1(x, 2) and y11(x, 1), x21(x, A) are linearly
dependent, i.e.,
kig11(x, D) + koo (x, D) + kax11(x, A) + kax21(x, 1) = 0

for some k; # O or k; # 0 and k3 # 0 or k4 # 0. From this, it follows that k3y1(x, ) + kyx21(x, 1)
satisfies the boundary conditions (1.2) and (1.3). Therefore,

u(x) = kax11(x, ) + kaxa1(x, 1), x € [-1,0),
kax12(x, ) + kaxn(x, 1), x€(0,1],

is an eigenfunction of the problems (1.1)—(1.6) corresponding to the eigenvalue A.
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Now we let u(x) be any eigenfunction corresponding to eigenvalue A, but W(1) # 0. Then the
function u(x) may be represented in the form
u(x) = c1911(x, ) + 2021 (x, A) + c3x11(x, D) + caxa1(x, 1), x € [-1,0), 3.1)
csh12(x, D) + cPn(x, ) + crx12(x, D) + cgxa2(x, ), x € (0, 1],
where at least one of the constants ¢; (i = 1,2,---,8) is not zero. Applying the transmission
condition (1.6) and the boundary conditions (1.2)—(1.5) to this representation of u(x), we can get a
homogenous system of linear equations of the variables ¢; (i = 1,2, --- , 8) and taking into account the
initial conditions, it follows that the determinant of this system is

0 0 hxn Ly 0 0 0 0
0 0 lzX] 1 lz)(zl 0 0 0 0
0 0 0 0 L, g 0 0
0 0 0 0 L2 lad2 0 0

= -W,(2)’.
—012(0) =02(0) —x12(0) —x22(0) ¢12(0) ¢2(0) x12(0) x2(0)

_¢/12(0) _¢/22(0) _Xllz(o) _X/ZQ(O) ¢,12(O) ¢/22(0) Xaz(o) /\/22(0)
=¢50) =¢5,0) —x,0) —x5,(0) ¢7,(0) ¢5,0) x7150) x3,(0)
~450) —0%0) X0 —X50) $50) ¢%0) X30) x5O

Therefore, the system has only the trivial solution ¢; = 0(i = 1,2, --- , 8). Thus we get a contradiction,

which completes the proof. O

4. Asymptotic formulae for the fundamental solutions

In this section, we start by proving several lemmas.

Lemma 4.1. Let A = s*, s = o + it. Then the following integral equations hold for k = 0,1,2,3,

¢ (o) = 1 d* cos D15+ 1) 1pis d* PRI CRR))
X, —_—— ————8in—
t 2 dx* )2 2 W} dx* )2
1 lpl dk Wy s(x+1) 1])?3 1 dk _ ops(e+])
+-+ - noo—-— P 4.1
(4 4 a)l)dxk ‘ (4 AR P ‘.
1 dk . (Ul s(x_y) 1 w1 s(x—y) 1 _wls(X—y)
- -~ 7 _ _ P + — P d ,
205 I | dx* (Sm o se " otze o Jadn(dy
d* ” WyS% 1 p> n o,
ﬁ¢12(x, A) = ¢12(0) 2 2 2¢12(0) _COS m 2(1) ¢]2( )_ = 3 3¢12(O)
d* . wysx I pp , Pz Pz 1
X <o sin =2 Z""Z((’” Zm‘f’u“’)* = — 2 $5(0) + wg ~$13(0)
dk W) X 1 p p " k _wysx
X —qer ‘(‘Z¢12(°)+‘ ~¢12(0) - 222%(0) w323¢12<0>) —e
W, s

1 T db (. was(x—y) 1 estw 1 _eptw
Wf d—(—‘z morge ma0ee0)dy.
HP257 JO

4.2)
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d* 1p%s2 & wisx+1) 1 p d . ws(x+ 1D
- ,/l - + — _ N — 7
a’xk(pﬂ(}C ) 2 wi dx* D1 2w, s dxk S )2
1 pl 1p1 dk wys(x+1) 1 pl lpl dk Luls(x+l)
tHr— - ==+ = P 43
(4w1s 4 w? )dx"e l dwrs 4 w? ¢ (43)
1 * g wis(x—y) 1 ety 1 _epey
+ — |sin ———= — —¢" "+ P dy,
2wips L dxk (Sm Py 7€ 3¢ 7 140y
dk 1 17 wWrsX 1 P2 1 p2 2z
ﬁ%z(?@ )= (5‘?22(0) -5 ) CosS ” (2 W S¢22( )— 3 ¢22(O)
dk wWwrSX 1 1 px p2 ) 2 1
X ﬁ sSin s + (Z¢22(0) + Zw—zs(ﬁzz(O) + —2—S2¢22(O) + —3—s3¢22(0)
dk =22 1 1 p2 p2 p2 7 dk e
XTEE” ~ (_Z‘lblz(o) + Zw_zsfﬁlz(o) - _wg 592,(0) + 4 s 92(0) 2"
1 * gk wWwrs(x—y) 1 @ 1 _epey
| sin —= — — P + — P d
203 pys° j(: Ak (sm " 7€ 7 ¢ " q(y)p22(y)dy.
4.4)
Proof. Regarding ¢,(x, A) as the solution of the following non-homogeneous Cauchy problem:
(pCou’”)” (x) + q(X)u(X) = Adw(x)u(x),
pu(=D =1, ¢},(=1) =
¢, (=1) =0, ¢f{(-1) =
Using the method of constant variation, ¢;(x, A) satisfies
1 d* o Q15+ 1) 1pisd . ws(x+1)
A1) == i e T P
¢11(x ) = > Tk p1 2 0 sin o
1 lpl wy s(x+1) ]p?s 1\ dF _oisaen
— —_ | —e n |- = =] —0C" P1
4 dxk 4w 4)dxt
dk wls(_x —_ y) 1 wys(x=y) 1 _Lulv(x y)
—— ——e n +=e 7 d
2w1P1S3 f dxk (sm m K¢ " ¢ g1 (y)dy.
Then differentiating it with respect to x, we have (4.1). The proof for (4.2)—(4.4) are similar. |
Lemma 4.2. Let A = s*, s = o + it. Then the following integral equations hold for k = 0,1, 2,3,
dt 1pis d* . wis(x+1) 1plsdf [ ey oo
—a@(x, A :————sin—+———(e noo—e N )
Satuln ) =-> o dxF 3 4w dxt @.5)

wy (x+1)

+ Ok,
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dk " (,UQSX p2@q W SX a ., k L) L%t
Ir ——=P12(x, ) _—¢11(0)—C S Py 2a) s¢“( ) - sin o + Z¢U(0)_ (e " +e 1, )
k lA) sX wH SX w1 potw
20’4 ¢/1/1( )d_ (6 n o—e ,32 )+ 0(|S|k+le|s|[llp217p221’l]
(4.6)
dk 1p1 2 d* wls(x + 1) lpls dk ( wrs(r+D) _wls(x+l))
X, ___COS e P + e Pl
dx k¢21( ) 2 dxk pi 4 wz dx" (47)
wy(x+1)

+0<|s|k-1e'5' o),

k

d a ,, . d Wsx | pada Jwsx @, db [ e e
) =205 cos 2 4 Py 0) 25 in 2 2g010) 0 (o 4 )
k w) sX W) SX w +wyp
p2a4¢/2/1( )d_ (e n —e ]%2 )+ 0(|S|k+ze|s|[%])
(4.8)
Each of these asymptotic equalities hold uniformly for x € J, as |1] — oo.
Proof. Let ¢11(x, 1) = |s|e|s| 1’1 F(x A).  We can easily get that F(x,1) is bounded. So

wy(x+1)

o11(x, ) = O(|s|e"| ri ). Substituting it into (4.1) and differentiating it with respect to x for
k=0,1,2,3, we obtain (4.5). Next according to transmission condition (1.6), we have

$12(0) ~ 2¢77(0), ¢1,(0) ~ a¢7,(0),
$12(0) = B2¢711(0), ¢17(0) = Bagp(0),

as || — oo. Substituting these asymptotic expressions into (4.2) for k = 0, we get

Wy 8X a)z SX

¢'{1 (0)

wysx u)zvx) pzal4

04 d 1% dk wysx _
dualx, ) =§¢i’f(0)—kc s B (R e R

k W] pprwyp1x

¢,1/1( )— (ew’%; —e w/%;x) + 0(|s|e|sl[ P12 ]) 4.9)

1 d" wyrs(x — y) 1 ety 1 ety
sin——————¢ 2 +—e P d
2w3pas® f dx* ( P2 2 > q$12(y)dy.

|4||[ ]

204

Multiplying through by |s , and denoting

Fio(x, A) := O(sl™e 7 gn(x, ).

Denoting M(A) := max,e—1,0)|F12(x, A)|, from the last formula, short calculation yields M(1) < M, for
some M, > 0. It follows that M (A1) = O(1) as |A] — oo, S0

wzx

d1a(x, D) = O(sl* e+,

Substituting this back into the integral on (4.9) yields (4.6) for k = 0. The other assertions can be
proved similarly. O
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Theorem 4.1. Let 1 = s*, s = o + it. Then the characteristic function W(A) has the following
asymptotic representations:
Case 1.y, #0, v, #0,

4 20
aza4’)/ ’)/ WA S wys wl wys _wys a)
#[1+(€m +e Pl)cos—][l——(eﬁz +e 7 )cos =22
4pop Pi P2

‘”11’2""“21’1 ]

+ O(ls|° P 5

W) =

Case 2.y, #0,v, =0,

3 19

w1s w wy s w wy s wy s w
Wu):—%[u(eﬂﬂ re ) cos (e + e R )sin 22 4 (R — ¢ 7 )cos L2
8 Lo P> P1 P2 P2

wP2twypg

+0(ls|Se™ i );

Case 3. v; =0, v, #0,

A 17
ara. wH S wH S wH s(b—c) wHs w
W) :%[ L+ +e ) cos D[ + e 7 )sin 22 — (¢ — e 7 )cos 22
8p 14 P2 12
+O(s |16 2T,
Case4. vy, =0,v, =0,
a4, Y5S st s w1 1 o @ps Wy S
W) ——2[1 +(eﬂ1 +e i )cos—][l + (el’z +e 7 )cos —]
,00 P1 P2

w1P2twrp]

+0(| |15 2| 1Pz ]).

Proof. The proof is obtained by substituting asymptotic equalities - k¢12(1 A) and kq&zz(l A) into the
representation

é12(1, ) ¢n(l, ) Ay, — 72 0
! B B 0 Ay
A = — A1) = 12 22 4
WO=SWO=1 a0 en00 0 b+
SR FE0LD -y 0

short calculation, we can get the above conclusions. O
Corollary 4.1. The eigenvalues of the problems (1)—(6) are bounded below.

Proof. Putting s> = it (t > 0) in the above formulae, it follows that W(—#*) — oo as t — oco. Hence
W(A) # 0 for A negative and sufficiently large in modulus. O

5. Completeness of eigenfunction
Theorem 5.1. The operator A has only point spectrum, i.e., 0(A) = 0 ,(A).
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Proof. 1t suffices to prove that if A is not an eigenvalue of A, then A € p(A). Here we investigate the
equation (A — )Y = F € H, where A € R, F = (f(x), hy, hy, h3, hy). Consider the initial-value problem

ly = Aw(x)y(x) = f()w(x), 5.1)
B,(0+) = B- B,(0-) ’ '
and the system of equations
Mi(y) = AM;(y) = i,
My(y) + AM(y) = —h, (5.2)

Ni(y) = AN{(y) = hs,
No(y) + AN (y) = —h.

Let
u(x), x € [-1,0),
u(x) =
u2(X), X € (09 l]’
be the solution of the equation ly — Aw(x)y(x) = 0 satisfying the transmission condition (1.6). Let
VI(X), X € [_17 0)9
v(x) =
VZ(X)’ X € (0’ 1]a

be a special solution of (5.1). Then (5.1) has general solution in the form

d + , -1,0),
) = ur(x) +vi(x), x €[ ) (53)
dus(x) +v2(x), x € (0,1],
where d € C.
Since vy is not an eigenvalue of (1.1)—(1.6), we have
Auy(=1) —uf"(-1) # 0, 5.4)
or
Auj(—=1) + uf(-1) # 0, (5.5
or
Ay ua(1) — youy" (1)) — (yiua(1) — yaus’ (1)) # 0, (5.6)
or
Ay5u5(1) = yauy (1) + (ysuy(1) — yauy (1)) # 0. (5.7)

The second, third, fourth, and fifth components of the equation (A — 4)Y = F involves the Eq (5.2), so
substituting (5.3) into (5.2), and we get

(" (=1) = A (=1))d = by + v (=1) =V (1),
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W/ (=1) + A, (=1))d = —hy — AV (=1) =/ (=1),
(Aysuy" (1) = Yiua(1)) = (yauy " (1) = yiua(1))d = hz — Ayyvy (1) — ¥iva(1) + y2v5 (1) — y1va(),
(Ay3uy(1) = yauy (1)) + (y3u5(1) = yauy (1)))d = —hy — Ay3v5(1) = y4v5 (1) + yavy (1) = y3vy(1).

In view of (5.4)—(5.7), we know that d is a unique solution. Thus if A is not an eigenvalue of (1.1)—(1.6),
d is uniquely solvable. Hence y is uniquely determined.

The above arguments show that (A — AI)~! is defined on all of H. We get that (A — AI)™! is bounded
by Theorem 2.1 and the Closed Graph Theorem. Thus A € p(A). Hence o/(A) = o ,(A). |

Lemma 5.1. The eigenvalues of the boundary value problems (1.1)—(1.6) are bounded below, and form
a finite or infinite sequence without finite accumulation point.

Proof. By the Corollary 4.1, we know that the eigenvalues of boundary value problems (1)-(6) are
bounded below. By Theorem 3.1, we obtain that the zeros of the entire function W(A1) are the
eigenvalues of A. And all the eigenvalues of A are real by the self-adjointness of A, that is to say,
for any A € C with its imaginary part not vanishing, then W(1) # 0. Therefore, by the distribution of
zeros of entire functions, the conclusion holds. m]

Lemma 5.2. The operator A has compact resolvents, i.e., for each § € R/ ,(A), (A —61)™" is compact
on H.

Proof. Let{A;,A,,- - -} be the eigenvalues of (A—5I)~!, and let {P,, P, - - - } be the finite rank orthogonal
projection on the corresponding eigensubspace. Since {4;, A, - - -} is a bounded sequence and P, are
mutual orthogonality, }',° | A, P, is strong convergence to (A — 6/ )~!, that s, Yy APy =(A— oD~ '. In
light of the number of |4,| > a for any @ > 0 is finite and P, are finite rank, we have that (A — 61)~! is
compact. O

By the above Lemmas and the spectral theorem for compact operator, we obtain the following
theorem:

Theorem 5.2. The eigenfunctions of the problems (1.1)—(1.6), augmented to become eigenfunctions of
A, are complete in H, i.e., if we let {®,, = (¢,(x), M{(¢,), M}($,), N{(dn), N5(¢,)); n € N} be a maximum
set of orthonormal eigenfunctions of A, where {¢,(x); n € N} are eigenfunctions of the problems (1.1)—
(1.6), then forall F € H, F = " (F, ®,)D,.

6. Green function

In this section, we will find the Green function defined by (1.1)-(1.6). For convenience, we
assume that p(x) = 1, w(x) = 1. Let A not be an eigenvalue of A, we consider the operator equation
(AU -AU = F, F = (f,hy,hy, hs, hy). This operator equation is equivalent to the inhomogeneous

differential equation

—u® + qu—Au= f(x) (6.1)

for x € J, subject to the inhomogeneous boundary conditions
Au(=1) —u""(-1) = hy, (6.2)
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A (1) +u"(-1) = hy, (6.3)
Ayyu(l) = you” (1) = (y1u(1) = you™ (1)) = ha, (6.4)
Alyzu’ (1) = yau" (1) + (y3u'(1) = yau (1)) = hy, (6.5)

and transmission condition (1.6).
By applying the standard method of variation of constants, we search the general solution of the
non-homogeneous differential equation (6.1) in the form

3 ) = c1(x, D11(x, A) + c2(x, Va1 (x, A) + ¢3(x, Dx11(x, ) + calx, Dxai(x, ), x € [-1,0),
T o5 Dpia(n, ) + es(x, Dga(x, D) + €36, Dxia(, A) + es(x, Dya(x, ), x € (0, 11.
(6.6)
By using the same techniques as in [2], the general solution of the non-homogeneous differential
equation (6.1) are obtained as

Y1(x’ /l)’ BAS [_130)9
A) = i
yee ) {yg(x,/l), x€(0,1], ©.7)
where
1 X X
3106 A) = (11, ) f FEOAE DE + d(x, D) f FEOAE, Ve
W) . L
D) f M E +x () f FOAE D) (6.8)
+c1é11(x, ) + c2021(x, ) + c3x11(x, ) + caxa1(x, 1), x€[-1,0),
1 X X
126 A) = (12 (5, ) f FEOASE DVAE + 2a(x, 1) f FOAE Ve
Wa () -1 -1
) f O E + () f FOME D (6.9)
+ cs5@P12(x, A) + cePaa(x, A) + crxia(x, ) + cgyn(x, ), x € (0,1],
G &) xnED (& SHED xnED XD
AED =| B ED XED XuED |, MED=| 6 ED YL ED @D |,
GLED XLED ¥ ED GLED YED KAED
d11(E D) 9D xau(€ D) 611(E D) D) xnuE D
MED = | $ED FED @D |2 AED =] FLED B ED L ED |,
SLED BLED KED GLED BLED KLED
o0& D) x12(E, ) xn( ) ¢12(f’/1) )(12(57/1) )(22(5’/1)
ASED = | B@D) Xp@D @D s AED =| SLED YoEd) H@E |,
GLED YE D) KED GLED YAED KHED
bED $nE D) xnE D) bED) $nE D) 1D
MED = | FLED BLED Xu@d) |, MED =| GED FEd) HaEd) |-
GLED PLED XAED GLED B D) ANED
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c1,C; - - - cg are arbitrary constants. Substituting Eqs (6.8) and (6.9) into transmission condition (1.6),
we obtain

1
= WD det (Bymom, By 0.0 Byii0.0; Bml(o,x)) ;

1
WD det (B«m(o,A), By, 0.0 Byiy0.0); Bm(o,ﬂ)) ;

Co =
= Wi() det (B¢11(0,/l)’ By, 0.0, Buio.s B)(z‘(o”l)) ’
cg = —— det (B¢11(0’/1), B¢21(O,/l)y B/Yll(o,/l)a BYI(O,/U) .

Wi()
Meanwhile,
(Bors0.05 Bi0.0 Bz, Besso.) (€5 o €7, )"
=B (B¢11(0,/1)’ By 0.0 By, szmo,ﬂo)
—gf@m@@@ ¢
L | L fOnEd | e )
W@ = [ fOME D || e
— [, A& Ddé c4

o

By the initial conditions, we get

o5 —Qf@m@@% cl
e o 1| [ fomEnde | e | 610
o [T W | - [ f@dEDde || e
s ~ [ F@ME DdE ) N

So we can rewrite y;(x, A) in the form

i
yi(x, ) = f Ki(x, &, D) f(E)dE + c1¢11(x, D) + 221 (x, D) + c3x11(x, D) + caxa1(x, D), x € [-1,0),
1

where

Zi(x£.0

-1<é<x<0,

Wi
Ki(x,&,) =1 0, ~1<x<£<0,
0, “1<x<0,0<&é< 1.

$11(5, D) 9n (€D xulE D xa, D)
¢ (ED 95,ED x| (€D x5 (E D
¢ (ED P ED x(ED X5 (ED
$11(x, ) P (x, ) xux, ) xiax, )

Zl (x’ §9 /l) =
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Substituting (6.10) into (6.9), we have

y2(x, ) = Wit /l)( f P12(x, Vf ()A€, D& + f P (x, D f(E)Aa(E, D&

0
- f X120, D) f(E)A3(E, D)dE + f X22(X, D) f(E)A4(E, D)dE)

(- f d12(x, D) f(E)As (&, Ddé + f P2 (x, D) f(E)As(E, Ddé
Wz(/l)

+ fo X120, D) f(£)A7(€, D)dé — fo X22(x, ) f(E)Ag(E, D)dE)

+ c1¢12(x, ) + c2922(x, A) + cax12(x, A) + caxn(x, ), x€(0,1].

We can rewrite y,(x, 4) in the form

1
ya(x, ) = f Ky (x, &, ) f(E)dE + c1¢12(x, D) + c2h20(x, A) + c3x12(x, A) + cax2(x, 1), x € (0,1],
-1
where

Zr(x 80
e -1<£<0,0<x<1,

Wa ()

0, O0<x<é<1.

11D du €D xnE D xuE A

| LED @5 ED X (ED x5 (E D
HEEDZ] 4@ 1) ghE ) YAED @D |
P2(x, ) Pa(x, ) x12(x, ) x22(x, )

$12(6, D) 922D x12(E D x2( D)
Zy(n, &) = P& D 95,E D) X (ED XD _
T PHLE D ¢LE D) X LED x5 D

Pr2(x, ) P(x, ) x12(x, ) x22(x, )

Obviously, the solution for Eq (31) can be represented in the form:

1
y(x, ) = f K(x, &, D) f(E)dE + c191(x, ) + c22(x, A) + c3x1(x, D) + cax2(x, ), x € J,
-1
with

Ki(x,&0), xe[-1,0),

K =
(80 {Kz(x,f,/l), x € (0, 1],

¢11(X, /l)’ X € [_1a O)a ¢21(X9 /l)’ X € [_1a 0)9
)= D=
¢l(x ) {¢12(X, /1), X € (O, 1], ¢2(x ) {¢22(x, /1), X € (O, 1],

i ) = xi(x, ), xe€[-1,0), ) = ya1(x, D), xe[-1,0),
, xi(x, ), xe€(0.1], ’ x2(x, ), x€(0,1].
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Denoting

Ui(y) = Ay —=y"(=1) = hy,
Ui) = ' (=D +y"(=1) = hy,
Ur(») = Ayy(D) = y2y"" (1) = (riy(D) = vy (1)) = hs,

Ui(y) = Ay5y' (1) = y,y" (1)) + (y3y' (1) = yay" (1)) = ha.
Substituting y(x, A1) into the above conditions, we have

1

c1Ui(@1(x, D) + Ui (¢2(x, D) + c3Ui(x1(x, D) + caUi(x2(x, 1) = —f Ui(K)f(§)ds + hy,
-1

1

c Us(¢1(x, D) + c2Us(¢2(x, D) + c3Us(x1(x, D) + c4Us(x2(x, 1) = —f Ux(K) f(§)dE + hy,
.
1

1 Us(¢1(x, D) + c2Us(¢2(x, ) + c3Uz(x1(x, D) + c4Us(x2(x, 1) = — fl Us(K) f(&)dE + h,
1

i Us(¢1(x, V) + c2Us(¢2(x, ) + c3Us(x1(x, D) + c4Us(x2(x, 1) = —f Us(K) f(§)dE + hy.
-1

As the determinant of this system W,(41) is not zero, so the variables ¢; (i = 1,2,3,4) can be unique
solved. Therefore,

o = A+ Hi () o = Ax() + Hy()
! Wo() : Wa (1)

AW HW) A+ Hi(Y)
3 W,y ! Wa(2)

where

1

- [ UK f(€)dé Ui(ga(x, D) Ur(xi(x, ) Ui(xi(x, D)
A = — [ (K f(©)dé  Us(¢o(x, D) Us(x1(x, D) Us(xi(x, D)
-J.
-/

—

—

LUs(K)f(E)dé Us(¢a(x, D) Us(xi(x, D) Us(i(x, ) |
L Us(K) f(©)dE Ua(ga(x, 1)) Usalx1(x, 1) Uslx1(x, 1))

—

hi Ui(¢2(x, 1) Ui(x1(x, 1) Ui(xi(x, )
hy Ux(¢a(x, 1) Us(xi(x, ) Ux(xi(x, )
hy Us(¢a(x, ) Us(xi(x, 1) Us(yxi(x, D) |
hy Us(da(x, 1) Us(x1(x, 1) Us(yi(x, )

Hi(1) =
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By the Cramer’s Role, we can solve A;(1) and H;(1). Substituting c;(i = 1,2,3,4 ) into y(x, A) yields
that

1
y(x, ) = f K(x, &, D f()d¢ + (A1 (D@1 (x, D) + A2(D)a(x, ) + Az(D)x1(x, ) + As(D)x2(x, )
-1

W (D)

T Wath)

1
f (K(x, &, 4) + B(x,&, ) f(§)dé — ——H(x,&, ),

( ) W2()

where

Ui(¢1(x, D) Ui(¢a(x, 1) Ui(xi(x, 1) Uilxa(x, ) Ui(K)
Us(¢1(x, 1) Ux(éa(x, 1) Uz(xi(x, 1)) Us(xa(x, ) Usx(K)
B(x,&,0) = | Us(¢1(x, D) Us(¢a(x, 1) Us(xi(x, ) Us(xa(x, D) Us(K)
Ug(@1(x, 1) Us(@2(x, ) Us(x1(x, 1) Us(xa(x, 1)) Us(K)
$1(x, ) $a(x, ) x1(x, ) Xx2(x, ) 0

Ui(¢1(x, D) Ui(¢a(x, 1) Ui(xi(x, 1) Ui(xa(x, ) h

Us(¢1(x, 1) Uz(¢2(x,2)) Us(x1(x, 1) Usx(xa(x, 1) ho

H(x, &, 2) = | Us(é1(x, ) Us(¢a(x, D) Us(yxi1(x, ) Us(ya(x, ) hs
Ug(@1(x, D) Us(d2(x, ) Us(x1(x, 1) Uis(xa(x, 1) hy

é1(x, ) $a(x, ) x1(x, Q) x2(x, ) 0

Denoting Green function G(x, &, 1) = K(x, &, 1) + o B(x, &, 1), then y(x, 1) can be represented

Wy (/l)

1
y(x, ) = f G(x, &0 f(&)dé - W—(/I)H(x &, ). (6.11)

Remark 6.1. Through above discussion, the case of eigenparameter appeared in the boundary
conditions of both endpoints is different from the usual case [3], also different from the case
of eigenparameter appeared in the boundary conditions of one endpoint [19], y(x,A) is not only
determined by f_ 11 G(x, &, D f(E)dE, but also related with ——H(x, &, A).

W, (/l)

7. Conclusions

In this paper, a class of fourth order differential operators with eigenparameter-dependent boundary
conditions and transmission conditions is considered. Using operator theoretic formulation, we
transferred the considered problem to an operator in a modified Hilbert space. We investigated
some properties of this operator, such as self-adjointness, sufficient and necessary conditions of the
eigenvalues, asymptotic formulas for the fundamental solutions and the characteristic functions, the
completeness of eigenfunctions in H and the Green function.
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