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Abstract: This paper deals a new numerical scheme to solve fractional differential equation (FDE)
involving Caputo fractional derivative (CFD) of variable order β ∈]0, 1]. Based on a few examples
and application models, the main objective is to show that FDE works more effectively than ordinary
differential equations (ODEs). The proposed scheme is fractional Ralston’s cubic method (RCM). The
convergence analysis and stability analysis of the scheme is proved. The numerical scheme has been
found without considering linearisation, perturbations, or any such assumptions. Finally, the efficiency
of the proposed scheme will justify by solving a few examples of linear and non-linear FDEs with
one application of FDE, world population growth (WPG) model of variable order β ∈]0, 1]. Also, the
comparison of fractional RCM scheme has been shown with the existing fractional Euler method (EM)
and fractional improved Euler method (IEM).

Keywords: fractional calculus; FDEs; fractional Euler method; fractional improved Euler method;
IVP, fractional Ralston’s method; real-world problem; population growth model
Mathematics Subject Classification: 26A33, 34A08, 93C10, 93C15, 78A70

1. Introduction

Fractional calculus (FC) is not a new research area; in reality, it has almost the same history as
classical calculus. It motivates the study of derivatives and integrals of fractional order (FO). The
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history of FC was started in 1695 and appreciated during last few decades, when L’Hopital’s question to

Leibniz about the differentiation of
d

1
2

dx
(x) [1]. For this, at that time, dated 30 September 1695, Leibniz

responded to L’Hopital that “This is an apparent Paradox from which, one day, useful consequences
will be drawn” and that was the birth of FC. After that, this concept of fractional differentiation,
fractional integration, and its application has found in many numerous areas of the research field
of sciences and engineering, especially in control engineering, electromagnetism, signal processing,
fluid mechanics, diffusion process, biosciences, statistical, and continuum mechanics and many more.
Also, from time to time, FC has been generalized by many researchers and mathematicians, namely
Euler, Laplace, Lagrange, Fourier, Riemann, and many others. The differentiation of FO β > 0 has
various definitions. But Riemann Liouville (RL) derivative and Caputo’s derivative are the old and
most commonly used. The CFD is used for our work as it has some advantage in dealing with the IVP
of fractional differential equation of non-integer order β > 0. Also, many authors [2, 3] have given the
existence and uniqueness conditions of the IVP for FDEs.

In the study, it has been found that most of the IVP of FDEs don’t have an exact scheme to find
the solution, especially for non-linear FDEs. So, it becomes a challenging situation for researchers
to establish some methods for finding the analytical solutions of FDEs. Therefore, many researchers
have suggested several methods numerically for extended approximate solutions of integer differential
equations into fractional differential equations. These schemes incorporates: fractional differential
transform scheme, Adomain decomposition scheme [4], variational iteration method [5], spectral
collocation scheme [6], fractional finite difference scheme [7], fractional Adams scheme [8], homotopy
perturbation scheme [9], homotopy analysis scheme [10], extrapolation method [11], and many others.

In current decades, the IVP of FDEs used as a weapon to solve the various mathematical models,
the epidemic model, the disease model, the dynamical system model, and many others. In recent times,
Tong et al. [12] proposed fractional EM and fractional IEM, which are the generalization of classical
EM and IEM for first-order IVP of FDEs. That EM has a linear convergence rate while IEM has a
quadratic convergence rate. In [13] (Chapter 06), C. Milici et al. study several numerical methods
for FO systems. In which, they proposed variational iteration, least squares, Euler’s, and Runge-Kutta
methods for the system of FDE in the CFD sense. In [14], Kumar et al. suggested a numerical
scheme to demonstrate the numerical behavior of the IVP of FDEs in which one of the methods is
midpoint point whose convergence rate is quadratic. In [15], Muhammad et al. developed a two-stage
generalized Rk2 scheme of second order in the CFD sense. These all referred works motivate us to
establish more accurate schemes to solve the IVP of FDE in the CFD sense. Also, our objective is
to show, based on a few concrete examples and a few application models, that FDEs can model the
physical problem more effectively than ODEs. Recently, many research article has been found that
solve the real-world phenomenon in FDEs [16–18]. This work proposes a fractional RCM scheme for
IVP of linear and non-linear FDEs of order β ∈ [0, 1]. This scheme has a cubic convergence rate. It is
the generalization of classical RCM, developed by Anthony Ralston [19,20]. This proposed scheme has
a more accurate approximation compared to existing fractional EM, IEM, Midpoint method (MPM),
and many others for the IVP of FDE:

CD
β

x+
0
u = g(x, u), with initial condition u(x0) = u0, and x ∈ (x0, xEnd]. (1.1)

Here, CD
β

x+
0

indicates the CFD of arbitrary order β where β ∈ [0, 1].
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By using the proposed work, our main goal is to establish a novel study which is more accurate and
appropriate in order to derive the approximate solution of IVP of FDEs (1.1). This scheme incorporates
the algorithm, order of convergence, stability, and few numerical examples including the application to
WPG model. The scheme also recognize as a type of Runge-Kutta third order method (RK3) and this
is explicitly familiar with the term “One-Step” method.

The presentation of the paper is designed as follows. In Section 2, we provide some preliminary
definitions and properties of fractional derivatives and integrals. Next, in Section 3, we suggest our
methodology briefly and its order of convergence by following some essential lemma and theorem.
Then, in Section 4, we establish the stability of the concerned scheme. After that, in Section 5, we
implemented the proposed method on a few examples of linear and nonlinear IVP of FDEs in the CFD
frame. In Section 6, we solved World Population Growth (WPG) model via the suggested scheme
with the comparison of EM and IEM. Finally, in Section 7, we conclude our methodology with some
essential annotations.

2. Preliminaries

This section focuses on some basic definitions of fractional derivatives and integrals, properties,
and valuable results in the RL and Caputo derivative sense. This section will be helpful in our this
advancement work as this will arise the generalization of ordinary calculus [21–25].

Definition 2.1. [26] The FO integral in the sense of RL derivative for the function κ : [a, b] → R of
arbitrary order β > 0 are

Jβa+κ(ζ) =
1

Γ(β)

∫ ζ

a

κ(p)
(ζ − p)1−βdp, ζ > a,

and

Jβb−κ(ζ) =
1

Γ(β)

∫ b

ζ

κ(p)
(p − ζ)1−βdp, ζ < b,

called the left and right RL fractional integral respectively. Here Γ(β) denotes the Euler’s Gamma
function.

Definition 2.2. [26, 27] The FO derivatives in the RL sense for the function κ : [a, b] → R of order
β > 0 are

RLD
β
a+κ(ζ) =

1
Γ(n − β)

dn

dζn

∫ ζ

a
(ζ − p)n−β−1κ(p)dp, ζ > a,

and

RLD
β
b−κ(ζ) =

(−1)n

Γ(n − β)
dn

dζn

∫ b

ζ

(p − ζ)n−β−1κ(p)dp, ζ < b,

called the left and right RL fractional derivative respectively, where n = 1 + [β] and [β] indicate the
integral part of β. Particularly, if we take 0 < β < 1, then

RLD
β
a+κ(ζ) =

1
Γ(1 − β)

d
dζ

∫ ζ

a
(ζ − p)−βκ(p)dp, ζ > a,

AIMS Mathematics Volume 7, Issue 6, 11320–11344.



11323

and

RLD
β
b−κ(ζ) = −

1
Γ(1 − β)

d
dζ

∫ b

ζ

(p − ζ)−βκ(p)dp, ζ < b,

are called the left and right RL derivatives of order β, where 0 < β < 1.

Definition 2.3. [26] The FO derivatives in the Caputo sense for the function κ : [a, b] → R of order
β > 0 are

CD
β
a+κ(ζ) =

1
Γ(n − β)

∫ ζ

a
(ζ − p)n−β−1κ(n)(p)dp, ζ > a,

and

CD
β
b−κ(ζ) =

(−1)n

Γ(n − β)

∫ b

ζ

(p − ζ)n−β−1κ(n)(p)dp, ζ < b,

called the left and right Caputo derivative respectively, where n = 1 + [β].
Particularly, if we take 0 < β < 1, then

CD
β
a+κ(ζ) =

1
Γ(1 − β)

∫ ζ

a
(ζ − p)−βκ′(p)dp, ζ > a,

and

CD
β
b−κ(ζ) = −

1
Γ(1 − β)

∫ b

ζ

(p − ζ)−βκ′(p)dp, ζ < b,

are called the left and right FO Caputo derivatives of order β, where 0 < β < 1.

The relation between the FO derivative in Caputo fractional derivative and Riemann-Liouville
fractional derivative is

CD
β
a+κ(ζ) = RLD

β
a+κ(ζ) −

n−1∑
k=0

κk(a)
(ζ − a)k−β

Γ(k − β + 1)
,

and

CD
β
b−κ(ζ) = RLD

β
b−κ(ζ) −

n−1∑
k=0

κk(b)
(b − ζ)k−β

Γ(k − β + 1)
,

where n = 1 + [β].

Definition 2.4. [26] The one and two parameter Mittag-Leffler function are defined by,

Eβ(ζ) =

∞∑
n=0

ζn

Γ(βn + 1)
, β, ζ ∈ C; Re(β) > 0,

and

Eβ,γ(ζ) =

∞∑
n=0

ζn

Γ(βn + γ)
, β, γ, ζ ∈ C; Re(β),Re(γ) > 0,

respectively. If β ∈ C with Re(β) > 0, then the series Eβ(ζ) is convergent for all ζ ∈ C. Similarly, if
β, γ ∈ C with Re(β),Re(γ) > 0, then the series Eβ,γ(ζ) is convergent for all ζ ∈ C.
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Lemma 2.1. [26] If β, γ ≥ 0, and Φ ∈ L1 [a, b], then

Jβa+ Jγa+Φ = Jβ+γ
a+ Φ, Jβb−Jγb−Φ = Jβ+γ

b− Φ,

holds everywhere on the interval [a, b]. If Φ(x) ∈ C [a, b] or 1 ≤ β + γ, then identity holds everywhere
on the interval [a, b].

Lemma 2.2. [28] If Φ ∈ Cn[a, b], a < b and n ∈ N. Moreover, If β1, β2 > 0 be such that, ∃ some
k ∈ N with k ≤ n and β1, β1 + β2 ∈ [k − 1, k]. Then,

CD
β1
a+CD

β2
a+Φ = CD

β1+β2
a+ Φ.

Theorem 2.1. (Existence of IVP of FDE) [12] Let g(x, u) be a function that hold the condition
g(x0, u(x0)) = 0 and also the g(x, u) is continuous on the domain R : 0 ≤ x − x0 ≤ d, |u − u0| ≤ e, then
the FDEs:

CD
β

x+
0
u = g(x, u), with the condition, u(a) = u0 and x ∈ (x0, xEnd], (2.1)

has at least one solution in the interval 0 ≤ x−x0 ≤ λwith λ = min
{
d,

e
M

}
and max

(x,u)∈R
CD

1−β
x+

0
g(x, u) < M.

Theorem 2.2. (Uniqueness of IVP of FDE) [12] Under the hypotheses of Theorem 2.1, and if gx(x, u)
holds the Lipschitz condition in the variable u with Lipschitz constant 0 < L,

|gx(x, u1) − gx(x, u2)| ≤ L |u1 − u2| ,

then the FDEs (2.1) have an unique solution.

3. Proposed scheme

In our work, we are concerned about the approximate solution of the IVP for the linear and non-
linear FDEs:

CD
β

x+
0
u = g(x, u), with initial condition u(x0) = u0, and x ∈ (x0, xEnd]. (3.1)

Here, we assume the derivative is in the CFD sense of FO β where β ∈ [0, 1]. Now, with the help of
Lemma 2.2, we apply suitable analogous transformation so that it becomes the classical differential
equation. Then, we get the CFD of order (1 − β) and the revised IVP of FDEs:

u′ = CD
1−β
x+

0
g(x, u), with initial condition u(x0) = u0, and x ∈ (x0, xEnd]. (3.2)

Now, to discover the accurate numerical scheme to find the solution of the IVP of FDEs (3.1) is
equivalent to locating the accurate numerical scheme for the IVP of FDEs (3.2). For such a precise
solution of (3.2), we designed the RCM in fractional derivative operator, which we rename as fractional
RCM, and it is more accurate and faster than all other linear and quadratic convergence rates like EM
and IEM [12]. Below, we describe the fractional RCM.
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Fractional RCM of FDE

For obtaining the approximate solution of FDE (3.2), we consider (xk, uk) be the set points and we
make this points accordingly so that the mesh are equally distribute in the whole interval [a, b] where
we set x0 = a and xEnd = b. This idea will be good by selecting an integer which is non-negative say N
and assuming the mesh points. So, By following RCM, we construct the following algorithm:

xk = x0 + kh, for k = 0, 1, 2, . . . ,N
h = xk+1 − xk,

uk+1 = uk + h
9 (2l1 + 2l2 + 4l3),

l1 = CD
1−β
x+

0
g(x, uk)

∣∣∣x=xk ,

l2 = CD
1−β
x+

0
g(x + h

2 , uk + h
2 l1)

∣∣∣x=xk ,

l3 = CD
1−β
x+

0
g(x + 3h

4 , uk + 3h
4 l2)

∣∣∣x=xk .

Also with the use of Matlab, the RCM algorithm is proven to be an effective and much more accurate
compared to linear and quadratic schemes.

Before showing the convergence of our suggested methodology, first we establish few relevant
results which will be essential in the establishment of the convergence of the methods.

Lemma 3.1. [12] If gx(x, u) be a function that hold the condition of Lipschitz in the variable of u, for
some Lipschitz constant L > 0,

|gx(x, u1) − gx(x, u2)| ≤ L |u1 − u2| ,

and also fulfil the conditions of Theorem 2.1, then G(x, u) = CD
1−β
x+

0
g(x, u) also holds the condition of

Lipschitz in the of variable u, for some another Lipschitz constant M > 0,

|G(x, u1) −G(x, u2)| ≤ M |u1 − u2| .

Lemma 3.2. If the function G(x, y) follows the condition of Lipschitz for the variable u and also
satisfies the condition of Theorem 2.1, then

τ(x, u) =
2
9

G(x, u) +
1
3

G
(
x +

h
2
, u +

h
2

G(x, u)
)

+
4
9

G
(
x +

3h
4
, u +

3h
4

G
(
x +

3h
4
, u +

3h
4

G
(
x +

h
2
, u +

h
2

G (x, u)
)))

,

(3.3)

also satisfies the condition of Lipschitz in the variable of u.

Proof.

|τ(x, u1) − τ(x, u2)| ≤
2
9
|G(x, u1) −G(x, u2)| +

1
3

∣∣∣∣∣∣G
(
x +

h
2
, u1 +

h
2

G(x, u1)
)
−

G
(
x +

h
2
, u2 +

h
2

G(x, u2)
)∣∣∣∣∣∣ +

4
9

∣∣∣∣∣∣G
(
x +

3h
4
, u1 +

3h
4

G
(
x +

h
2
, u1 +

h
2

G(x, y)
))
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−G
(
x +

3h
4
, u2 +

3h
4

G
(
x +

h
2
, u2 +

h
2

G(x, y)
))∣∣∣∣∣∣

≤ M |u1 − u2| +
hM2

2
|u1 − u2| +

h2M3

6
|u1 − u2|

= M
(
1 +

hM
2!

+
h2M2

3!

)
|u1 − u2|

= Lτ |u1 − u2| ,

So, |τ(x, u1) − τ(x, u2)| ≤ Lτ |u1 − u2|, where Lτ = M
(
1 + hM

2! + h2 M2

3!

)
.

Theorem 3.1. Consider gx(x, u) be the function that holds the condition of Lipschitz in the variable of
u with Lipschitz constant L > 0,

|gx(x, u1) − gx(x, u2)| ≤ L |u1 − u2| ,

and u(x) be the unique solution of IVP of FDEs (3.2).
Let uk be the generated solution approximation by Ralston’s Cubic method for some non-negative
integer N. Then for each k = 0, 1, 2, . . .N,

u (xk) − uk = O(h3).

Proof. Let us take RCM iterative formula which is based on uk = u(xk), then we get

ūk+1 = u(xk) +
h
9

[
2 CD

1−β
x+

0
g(x, uk)

∣∣∣∣
x=xk

+ 3CD
1−β
x+

0
g
(
x +

h
2
, uk +

h
2 CD

1−β
x+

0
g (x, uk)

∣∣∣∣
x=xk

)∣∣∣∣∣∣
x=xk

4CD
1−β
x+

0
g
x +

3h
4
, uk +

3h
4 CD

1−β
x+

0
g
(
x +

h
2
, uk +

h
2 CD

1−β
x+

0
g (x, uk)

∣∣∣∣
x=xk

)∣∣∣∣∣∣
x=xk


∣∣∣∣∣∣∣
x=xk

 .
Assuming, G(x, u) = CD

1−β
x+

0
g(x, u), then

ūk+1 = u(xk) +
h
9

[
2G (xk, uk) + 3G

(
xk +

h
2
, uk +

h
2

u′(xk)
)
+

4G
(
xk +

3h
4
, uk +

3h
4

G
(
xk +

h
2
, uk +

h
2

u′(xk)
))]

= u(xk) +
2h
9

G(xk, uk) +
h
3

[
G(xk, uk) +

(
h
2

Gx(xk, uk) +
h
2

Gu(xk, uk)u′(xk)
)
+

1
2!

(h
2

)2

Gxx(xk, uk) +
h2

2
u′(xk) Gxu(xk, uk) +

(
h
2

)2 (
u′(xk)

)2 Guu(xk, uk)
 + O(h3)

 +
4h
9[

G(xk, uk) +

(
3h
4

Gx(xk, uk) +
3h
4

(
G(xk, uk) +

h
2

Gx(xk, uk) +
h
2

u′(xk)Gu(xk, uk)
)

Gu(xk, uk)
)

+
1
2!

(
3h
4

)2 (
Gxx(xk, uk) + 2Gxu(xk, uk) (G(xk, uk) + O(h)) + Guu(xk, uk) (G(xk, uk) + O(h))2

)
AIMS Mathematics Volume 7, Issue 6, 11320–11344.
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+
1
3!

(
3h
4

)3 (
Gxxx(ξ, η) + 3 (G(xk, uk) + O(h)) Gxxu(ξ, η) + 3 (G(xk, uk) + O(h))2 Gxuu(ξ, η)

+ (G(xk, uk) + O(h))3 Guuu(ξ, η)
)]

= u(xk) + hu′(xk) +
h2

2
[
Gx(xk, uk) + u′(xk)Gu(xk, uk)

]
+

h3

3!
[
Gxx(xk, uk) + 2u′(xk)Gxu(xk, uk)

+ Guu(xk, uk)
(
u′(xk)

)2
+ Gx(xk, uk)Gy(xk, uk) + u′(xk) (Gu(xk, uk))2

]
+ O(h4)

= u(xk) + hu′(xk) +
h2

2
u′′(xk) +

h3

3!
u′′′(xk) + O(h4). (3.4)

By using the Taylor’s series, the exact form of the solution will be:

u(xk+1) = u(xk) + hu′(xk) +
h2

2!
u′′(xk) +

h3

3!
u′′′(xk) +

h4

4!
u′′′′(xk) + . . . (3.5)

Now, from the expression (3.4) and (3.5), we obtained |u(xk+1) − ūk+1| = O(h4). So, we get

|u(xk+1) − ūk+1| ≤ Kh4.

Let us assume that,

τ =
2
9

G(x, u) +
1
3

G
(
x +

h
2
, u +

h
2

G(x, u)
)

+
4
9

G
(
x +

3h
4
, u +

3h
4

G
(
x +

3h
4
, u +

3h
4

G
(
x +

h
2
, u +

h
2

G (x, u)
)))

,

then using the stated Lemmas 3.1 and 3.2, we have

|ūk+1 − uk+1| ≤ |u(xk) − uk| + h |τ(xk, u(xk)) − τ(xk, uk)|
≤ (1 + hLτ) |u(xk) − uk| .

Now,

|u(xk+1) − uk+1| ≤ |u(xk+1) − ūk+1| + |ūk+1 − uk+1|

≤ Kh4 + (1 + hLτ) |u(xk) − uk| .

So, we get the estimation, |Ek+1| = (1 + hLτ) |Ek| + Kh4.

Thus, we get the recursion relation,

|Ek| ≤ (1 + hLτ)k |E0| +
Kh3

Lτ

[
(1 + hLτ)k

− 1
]
.

As, xk − x0 = kh and E0 = 0 then, (1 + hLτ)k ≤ ekhLτ = φτ.

So, we have |Ek| ≤
Kh3

Lτ
(φτ − 1).

Therefore, |u(xk) − uk| = O(h3).
This conclude that RCM has a cubic convergence rate. �
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4. Stability of proposed scheme

In this section, let us look at the numerical stability of our proposed scheme. Consider the IVP of
FDE 3.2 in the simplest form by assuming G(x, u) = CD

1−β
x+

0
g(x, u) as,

u′ = G(x, u), with initial condition u(x0) = u0, and x ∈ [x0, xEnd]. (4.1)

The numerical solution of the RCM scheme is given by the formula:


uk+1 = uk + h

9 (2l1 + 2l2 + 4l3),
l1 = G(xk, uk),
l2 = G

(
xk + h

2 , uk + h
2 l1

)
,

l3 = G
(
xk + 3h

4 , uk + 3h
4 l2

)
.

In the simplest form, the concept of absolute stability [29, 30] is based on the analysis of the behavior,
according to the values of the step h, of the numerical solutions of the model equation:

u′(x) = µu.

The linearized equation uses G(x, u) = µu. In this case,

l1 = µuk,

l2 = µ

(
1 +

µh
2

)
uk,

l3 = µ

(
1 +

3µh
4

(
1 +

µh
2

))
uk.

These combine to form,

uk+1 =

[
1 + (hµ) +

(hµ)2

2
+

(hµ)3

6

]
uk = ξ(hµ)uk.

Let us put hµ = z, then the absolute stability region is the set

{z ∈ C : |ξ(hµ)| ≤ 1}.

Let us examine the stability region of the numerical scheme RCM. Here, the stability region is the set
of points such that |ξ(hµ)| ≤ 1, which is shown in the Figure 1. Note that for stability, the choice of
h must guarantee that |hµ| is inside the region. Furthermore, the real parts must be nonnegative for
stability (or marginal stability). Therefore the regions to the left of the imaginary axis are the only ones
of relevance.
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 µ
)

RCM stability Region
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Figure 1. Stability region for RCM.

5. Numerical results and discussion

In this section, we illustrate how our proposed scheme operates in practice. We consider few
examples of linear as well as non-linear IVP for FDEs in CFD form and solved numerically using the
RCM scheme. First we compare the numerical solution with the analytical ones and then compare with
the existing EM and IEM schemes. All the numerical computation have been carried out in MATLAB
R2016a version. Now, before proceeding of numerical examples, we define few terminology.

The absolute error used in the table is defined as, eN = max
j∈Z
|u(x j)−uN(x j)|. The used estimated oder

of convergence (EOC) is defined by the quantity as,

EOC = log2
‖u − uN‖∞

‖u − u2N‖∞
,

where uN and u2N are the approximate solution at two distinct grids, with step length h and h
2 ,

respectively.

Numerical examples

In this subsection, we consider four examples of fractional IVPs of FDEs. In these four examples,
the Examples 5.1 and 5.2 are linear, Examples 5.3 and 5.4 are non-linear. Here, we consider in
Examples 5.1–5.3, the FDE has exact solution and Example 5.4, the FDE has no exact solution. These
all FDEs are solved using the proposed fractional RCM including the proper comparison with the
existing fractional EM and IEM.
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Example 5.1. Consider the following fractional linear initial value problem (IVP) of FDE:

CD
β
0+u = x3, 0 < x ≤ 1, (5.1)

u(0) = 0.

For β = 1
2 , the exact solution of (5.1) is,

u(x) =
Γ(4)

Γ(4.5)
x3.5.

Using our suggested scheme for β = 1
2 and with step length h = 1

10 , the numerical solution of (5.1) are
graphically represented in the Figure 2 and their exact solution, approximate solution are illustrated in
the Table 1. Together with this, the absolute error visualization is indicated in Figure 3. The EOC and
CPU performance of the schemes is tabulated in Table 2, and its plot is illustrated in Figure 4.

In the Figure 2, it represents the comparison between the exact and numerical result of our proposed
scheme RCM with EM and IEM. Table 1 indicates the exact value, approximate value and absolute
error of EM, IEM, and our proposed scheme RCM in which we observe that the numerical solution
of RCM are more accurate to the exact solution. Figure 3 represents the absolute error of EM, IEM
and our proposed scheme RCM, in which we notice that RCM has minimum absolute error in the
comparison of EM and IEM, while IEM has second order of convergence. The order of convergence
of our suggested scheme RCM, EM, IEM is tabulated in the Table 2 and graphically shown in the
Figure 4. From there, it is clear that the order of EM is linear, the order of IEM is quadratic and the
order of RCM is cubic. So, RCM is better than the EM and IEM. Next, in the Figure 4, the blue line
indicates the linear convergence of EM, the magenta line indicates the quadratic convergence of IEM,
and the green line indicates the cubic convergence of RCM respectively.

From our stated Example 5.1, the conclusion is that RCM is much more accurate in the comparison
of the EM and IEM. Similar conclusion can also be drawn in the Examples 5.2 and 5.3.

Table 1. Numerical solutions of Example 5.1 when β = 1
2 with step length h = 1

10 .

EM IEM RCM
x uexact uEM |uexact − uEM | uIEM |uexact − uIEM | uRCM |uexact − uRCM |

0.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.10 0.000163 0.000000 0.000163 0.000285 0.000122 0.000157 0.000006
0.20 0.001845 0.000571 0.001275 0.002186 0.000340 0.001837 0.000009
0.30 0.007628 0.003801 0.003828 0.008250 0.000622 0.007617 0.000011
0.40 0.020879 0.012700 0.008179 0.021835 0.000956 0.020866 0.000013
0.50 0.045593 0.030970 0.014624 0.046927 0.001334 0.045578 0.000015
0.60 0.086305 0.062885 0.023420 0.088057 0.001752 0.086288 0.000017
0.70 0.148030 0.113230 0.034800 0.150237 0.002207 0.148012 0.000018
0.80 0.236223 0.187245 0.048978 0.238919 0.002696 0.236203 0.000020
0.90 0.356743 0.290592 0.066151 0.359959 0.003216 0.356722 0.000021
1.00 0.515830 0.429326 0.086505 0.519596 0.003766 0.515808 0.000022
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Table 2. EOC with CPU time of Example 5.1.

EM IEM RCM
n Error EOC CPU(sec) Error EOC CPU(sec) Error EOC CPU(sec)
10 0.08650 — 0.00005 0.00377 — 0.00006 0.00002 — 0.00008
20 0.04419 0.96891 0.00011 0.00094 2.00107 0.00024 0.00000 2.97066 0.00032
40 0.02233 0.98472 0.00029 0.00024 2.00039 0.00067 0.00000 2.97987 0.00100
80 0.01123 0.99242 0.00006 0.00034 2.00014 0.00068 0.00000 2.98607 0.00115
160 0.00563 0.99623 0.00117 0.00001 2.00005 0.00194 0.00000 2.99030 0.00284
320 0.00282 0.99812 0.00244 0.00000 2.00002 0.00469 0.00000 2.99321 0.00578
640 0.00141 0.99906 0.00490 0.00000 2.00001 0.01049 0.00000 2.99524 0.01400
1280 0.00071 0.99953 0.00862 0.00000 2.00000 0.01811 0.00000 2.99664 0.02656
2560 0.00035 0.99977 0.01213 0.00000 2.00000 0.02224 0.00000 2.99744 0.04221
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Figure 2. Exact and numerical solutions of Example 5.1.
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Figure 3. Absolute error visualization of Example 5.1.
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Figure 4. Order of convergence plot of Example 5.1.

Example 5.2. Consider the following linear IVP of FDE [31]:

CD
β
0+u = u, 0.1 < x ≤ 1, (5.2)

u(0.1) = Eβ((0.1)β).

For β = 1
2 , the exact solution of (5.2) is,

u(x) = Eβ(xβ).

Using our suggested scheme for β = 1
2 and with step length h = 1

10 , the numerical solution of (5.2) are
graphically represented in the Figure 5 and their exact solution, approximate solution are illustrated in
the Table 3. Together with this, the absolute error visualization is indicated in Figure 6. The EOC and
CPU performance of the schemes is tabulated in Table 4, and its plot is illustrated in Figure 7.

Example 5.3. Consider the following non-linear IVP of FDE:

CD
β
1+u =

(
35
√
π

32

)
u

6
7 , 1 < x ≤ 2, (5.3)

u(1) = 1.

For β = 1
2 , the exact solution of (5.3) is,

u(x) = x3.5.

Using our suggested scheme for β = 1
2 and with step length h = 1

10 , the numerical solution of (5.3) are
graphically represented in the Figure 8 and their exact solution, approximate solution are illustrated in
the Table 5. Together with this, the absolute error visualization is indicated in Figure 9. The EOC and
CPU performance of the schemes is tabulated in Table 6, and its plot is illustrated in Figure 10.
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Table 3. Numerical solutions of Example 5.2, when β =
1
2

, with step length h =
1

10
.

EM IEM RCM
x uexact uEM |uexact − uEM | uIEM |uexact − uIEM | uRCM |uexact − uRCM |

0.10 1.486763 1.486763 0.000000 1.486763 0.000000 1.486763 0.000000
0.20 1.799017 1.813852 0.014835 1.803337 0.004320 1.799343 0.000326
0.30 2.107699 2.119910 0.012211 2.113254 0.005555 2.108071 0.000372
0.40 2.430043 2.433687 0.003644 2.436248 0.006205 2.430428 0.000385
0.50 2.774286 2.765897 0.008389 2.780962 0.006676 2.774675 0.000389
0.60 3.146213 3.123114 0.023099 3.153299 0.007086 3.146603 0.000390
0.70 3.550803 3.510572 0.040230 3.558285 0.007482 3.551193 0.000390
0.80 3.992836 3.933086 0.059750 4.000723 0.007887 3.993226 0.000390
0.90 4.477185 4.395448 0.081737 4.485498 0.008313 4.477573 0.000389
1.00 5.008980 4.902637 0.106343 5.017751 0.008771 5.009367 0.000387

Table 4. EOC with CPU time of Example 5.2.

EM IEM RCM
n Error EOC CPU(sec) Error EOC CPU(sec) Error EOC CPU(sec)
10 0.09645 — 0.00006 0.00715 — 0.00007 0.00029 — 0.00010
20 0.04997 0.94871 0.00012 0.00183 1.96664 0.00016 0.00004 2.89943 0.00022
40 0.02544 0.97401 0.00028 0.00046 1.99007 0.00031 0.00000 2.98186 0.00054
80 0.01284 0.98703 0.00033 0.00012 1.99737 0.00059 0.00000 3.00258 0.00090
160 0.00645 0.99354 0.00064 0.00003 1.99933 0.00181 0.00000 3.00457 0.00370
320 0.00323 0.99678 0.00229 0.00001 1.99983 0.00451 0.00000 3.00313 0.00711
640 0.00162 0.99839 0.00238 0.00000 1.99996 0.00505 0.00000 3.00178 0.01928
1280 0.00081 0.99920 0.00589 0.00000 1.99999 0.00680 0.00000 3.00095 0.02912
2560 0.00040 0.99960 0.00682 0.00000 2.00000 0.01662 0.00000 3.00009 0.04033

Table 5. Numerical solutions of Example 5.3, when β =
1
2

, with step length h =
1

10
.

EM IEM RCM
x uexact uEM |uexact − uEM | uIEM |uexact − uIEM | uRCM |uexact − uRCM |

1.00 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
1.10 1.395965 1.350000 0.045965 1.391837 0.004127 1.395743 0.000221
1.20 1.892929 1.783674 0.109255 1.883452 0.009478 1.892442 0.000488
1.30 2.504965 2.312825 0.192141 2.488830 0.016135 2.504165 0.000800
1.40 3.246745 2.949869 0.296875 3.222565 0.024180 3.245583 0.001161
1.50 4.133514 3.707821 0.425693 4.099827 0.033687 4.131942 0.001571
1.60 5.181076 4.600266 0.580810 5.136346 0.044730 5.179043 0.002033
1.70 6.405768 5.641347 0.764422 6.348392 0.057377 6.403222 0.002546
1.80 7.824449 6.845745 0.978704 7.752755 0.071694 7.821336 0.003113
1.90 9.454479 8.228665 1.225814 9.366733 0.087746 9.450744 0.003735
2.00 11.313708 9.805821 1.507887 11.208114 0.105594 11.309296 0.004413
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Table 6. EOC with CPU time of Example 5.3.

EM IEM RCM
n Error EOC CPU(sec) Error EOC CPU(sec) Error EOC CPU(sec)
10 1.50789 — 0.00006 0.10559 — 0.00007 0.00441 — 0.00011
20 0.80303 0.90901 0.00027 0.02854 1.88746 0.00045 0.00059 2.89185 0.00064
40 0.41481 0.95299 0.00046 0.00743 1.94236 0.00091 0.00008 2.94618 0.00117
80 0.21087 0.97610 0.00074 0.00189 1.97081 0.00093 0.00001 2.97319 0.00251
160 0.10632 0.98795 0.00109 0.00048 1.98531 0.00465 0.00000 2.98662 0.00889
320 0.05338 0.99395 0.00326 0.00012 1.99263 0.00564 0.00000 2.99332 0.00976
640 0.02675 0.99697 0.00729 0.00003 1.99631 0.01485 0.00000 2.99666 0.02247
1280 0.01339 0.99848 0.01173 0.00001 1.99815 0.03425 0.00000 2.99833 0.03725
2560 0.00670 0.99924 0.02115 0.00000 1.99908 0.03590 0.00000 2.99907 0.04107
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Figure 5. Exact and numerical solutions of Example 5.2.
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Figure 6. Absolute error visualization of example 5.2.
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Figure 7. Order of convergence plot for Example 5.2.
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Figure 8. Exact and numerical solutions of Example 5.3.
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Figure 9. Absolute error visualization of Example 5.3.
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Figure 10. Order plot for Example 5.3.

Example 5.4. Consider the following IVP of FDE:

CD
β
0+u = e2x, 0 < x ≤ 1, (5.4)

u(0) = 1.

With the help of our suggested scheme for β = 1
10 and with step length h = 1

10 and h = 1
20 , the

numerical solution of (5.4) is graphically shown in the Figure 11 and their approximate solutions for
h = 1

20 is illustrated in the Table 7. In this example, the absolute error is calculated as the difference
between the approximate solution at N grid point and 2N grid point. The absolute error visualization
is indicated in Figure 12 for h = 1

20 . The EOC and CPU performance of the schemes is tabulated in
Table 8, and its plot is illustrated in Figure 13 for h = 1

20 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

EM
IEM
RCM

(a) For h = 1
10 and β = 1

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

EM
IEM
RCM

(b) For h = 1
20 and β = 1

10

Figure 11. Numerical solutions of Example 5.4 for h = 1
10 and h = 1
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(
β = 1
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)
.
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Figure 12. Absolute error visualization of Example 5.4
at h = 1

20 with the use of h = 1
10 .
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Figure 13. Order plot for Example 5.4.
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Table 7. Numerical solutions of Example 5.4 when β = 1
10 , with step length h = 1

20 .

EM IEM RCM
x uEM

∣∣∣uEM(h) − uEM( h
2 )

∣∣∣ uIEM

∣∣∣uIEM(h) − uIEM( h
2 )

∣∣∣ uRCM

∣∣∣uRCM(h) − uRCM(h
2 )

∣∣∣
0.00 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
0.10 1.196419 0.005035 1.206748 0.000129 1.206575 0.000001
0.20 1.436327 0.011185 1.459271 0.000287 1.458887 0.000001
0.30 1.729350 0.018697 1.767703 0.000479 1.767061 0.000002
0.40 2.087249 0.027872 2.144423 0.000715 2.143466 0.000003
0.50 2.524389 0.039079 2.604549 0.001002 2.603208 0.000005
0.60 3.058312 0.052766 3.166549 0.001353 3.164738 0.000007
0.70 3.710447 0.069484 3.852977 0.001781 3.850593 0.000009
0.80 4.506967 0.089903 4.691383 0.002305 4.688297 0.000011
0.90 5.479839 0.114843 5.715413 0.002944 5.711471 0.000014
1.00 6.668107 0.145305 6.966167 0.003725 6.961180 0.000018

Table 8. EOC with CPU time of Example 5.4.

EM IEM RCM
n Error EOC CPU(sec) Error EOC CPU(sec) Error EOC CPU(sec)
10 0.28317 — 0.00003 0.01489 — 0.00004 0.00014 — 0.00005
20 0.14531 0.96258 0.00007 0.00372 1.99910 0.00007 0.00002 2.99292 0.00010
40 0.07358 0.98163 0.00011 0.00093 1.99977 0.00012 0.00000 2.99678 0.00019
80 0.03702 0.99090 0.00017 0.00023 1.99994 0.00024 0.00000 2.99847 0.00065
160 0.01857 0.99547 0.00028 0.00006 1.99999 0.00049 0.00000 2.99926 0.00075
320 0.00930 0.99774 0.00034 0.00001 2.00000 0.00063 0.00000 2.99963 0.00096
640 0.00465 0.99887 0.00104 0.00000 2.00000 0.00164 0.00000 2.99984 0.00190
1280 0.00233 0.99944 0.00129 0.00000 2.00000 0.00292 0.00000 2.99947 0.00471
2560 0.00116 0.99972 0.00334 0.00000 2.00000 0.00724 0.00000 3.00440 0.01124

6. Application example and simulation

In this section, we consider one application of the real-world phenomenon WPG model in the form
of CFD. We solve the model numerically using our proposed scheme. Also, we discuss the benefits of
FC using the WPG model.

Example 6.1 (WPG Model). Consider the following linear IVP of FDE of WPG model [32],

CD
β

t+0
N(t) = PN(t), t > t0, (6.1)

N(t0) = N0. (6.2)

Here N(t) suggest the number of individuals population at any time t and here our P represents the
production rate where P = B − M, B indicates the rate of birth, and M indicates the rate of mortality.
Now, if we assume the value of β = 1 then in this case, our corresponding model will be linear
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population world growth model which is also famous as a classical population world growth model.
The exact solution of (6.1) for β = 1 is,

N(t) = N0 ePt, t > 0.

Where N0 indicates the initial population at the initial time t = t0. Our fractional
model is better than the classical model from the numerical perspective. We have
taken the population database from the year 1920 to 2018, that is around one century
from the world population sites https://www.census.gov/data/tables/time-series/demo/
international-programs/historical-est-worldpop.html or https://datacommons.org/
place/Earth (provided by world bank), and also one is taken by United Nations [33]. These statistical
population data match our fractional model scheme for β = 1.393298754843208. Also, The exact
solution of (6.1) for the fractional model of population world growth model will be,

N(t) = N0 Eβ(Pt), t > 0.

Now, in our classical population model scheme, the estimated value of our production rate is
P ≈ 0.013501 and for the fractional model scheme, the production rate P ≈ 0.0034399 [34].
So, it has been found that the statistical population date value fit with the our fractional model for
β = 1.3932987548432.

The world population data from the year 1920 to 2018 is graphically represented in the Figure 14
and the numerical value of (6.1) for β = 1 and β = 1.393298754843 with the step size h = 1 year
is graphically shown in the Figure 15, tabulated in the Table 9. In addition to this, the absolute error
visualization represented in Figure 16. From all the tables and figures, we conclude that our suggested
scheme RCM is much more accurate and faster than EM and IEM.

Table 9. Numerical solution of Example 6.1 when β = 1, β = 1.3932987548432, with h = 1
year.

EM IEM RCM
Year(t) Nclasical N f rac NEM Error NIEM Error NRCM Error
1920 1.8600×103 1.8600×103 1.8600×103 0.0000×100 1.8600×103 0.0000×100 1.8600×103 0.0000×100

1930 2.1289×103 1.9909×103 1.9799×103 1.1060×101 1.9892×103 1.7315×100 1.9904×103 4.8870×10−1

1940 2.4366×103 2.2169×103 2.2020×103 1.4921×101 2.2152×103 1.7413×100 2.2164×103 4.8880×10−1

1950 2.7888×103 2.5173×103 2.4987×103 1.8625×101 2.5156×103 1.7390×100 2.5168×103 4.8882×10−1

1960 3.1919×103 2.8943×103 2.8717×103 2.2615×101 2.8926×103 1.7320×100 2.8938×103 4.8884×10−1

1970 3.6533×103 3.3561×103 3.3290×103 2.7117×101 3.3544×103 1.7219×100 3.3556×103 4.8885×10−1

1980 4.1814×103 3.9147×103 3.8824×103 3.2308×101 3.9130×103 1.7090×100 3.9142×103 4.8886×10−1

1990 4.7858×103 4.5858×103 4.5474×103 3.8363×101 4.5841×103 1.6930×100 4.5853×103 4.8888×10−1

2000 5.4775×103 5.3885×103 5.3431×103 4.5471×101 5.3869×103 1.6737×100 5.3881×103 4.8889×10−1

2010 6.2693×103 6.3462×103 6.2923×103 5.3847×101 6.3445×103 1.6505×100 6.3457×103 4.8891×10−1

2020 7.1755×103 7.4865×103 7.4228×103 6.3739×101 7.4849×103 1.6229×100 7.4860×103 4.8893×10−1
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Figure 14. Population data from 1920 to 2018.
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Figure 15. Exact and numerical solutions of Example 6.1.

AIMS Mathematics Volume 7, Issue 6, 11320–11344.



11341

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Years

10-1

100

101

102

P
o
p
u
l
a
t
i
o
n
 
e
r
r
o
r
 
i
n
 
m
i
l
l
i
o
n Absolute error plot

EM
IEM
RCM

Figure 16. Absolute error plot for Example 6.1.

From the year 1920 to June 2018, as per “The Census Bureau’s International Data Base” indicates
that the world population data reached around 7.5 billion. This data is very accurate and near to our
fractional model for the FO β = 1.3932987548432. So, by our scheme, the numerical population data
gives a more precise and appropriate solution than the fractional EM and fractional IEM.

7. Conclusions

In this paper, the fractional RCM scheme is established for the IVP of FDE in CFD sense for the first
time. Here, we do some analogous conversion of CFD of order β into an ODE of integer order one, and
then we operate our proposed scheme in the revised problem. The numerical scheme was used directly
without consuming the perturbation, linearization, or other assumptions. The convergence analysis and
stability analysis of the scheme has been proved. Also, in this work, we demonstrated a comparative
numerical study of our proposed scheme with the comparison of the existing scheme fractional EM
and fractional IEM for various examples of linear and non-linear FDEs. The scheme also solves one
real-world phenomenon: The fractional WPG model. Now, here we conclude the significant benefits
of our scheme:

• The fractional RCM scheme has a cubic convergence rate which is slightly faster than the other
linear and quadratic convergence methods for the IVP of FDEs.
• The idea of computation of the proposed scheme is better, and we can get the desired

approximation with the increment of mesh points.
• With the help of the WPG model, we discovered that FDEs fit the model better than ODE.

In the future, this work may be helpful to solve the IVP of FDE more accurately and effectively.

AIMS Mathematics Volume 7, Issue 6, 11320–11344.
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17. H. Günerhan, M. Yiğider, J. Manafian, O. A. Ilhan, Numerical solution of fractional order logistic
equations via conformable fractional differential transform method, J. Interdiscip. Math., 24
(2021), 1207–1220. https://doi.org/10.1080/09720502.2021.1918319

18. I. Area, J. J. Nieto, Fractional-order logistic differential equation with Mittag-Leffler-type kernel,
Fractal Fract., 5 (2021), 273. https://doi.org/10.3390/fractalfract5040273

19. S. C. Chapra, R. P. Canale, Numerical methods for engineers, Boston: McGraw-Hill Higher
Education, 2010.

20. A. Ralston, P. Rabinowitz, A first course in numerical analysis, 2 Eds., Mineola: Dover
Publications, 2001.
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