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Abstract: The main idea of this study is to examine the dynamics of the viral disease, hepatitis C.
To this end, the steady states of the hepatitis C virus model are described to investigate the local as
well as global stability. It is proved by the standard results that the virus-free equilibrium state is
locally asymptotically stable if the value of R0 is taken less than unity. Similarly, the virus existing
state is locally asymptotically stable if R0 is chosen greater than unity. The Routh-Hurwitz criterion is
applied to prove the local stability of the system. Further, the disease-free equilibrium state is globally
asymptotically stable if R0 < 1. The viral disease model is studied after reshaping the integer-order
hepatitis C model into the fractal-fractional epidemic illustration. The proposed numerical method
attains the fixed points of the model. This fact is described by the simulated graphs. In the end, the
conclusion of the manuscript is furnished.
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SCTZ: Susceptible-Chronically infected-On treatment-Failed treatment; TIV: Uninfected hepatocytes-
Productively infected hepatocytes-Virus; TIVA: Target cells-productively infected cells-viral load-
ALT concentration; S EIaIcTR: Susceptible-Exposed-Acute infection-Chronic infection-Treated-
Recovered; RTPE: Plus-strand HCV RNA molecules-Translation complexes, HCV polyprotein
molecules-Enzyme NS5B; SIAB: Susceptible-Infectious not in treatment-Infectious with treatment-
Infectious individuals who are on treatment with intravenous drug misuse; TIVZWA: Uninfected cells-
Infected cells-Free virus numbers-CTL response-Antibody response-ALT levels; DFE: Disease free
equilibrium; EE: Endemic equilibrium; G.A.S: Globally Asymptotically Stable

1. Introduction

The liver is an important organ in the human body, it filters the blood, maintains body temperature
plays a role in digestion, has a key role in the immune system, and also acts as a store house for food.
Inflammation in the liver is called hepatitis. There are different types of hepatitis such as hepatitis A, B,
C, D, E. They can also be written as HAV, HBV, HCV., etc. Hepatitis C is caused by a virus, member
of the family Flaviviridae. This virus damages the liver and affects its functions. This virus cannot
spread through man to man, but only through affected blood, i.e., contaminated blood. Toothbrushes,
razors, syringes, and nail clippers are easy sources of its transmission. This virus can survive at least
four days outside the body in an open environment. HCV shows a few symptoms, so most people do
not aware of it, which makes it to fatal. 80% of HCV patients do not show any symptoms. Some
common symptoms are bleeding, fatigue, lack of appetite, yellow coloration of skin especially the
eyes, dark yellow color of urine, etc. Its incubation period varies from 2 weeks to 6 months. Hepatitis
C virus grows in several stages, some of which are explained as follows. Acute hepatitis C is short time
infection and the patient faces this infection for up to several months. Its symptoms include illness,
fatigue, vomiting, lack of appetite, a disorder in the elementary canal. Chronic hepatitis C. It is a long
period infection and can be fatal if not treated properly. It causes serious health issues, such as damage
to the liver, scarring of the liver, and even can cause cancer in the liver. Now, it is curable with oral
tablets, by taking two to six months, daily. Cirrhosis also shows no symptoms until the whole liver
is damaged. Some common symptoms are fatigue, loss of appetite, vomiting, inflammation in legs,
and feet, loss of much weight, jaundice, loss of sexual activity in men, development of breasts, in
women, improper periods, etc. HCV can also become the cause of liver cancer. Viruses change the
combination of genes, which is called gene mutation in some cells of the liver. It causes the growth
of abnormal cells in the liver due to cancer, liver cells are continuing to divide and can lead to death.
HCV can be treated by using direct-acting antiviral (DAA) tablets. These tablets are very effective
in curing the virus in about 92% of people. The patient should take these tablets for about ten to
twelve weeks. These tablets include Baraclude, tenofovir, telbivudine. In 1989 Choo et al. detected
HCV from the blood of a person and proved that it is not hepatitis A and hepatitis B. It was found
that this new virus can affect 90% of the patient with non HAV and non-HBV in the US. Hepatitis
C virus almost affected the entire world, about 24 hundred thousand people are only affected in the
USA. It is estimated that in 2015 ten hundred thousand people died due to HCV. In 2016 most deaths
are calculated in china, and japan due to HCV. Now, the more affected country in the world is Egypt,
followed by Pakistan. In Pakistan, HCV affects all the provinces. It is estimated that patients of HCV
in Punjab are 5.4%, Sindh 2.5%, KPK 6%, Baluchistan 25%, and Baltistan 3%. We can choose several
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different precautions for controlling HCV such as taking blood or body fluid precautions, do not use
a contaminated syringe, do not share your razor with anyone, safe your sexual activities, wear gloves
during hospitalization. In 2019 Pitcher, A. B. et al. [1] presented an SCTZ model to prevent HVC via
syringes. In 2009 Dahari, H. et al. [2] proposed a TIV model to study the propagation of HCV with
high viral load. In 2005 Dahari, H. et al. discussed the TIVA model, to see the infection by HCV [3].
In 2019 Jia, W. et al [4] formulate a S EI − aIcTR model to control HCV in China. In 2007 Dahari, H.
et al. [5] introduced the RTPE model to study the genomic sequence in HCV. In 2014 Mushayabasa,
S. et al. presented a SIBA model to assess the impact of anti-viral medication [6]. In 2019 Lombardo,
S. D. et al. [7] devised the TIVZWA model to check the impact of vaccination. In 2009 Reluga, T. C.
et al. presented a TIV model to analyze the spread of sick and safe liver cells [8]. In 2019 Kalemera,
M. et al. [9] designed a DEMM model to see entry criteria for HCV. In 2002 Ribeiro, R. M. et al. have
presented an HIV model to analyze the behavior of nonlinear memory systems [10]. In 2016 Durfee,
L. J. introduced the infection model to study HVC [11]. In 2015 Echevarria, D. et al. [12] studied
the effect of the injected drug on viral load in Chicago. In 2013 Elbasha, E. H. presented epidemic
Model for hepatitis C virus transmission [13]. In 2009 La Porte, F. et al. discussed the properties of
HCV propagation during hemodialysis [14]. In 2019 Miller-Dickson, M. D et al. has designed the
epidemic model to explain the HCV outbreak by injection drug [15]. In 2015 Cousin et al. proposed
a new model to check the relationship between the infection, intensity, treatment, and negligence of
HCV through injection drug [16]. In 2002 Avendan et al. [17] presented a new model to formulate
the behavior of susceptible, infected, viral load and memory T cells for HCV. In 2019 Heffernan,
A. et al. [18] suggested a standard for the eradication of HCV. In 2017 Hadi, H. A. proposed the TIV
model to make the immune system strong against HCV [19]. In 2018 Aston, P. et al. [20] used the
TIV model to demonstrate the efficacy of anti-viral medicine. For some more details about epidemic
and physical models, see [21–25]. Fractional-order derivative is practical as compared to classical
derivative because the dynamics of real phenomena can be broadly understood by fractional-order
derivative due to its special features. The ordinary derivatives cannot choose the phenomenon at two
distinct closed points. The generalization of the classical or integer-order calculus is fractional calculus.
The first notion of the fractional-order derivative has been presented by L Hospital and Leibniz in 1695.
The growing interest in the modeling of complex real-world issues with the use of fractional differential
equations is due to its many features that cannot be obtained in the ordinary case. These characteristics
permit fractional differential equations not only to model the non-markovian but also non-Gaussian
phenomenon efficiently [26, 27]. To remove these drawbacks of the non-classical derivatives, different
kinds of fractional derivatives were presented. Among them is the Atangana-Baleanu derivative, which
is a nonlocal fractional derivative with the non-singular kernel, connected with many implementations
[28].

Fractional calculus is one of the novelist types of calculus having a broad range of applications
in many different scientific and engineering disciplines. The order of the derivatives in the fractional
calculus might be any real number that separates the fractional calculus from the ordinary calculus
where the derivatives are allowed only positive integers. Therefore, fractional calculus might be
considered as an extension of ordinary calculus. Fractional calculus is a highly useful tool in the
modeling of many sorts of scientific phenomena including image processing, earthquake engineering,
biomedical engineering, and physics. Here, some fundamental concepts of fractional calculus [29, 30]
and applications of it to different scientific and engineering areas are studied [31–37].
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Even though fractional calculus is a highly useful and important topic, a general solution method
that could be used at almost every sort of problem has not yet been established. Most of the solution
techniques in this area have been developed for particular sorts of problems. As a result, a single
standard method for problems regarding fractional calculus has not emerged. Therefore, finding
reliable and accurate solution techniques along with fast implementation methods is very useful and
is an active research area. Some well-known methods for the analytical and numerical solutions
of fractional differential and integral equations might be listed as power series method, differential
transform and, homotopy analysis method, variational iteration method, homotopy perturbation
method, and Sinc–Galerkin method.

In this work, we have modified the classical hepatitis-C virus epidemic model into a fractal-
fractional model by considering the fractal-fractional order operator. A novel numerical scheme is
designed to find the numerical solutions and this novel scheme shows the steady-state solution of
the underlying model. Furthermore, the new parameters pertinent to fractal and fractional order of
the operator enhance the flexibility of the dynamics of the state variables which capture the real
phenomenon more accurately. For instance, the immunity of individuals varies in different regions
of the world depending upon the health conditions, environment, hygienic standards, food quality,
pollution, and many others. So, the transmission rate for the disease dynamics cannot be the same in
all the countries. It varies worldwide. The extended hepatitis-C virus epidemic model has the quality
to fit better for many countries by adjusting the fractal and fractional order parameters. On the other
hand, the classical model has no facility of this type.

This work has a more realistic approach. As the biological phenomenon contains memory effect
and the classical epidemic models do not cover this important fact. This deficiency in the integer-order
model enticed us to investigate the dynamics of the hepatitis-C virus in the fractal-fractional setup.

2. Preliminaries

In this section, we give some main definitions related to fractal-fractional derivatives and fractal-
fractional integral.

Definition 2.1. Let the function f (t) be continuous and fractal differentiable on some open interval
say (a,b) with order ρ. Then, the fractal-fractional derivative of f in Riemann-Liouville sense with
order σ having the generalized Mittag-Leffler type kernel is presented by [38]:

FFM
c Dσ,ρ

t u(t) =
AB(σ)

1 −σ
d

dtρ ∫
t

a
f (z)Eσ(

−σ

1 −σ
(t − z)σ)dz, 0 < σ,ρ ≤ 1, (2.1)

where, AB(σ) = 1 −σ + σ
Γ(σ)

.

Definition 2.2. The fractal-fractional integral of order σ of a function f (t), continuous in some open
interval say (a,b) corresponding to the fractal fractional derivative having Mittag-Leffler type kernel
is given as [38]:

FFM
0 Iσ,ρt u(t) =

σρ

AB(σ)
∫

t

0
zσ−1u(s)(t − z)σ−1dz +

ρ(1 −σ)tρ−1

AB(σ)
f (t). (2.2)

Lemma 2.3. We have the following relation between the fractal derivative and classical derivative.

d f
dtσ

=
1

σtσ−1
f ′(t). (2.3)
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3. Mathematical model and its stability

This section is devoted to the development of the extended fractal-fractional model and finding the
local and global stability at equilibrium points.

We consider the following problem:

dS
dt

= B − (kb1a + kb2c)S − µS

da
dt

= (kb1a + kb2c)S − (σ1 + µ)a

dc
dt

= δσ1a − (σ2 + µ)c

dr
dt

= (1 − δ)σ1a +σc2 − µr

Since the first-order derivatives capture the maximum rate of change, while the fractional-order
derivatives contain the memory effect which is helpful in describing the phenomenon with a rate of
dynamics, different from the maximum rate. Also, the rates of dynamics are not the same across the
country or globe. That is why fractional differential operators are applied to overcome these types of
problems.

A classical epidemic model of the hepatitis C virus is considered. Since the integer-order derivative
is local by nature. So, they can measure the change in the neighborhood of a particular instant of time.
But, the biological phenomenon is influenced by the events and measures that have been adopted in the
past. Equivalently, they involve the memory effect. The fractional derivatives have the memory effect.
Therefore, a biological phenomenon like a disease can be described more accurately. Moreover, the
fractional-order differential operators improve the stability of the solution. These key facts motivated
us to reshape the classical model.

FFM
a Dσ,ρ

t S (t) = B − (kb1a + kb2c)S − µS (3.1)
FFM
a Dσ,ρ

t a(t) = (kb1a + kb2c)S − (σ1 + µ)a (3.2)
FFM
a Dσ,ρ

t c(t) = δσ1a − (σ2 + µ)c (3.3)
FFM
a Dσ,ρ

t r(t) = (1 − δ)σ1a +σc2 − µr (3.4)

The number of susceptible is denoted by S (t), the number of acutely infected individuals is denoted
by a(t), the number of chronic carriers is denoted by c(t) and the number of recovered is denoted by
r(t).

The parameters are described as B: represented as birth rate, the death rate (naturally) given as
µ. When the susceptible hosts are infected, they transfer to the acute infection class with a force of
infection λ, which depends on the rate of borrowing injecting equipment k, and the transmission rates
(probabilities b1,b2) adopted. Where b1 is the transmission probability per contact if the person was in
its primary acute infection and b2 is the transmission probability per contact if persons were a chronic
carrier. An individual with primary acute infection moves out of that state with a rateσ1, with a fraction
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δ becoming chronic carriers and the remaining fraction, (1− δ) recovering completely. Chronic carrier
individuals can still clear the virus with a rate σ2, and move into the recovered state.

As r(t) is not the part of first three equations of the system (3.1)–(3.4) therefore we can consider,

FFM
a Dσ,ρ

t S (t) = B − (kb1a + kb2c)S − µS (3.5)
FFM
a Dσ,ρ

t a(t) = (kb1a + kb2c)S − (σ1 + µ)a (3.6)
FFM
a Dσ,ρ

t c(t) = δσ1a − (σ2 + µ)c (3.7)

First we discuss the equilibria of the model (3.5)–(3.7). For this, we put FFM
a Dσ,ρ

t S (t) = 0,
FFM
a Dσ,ρ

t a(t) = 0, FFM
a Dσ,ρ

t c(t) = 0. The disease free equilibrium (DFE) state is D1 = (S 1,a1, c1) =

(
β
µ
,0,0) and endemic equilibrium (EE) state is E1 = (S ∗,a∗, c∗) where S ∗ =

(σ1+µ)(σ2+µ)

kb1(σ2+µ)+kb2δσ1
,

a∗ = B
(σ+µ)

−
µ(σ2+µ)

kb1(σ2+µ)+kb2δσ1
and c∗ =

δσ1B
(σ1+µ)(σ2+µ)

−
δσ1µ

kb1(σ2+µ)+kb2δσ1
. The reproductive value is R0 =

B(kb1(σ2+µ)+kb2δσ1)

µ(σ1+µ)(σ2+µ)
. The Jacobian matrix for the system (3.5) and (3.6) is given as,

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− (kb1a + kb2c) − µ −kb1S −kb2S
kb1a + kb2c kb1S − (σ1 + µ) kb2S

0 δσ1 −(σ2 + µ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Theorem 3.1. The DFE, D1 = (S 1,a1, c1) = (
β
µ
,0,0) is LAS if Ro < 1

Proof. The Jacobean Matrix at D1 is

J (D1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−µ −
kb1B
µ

−
kb2B
µ

0 kb1B
µ
− (σ1 + µ)

kb2B
µ

0 δσ1 −(σ2 + µ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

λ1 = − µ < 0

∣J (D1) − λI∣ = ∣

kb1B
µ
− (σ1 + µ) − λ

kb2B
µ

δσ1 −(σ2 + µ) − λ
∣ = 0

Put kb1B
µ

= u1 > 0,
kb2B
µ

= u2 > 0

(σ2 + µ) = u3 > 0

(σ2 + µ) = u4 > 0

∣
u1 − u3 − λ u2

δσ1 −u4 − λ
∣ = 0

(u1 − u3 − λ) (−u4 − λ) − u2δσ1 = 0

−u1u4 − u1λ + u3u4 + u3λ + λu4 + λ
2 − u2δσ1 = 0

λ2 + λ (u4 + u3 − u1) + (u3u4 − u1u4 − u2δσ1) = 0
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By using Routh-Hurwitz Criterion of 2nd order,

u4 + u3 − u1 > 0

⇒ (σ2 + µ) + (σ1 + µ) −
kb1B
µ

> 0

⇒ (σ2 +σ1 + 2µ) >
kb1B
µ

⇒
kb1B

µ (σ2 +σ1 + 2µ)
< 1

⇒ Ro < 1

and u3u4 − u1u4 − u2δσ1 > 0 u3u4 > u1u4 + u2δσ1 If Ro < 1 �

Theorem 3.2. The EE, E1 = (S ∗,a∗, c∗) is LAS If Ro > 1.

Proof. The Jacobean Matrix at E1 is

J (E1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

− (kb1a∗ + kb2c∗)S ∗ − µ −kb1S ∗ −kb2S ∗

kb1a∗ + kb2c∗ kb1S ∗ − (σ1 + µ) kb2S ∗

0 δσ1 −(σ2 + µ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∣J (E1) − λ∣

=

RRRRRRRRRRRRRR

− (kb1a∗ + kb2c∗)S ∗ − µ − λ −kb1S ∗ −kb2S ∗

kb1a∗ + kb2c∗ kb1S ∗ − (σ1 + µ) − λ kb2S ∗

0 δσ1 −(σ2 + µ) − λ

RRRRRRRRRRRRRR

= 0

−δσ1 ∣
− (kb1a∗ + kb2c∗)S ∗ − µ − λ −kb2S ∗

kb1a∗ + kb2c∗ kb2S ∗
∣

− [(σ2 + µ) + λ] ∣
− (kb1a∗ + kb2c∗)S ∗ − µ − λ −kb1S ∗

kb1a∗ + kb2c∗ kb1S ∗ − (σ1 + µ) − λ
∣ = 0

−δσ1 ∣
−A1 − µ − λ −A2

A1 A2
∣ − [A4 + λ] ∣

−A1 − µ − λ −A3

A1 A3 − A5 − λ
∣ = 0

Where A1 = kb1a∗ + kb2c∗

A2 = kb2S ∗

A3 = kb1S ∗

A4 = (σ2 + µ)

A5 = (σ1 + µ)

λ3 + λ2 (A1 + µ + A4 + A5 − A3) + λ [A4 (A1 + µ)

+ (A1 + µ) (A3 − A5) + A1A3 − A2δσ1 + A4 (A5 − A3)]

+ [(A5 − A3) (A1 + µ) A4 + A1A3A4 − δσ1A2µ] = 0
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By using Routh–Hurwitz Criterion of 3rd order

A1 + A4 + A5 + µ − A3 > 0,
(A5 − A3) (A1 + µ) A4 + A1A3A4 − δσ1A2µ > 0,
(A1 + A4 + A5 + µ − A3) [(A4 + A3 − A5) (A1 + µ) + A1A3 − δσ1A2 + A4 (A5 − A3)]

> [(A5 − A3) (A1 + µ) A4 + A1A3A4 − δσ1A2µ]

�

Theorem 3.3. For system (3.5)–(3.7) the disease free for equilibrium D1 is G.A.S if R0 < 1

Proof. Let us define a Volterra Lyapunov function as

u = (S − S 1 − S 1ln
S
S 1

) + a + c

Now by using lemma 1 and lemma 2 given in [39]

FFM
a Dσ,ρ

t u(t) = (1 −
S
S 1

) FFM
a Dσ,ρ

t S (t) +FFM
a Dσ,ρ

t a(t) +FFM
a Dσ,ρ

t c(t)

= (1 −
S
S 1

) (B − (kb1a + kb2c)S − µS ) + (kb1a + kb2c)S − (σ1 + µ)a +σ1a − (σ1 +mu)c

= −
(S − S 1)

2B
S S 1

− kb1(a − a1)(S − S 1) − kb2(S − S 1)(c − c1) − aµ(1 −
kb1S
µ

)

− cµ(1 −
kb2S
µ

) −σ2c

So, FFM
a Dσ,ρ

t u(t) < 0 for R0 < 1 and FFM
a Dσ,ρ

t u(t) = 0 if S = S 1, a = 0 and c = 0. Thus D1 is G.A.S.
�

4. Main results

There are some other numerical techniques in the literature such as Adam Bashforth and methods
constructed by using Newton’s polynomial method [40, 41]. These schemes also show some good
features. In this manuscript, our proposed scheme shows a reliable solution as it gives a steady-state
solution. Also, our proposed scheme is simple and user-friendly as it involves less number of steps.
There are many uncovered features of the proposed scheme to be explored.

We consider the following problem:

dS
dt

= B − (kb1a + kb2c)S − µS

da
dt

= (kb1a + kb2c)S − (σ1 + µ)a

dc
dt

= δσ1a − (σ2 + µ)c
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We replace the classical derivatives with the fractal-fractional derivatives and we obtain:

FFM
a Dσ,ρ

t S (t) = B − (kb1a + kb2c)S − µS
FFM
a Dσ,ρ

t a(t) = (kb1a + kb2c)S − (σ1 + µ)a
FFM
a Dσ,ρ

t c(t) = δσ1a − (σ2 + µ)c

For simplicity, we define

A(t,S ,a, c) = ρtρ−1 (B − (kb1a + kb2c)S − µS )

B(t,S ,a, c) = ρtρ−1 ((kb1a + kb2c)S − (σ1 + µ)a)

C(t,S ,a, c) = ρtρ−1 (δσ1a − (σ2 + µ)c)

Then, we get

AB(σ)

1 −σ
d
dt ∫

t

0
S (τ)Eα (

−σ

1 −σ
(t − τ)σ)dτ = A(t,S ,a, c)

AB(σ)

1 −σ
d
dt ∫

t

0
I(τ)Eα (

−σ

1 −σ
(t − τ)σ)dτ = B(t,S ,a, c)

AB(σ)

1 −σ
d
dt ∫

t

0
R(τ)Eα (

−σ

1 −σ
(t − τ)σ)dτ = C(t,S ,a, c)

Applying the AB integral yields

S (t) − S (0) =
1 −σ

AB(σ)
A(t,S ,a, c) +

σ

AB(σ)Γ(σ)
∫

t

0
(t − τ)σ−1A(τ,S ,a, c)dτ

a(t) − a(0) =
1 −σ

AB(σ)
B(t,S ,a, c) +

σ

AB(σ)Γ(σ)
∫

t

0
(t − τ)σ−1B(τ,S ,a, c)dτ

c(t) − c(0) =
1 −σ

AB(σ)
C(t,S ,a, c) +

σ

AB(σ)Γ(σ)
∫

t

0
(t − τ)σ−1C(τ,S ,a, c)dτ

We discretize these equations at tn+1 as:

S n+1 = S 0 +
1 −σ

AB(σ)
A(tn+1,S n,an, cn)

+
σ

AB(σ)Γ(σ)
∫

tn+1

0
(tn+1 − τ)

σ−1A(τ,S ,a, c)dτ

an+1 = a0 +
1 −σ

AB(σ)
B(tn+1,S n,an, cn)

+
σ

AB(σ)Γ(σ)
∫

tn+1

0
(tn+1 − τ)

σ−1B(τ,S ,a, c)dτ

cn+1 = c0 +
1 − α

AB(σ)
C(tn+1,S n,an, cn)

+
σ

AB(σ)Γ(σ)
∫

tn+1

0
(t − τ)σ−1C(τ,S ,a, c)dτ
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Then, we obtain

S n+1 = S 0 +
1 −σ

AB(σ)
A(tn+1,S n,an, cn)

+
σ

AB(σ)

n

∑
p=0

[
hσA(tp,S n,an, cn)

Γ(σ + 2)
((n + 1 − p)σ(n − p + 2 +σ)

−(n − p)σ(n − p + 2 + 2σ))]

−
σ

AB(σ)

n

∑
p=0

[
hσA(tp−1,S n−1,an−1, cn−1)

Γ(σ + 2)
((n + 1 − p)σ+1

−(n − p)σ(n − p + 1 +σ))]

an+1 = a0 +
1 −σ

AB(σ)
B(tn+1,S n,an, cn)

+
σ

AB(σ)

n

∑
p=0

[
hσB(tp,S n,an, cn)

Γ(σ + 2)
((n + 1 − p)σ(n − p + 2 +σ)

−(n − p)σ(n − p + 2 + 2σ))]

−
σ

AB(σ)

n

∑
p=0

[
hσB(tp−1,S n−1,an−1, cn−1)

Γ(σ + 2)
((n + 1 − p)σ+1

−(n − p)σ(n − p + 1 +σ))]

cn+1 = c0 +
1 −σ

AB(σ)
C(tn+1,S n,an, cn)

+
σ

AB(σ)

n

∑
p=0

[
hσC(tp,S n,an, cn)

Γ(σ + 2)
((n + 1 − p)σ(n − p + 2 +σ)

−(n − p)σ(n − p + 2 + 2σ))]

−
σ

AB(σ)

n

∑
p=0

[
hσC(tp−1,S n−1,an−1, cn−1)

Γ(σ + 2)
((n + 1 − p)σ+1

−(n − p)σ(n − p + 1 +σ))]

by the method using in [42].
The fractal and fractional epidemic model for the hepatitis-C virus model is solved to obtain the

numerical solutions. The proposed method addresses the fractal parameters as well as the fractional
order parameter. Considering both the parameters of the epidemic model, the picture of disease
dynamics has become more comprehensive and clearer. So, the role of fractal and fractional parameters
are studied analytically and graphically. Therefore, with the help of this proposed method, more
epidemic models can be studied in a better way. Also, this is help in future prediction of the disease.
The proposed method is formulated to solve the fractal fractional model of infection disease model.
This method converges towards the true steady state of the model. Also, this technique can easily be
applied to obtain the steady state solutions namely, the virus free state and endemic state. When the
value of the fractal order parameter are changed, a new trajectory of the state variables obtained, which
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converges towards the exact fixed point with a different rate of convergence. This fact has a significant
role to capture the dynamics of a particular real world scenario.

The existing schemes are more complicated for the application point of view. The proposed method
is a value addition in the existing literature. The reliability of the scheme may be studied in future,
when more models will be solved by applying this design. Furthermore, when exact solution is not
available for the comparison, steady states become more important to study the efficacy of the scheme.
The proposed scheme successfully, attains the exact steady state of the model.

5. Numerical simulations

In this segment, simulated graphs are illustrated against the different values of parameters, fractional
order and fractal dimensions. These graphs show some important features of the state variables. The
values of parameters involved in the system (3.5)–(3.7) for DFE state are, B = 0.5, b1 = 0.003, 0.003,
σ1 = 0.1, σ2 = 0.01 and δ = 0.80. Similarly the parametric values of the system (3.5)–(3.7) for EE
state are, B = 0.5, b1 = 0.1, b2 = 0.1, σ1 = 0.1, σ2 = 0.01 and δ = 0.80. The initial conditions of the
system (3.5)–(3.7) are S (0) = 0.4, a(0) = 0.2 and c(0) = 0.1

Figure 1 illustrates the growth of the susceptible state variable S (t) with respect to time t,
graphically at a disease-free state. The fractional-order ρ is kept fixed as 0.95 for this situation and
the fractal parameter σ is changed to investigate its role in the progression of the susceptible persons.
The different curved graphical lines show the effect of change in the value of σwhen the value of ρ
is kept fixed for all the cases. Each graph attains the exact DFE, by following a different route for
converging towards the mathematically evaluated value. The simulated graphs that, for a greater value
of σ the rate of convergence is high as compared to the smaller value of σ. Also, the different tracks
of the graphs ultimately coincide with the true equilibrium point. The parametric value is chosen
systematically which makes the R0 less than one.

Likewise, Figure 2 demonstrate the progression of the acutely infected individuals of hepatitis-c
virus. The graph advance towards the DFE against the different value of σ. The value of A(t) becomes
zero in the interval (0,T) when T > 0 and t ∈ (0,T).

The value of σ does not affect the value of DFE. It simply adjusts the rate of convergence. In
this case, also, the value of the parameters is the same as were in Figure 1. Moreover, the value of
R0 < 1. The sketches in Figure 3 show the graphical behavior of the chronic carriers with respect to
time. The graphs describe that value of C(t) decreases gradually and ultimately it becomes zero after
a due course of time. Other conditions on parameters are the same for instance, the value of R0 < 1
and the value of control parameters and kept fixed. Figure 4 shows the graphical behavior of S (t) at
endemic equilibrium state. The number of susceptible persons in the graph decreases at a certain level,
then it heads towards the disease existing steady-state and hits at the true value of the steady-state.
The different graphical templates are drowned against the different values of fractal parameter σ, these
templates reflect that each trajectory, plotted against a different value of σ, converges towards the true
steady state. But, the rate of convergence of each trajectory is different, depending upon the value of
fractal order σ.
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Figure 1. Graphical behavior of S (t) with various values of fractional order σ with ρ = 0.95
at DFE point.
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Figure 2. Graphical behavior of a(t) with various values of fractional order σ with ρ = 0.95
at DFE point.
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Figure 3. Graphical behavior of c(t) with various values of fractional order σ with ρ = 0.95
at DFE point.
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Figure 4. Graphical behavior of S (t) with various values of fractional order σ with ρ = 0.95
at EE point.

Figure 5 reflects the course of dynamics for the acutely affected populace at the disease’s existing
steady-state. The graphs in the figure show that initially, the size of A(t) increases because the disease
is spreading in the population at this stage. Then after a certain time period, the graphs heads towards
the fixed state and coincide with the analytical value. Each graph attains the required state with a
specific rate. This rate depends entirely on the value of the fractal parameter when other parametric
values are kept fixed. The behavior of the chronic carriers C(t) is represented by the graph in Figure 6.
The graph sketched in this figure is drowned for suitable selected parametric values that make the basic
reproductive number R0 > 1. The value of C(t) grows with the passage of time. Then after attaining
some specific value, The curve turns towards the desired steady state. Also, every graph attains the
fixed state, at different times, which shows the different rates of convergence.
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Figure 5. Graphical behavior of a(t) with various values of fractional order σ with ρ = 0.95
at EE point.
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Figure 6. Graphical behavior of c(t) with various values of fractional order σ with ρ = 0.95
at EE point.

The numerical graphs in Figures 7–9 reveal the behavior of the state variables involved in the
epidemic system. The main target, of these simulations, is to authenticate the role of fractional order,
ρ, which is now considered as 0.93. The values of all other parameters are kept unchanged, while the
values of fractal dimension are highlighted in each figure. This time the curved templates also, meet
the disease-free state. The only difference that is observed from the graphs, is the alteration in the
rate of convergence. Now, the rate is smaller as compared to the graphs with ρ = 0.95. So, it can be
said that the rate of convergence and order of fractional derivatives are attached with a direct relation.
Now, the time to reach the DFE state is comparatively large. Therefore, the value of ρ, the order of
the fractional differential operator controls the rate of convergence. Similarly, the numerical designs
in Figures 10–12 reflect the behavior of the disease progression in various compartments of the model.
All the curved designs in every figure advance towards the right position and direction. In these graphs,
the values of ρ are taken as 0.93. Other parametric values are considered as these were in Figures 1–6.

Every graph in Figures 10–12 meets the exact steady-state i.e., EE state. Here, the curved
trajectories take more time to attain the endemic equilibrium position. It is mentionable that ρ, the
fractional-order parameter restricts the disease dynamics before attaining the desired state. Hence, all
the graphs in Figures 1–12 show that the presented method is a reliable tool to solve the infectious
disease phenomenon. It has been investigated that when the values of fractional order parameter are
closer to one, the memory effect lasts for a short interval of time and is called short memory, and,
when the value of the fraction order parameter approaches zero, the memory effect lasts for a long time
and it is called long-term memory. Do the numerical graphs reflect that the graph with short memory
converges fastly, towards the true steady-state i.e., forσ is closer to one. Moreover, when the value ofσ
is decreased, the rate of convergence towards the true equilibrium point decrease. In the nutshell, when
the short memory is considered, the rate of convergence is fast as compared to the rate of convergence,
when the memory effect lasts for a long time.
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Figure 7. Graphical behavior of S (t) with various values of fractal order ρ with σ = 0.93 at
DFE point.
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Figure 8. Graphical behavior of a(t) with various values of fractal order ρ with σ = 0.93 at
DFE point.
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Figure 9. Graphical behavior of c(t) with various values of fractal order ρ with σ = 0.93 at
DFE point.
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Figure 10. Graphical behavior of S (t) with various values of fractal order ρ with σ = 0.93
at EE point.
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Figure 11. Graphical behavior of a(t) with various values of fractal order ρ with σ = 0.93 at
EE point.
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Figure 12. Graphical behavior of c(t) with various values of fractal order ρ with σ = 0.93 at
EE point.
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6. Conclusions

In this study, a hepatitis C virus epidemic model is successfully studied. Two types of stable states,
disease-free and endemic steady state are described. Moreover, the local stability for both of the
steady-state is examined. It is observed that a disease-free stable state is locally asymptotically stable
if R0 < 1 and the same behavior is obtained for endemic state for R0 > 1. The Routh-Hurwitz procedure
is followed to determine the stability of the system. Similarly, the global stability of the model is
ascertained at DFE. Before, all the above-mentioned facts, the classical model is remodeled to obtain
a fractal-fractional hepatitis C infection model. Numerical simulations are presented to verify the
progression of the state variables at both of the steady states.
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