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Abstract: The present work implements the continuous Galerkin-Petrov method (cGP(2)-method) to
compute an approximate solution of the model for HIV infection of CD4+ T-cells. We discuss and
analyse the influence of different clinical parameters on the model. The work also depicts graphically
that how the level of CD4+ T-cells varies with respect to the emerging parameters in the model.
Simultaneously, the model is solved using the fourth-order Runge Kutta (RK4) method. Finally, the
validity and reliability of the proposed scheme are verified by comparing the numerical and graphical
results with those obtained through the RK4 method. A numerical comparison between the results of
the cGP (2) method and the RK4 method reveals that the proposed technique is a promising tool for the
approximate solution of non-linear systems of differential equations. The present study highlights the
accuracy and efficiency of the proposed schemes as in comparison to the other traditional schemes, for
example, the Laplace adomian decomposition method (LADM), variational iteration method (VIM),
homotopy analysis method (HAM), homotopy perturbation method (HAPM), etc. In this study, two
different versions of the HIV model are considered. In the first one, the supply of new CD4+ T-
cells from the thymus is constant, while in the second, we consider the production of these cells as a
monotonically decreasing function of viral load. The experiments show that the lateral model provides
more reasonable predictions than the former model.
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1. Introduction

Human immunodeficiency virus (HIV) is the causative agent for acquired immunodeficiency
syndrome (AIDS) which damages ability of body to fight against diseases and leave it open to attack
from usual innocuous infections. Once the HIV virus enters in the body, it infects a large amount of
CD4+ T-cells and replicates quickly. During the initial stage of infection the blood contains high loads
of HIV virus particles which propagates throughout the body. HIV viruses spread through bodily
fluids, e.g., urine, spit, breast milk, blood, tears and so on. It is found in these fluids both as virus
within infected immune cells and free virus particles. Without treatment, most of the HIV infected
people will grow AIDS in ten to fifteen years of infection, while some people remain healthy longer
than this even without treatment. The common signs and symptoms of AIDS are weight loss, skin
rash, fever, white patches or sores in mouth, sores in throat, muscle weakness, breathing, mental
changes and infection of the lining around the brain all occurring at the same time. Human body
provides an ideal environment for many microbes, such as bacteria, viruses, and parasites, but the
immune system prevents, limits their entry and growth to maintain finest health. Immune system is a
system of biological structures, which is made up of proteins, tissues, organs, and special cells that
work together to defend the body against microorganisms, disease, germs and other invaders. When
the immune system of the body is destabilized, a number of different diseases, infections and cancers
are allowed to grow in the human body. In humans, CD4+ T-cells are the key target of HIV virus to
kill and decreases the number of these cells increasingly throughout the course of the disease [1].
CD4+ T-cells play a crucial role in the human immune system and normal amount of these cells in the
blood of a healthy adults are 1000 per cubic millimeter approximately [2]. The destruction of these
cells lies at the heart of the immunodeficiency that characterizes AIDS.

In many countries, the HIV/AIDS pandemic has reached the tipping point, with obvious and
devastating economic and social consequences. HIV/AIDS becomes a macroeconomic challenge
because of its wide economic effect, and strategies to combat the infection have immediate
implications for important economic indicators including economic growth, income, and
development. An approach that solely captures the key aggregate economic variables would overlook
many of the microeconomic consequences of HIV/AIDS on living standards, which are important for
public policy and influence the main aggregate economic variables, such as the accumulation of
physical and human capital. Firstly, rising mortality reduces the number of employees in the
economy, both intotal and across professions and skillsets. Production and administrative procedures
become less efficient when employees become infected with HIV. Consumers seldom completely
compensate for the loss of a breadwinner, leading to increased poverty and less access to education
for children. Long term, HIV/AIDS impacts the development of both health and education.
HIV/AIDS leads to a decline in wellbeing through increasing death and its economic consequences.

In recent years, several mathematical models have been proposed and analysed for the HIV
infection and interaction of HIV with the immune system explaining various phenomena such as the
models developed by McLean (1888–1990), Merrill (1989), Nowak et al. (1990) and Nowak Mc
Lean (1991), etc. In 1889, Perelson [1] developed a model consisting three variables, i.e., the
population of uninfected/infected T-cells and the free HIV virus particles. This model plays a
fundamental role in mathematical modeling for human immune system and for understanding
infection of HIV. later on, Perelson et al. [2] presented another model using four variables, i.e., the
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concentration of free virus particles, uninfected, actively infected and latently infected T-cells. This
model demonstrated various clinical characteristics of AIDS such as the reduction of CD4+ T-cells,
the low levels and long latency time of free virus in the body. Ruan and Culshaw [3] reduced the
model using three variables: free HIV virus particles, uninfected and infected T-cells. They
introduced a discrete time delay model that shows the variation in time between the clearance of virus
particles and infection of cells on a cellular level. Wang and Song [4] discussed the existence and
stability aspects of the model. Mechee and Haitha [5] investigated about the application of Lie
symmetry for HIV infected model and that model deal with initial value of nonlinear differential
equation. The authors in [5] found uninfected T-cells in the host body with the help of Lie symmetry
approach. Li and Xiao [6] studied the global dynamics of a virus immune system to demonstrate the
HIV virus load and structured treatment interruptions. They also discussed sliding and global
dynamics of the model that contains elimination rate of HIV and growth rate of the infection cells.
Espindola et al. [7] worked on macrophages and its effect in HIV infection. They also analyzed the
impact of Highly Active Anti-Retroviral Therapy (HAART) on HIV infection. Kinner et al. [8]
studied the occurrence of HIV, Hepatitis-B and Hepatitis-C in older and young adults and concluded
that it is lower in young adults than elder people and both of these are prisoners. Angulo et al. [9]
demonstrated that the main path of HIV-1 infection is transmitted from mother to its kids. They also
found polymorphisms Human Leukocyte Antigen class-B (HLA-B) that is concerned in HIV-1
infection. Theys et al. [10] studied HIV-1 impact on the host cell and their transmission. They also
worked and found link between evolution of in host cell and fitness of host cell. Hallberge et al. [11]
established a developed stage of knowledge on significance of HIV revelation between partners. They
discussed that most of HIV infection is transferred from one infected person (female) to another
person (male) and status of both are the main factor of this disease. Ransome et al. [12] analyzed the
spread, cure and prevention of HIV infection in social relationship. They realized that social capital is
important factor of HIV transmission from one to another person. Naidoo et al. [13] studied the care
of Tuberculosis (TB) and their class in those people that already infected by HIV. Omondi et al. [14]
considered a mathematical model of HIV infection and investigated the transmission between two
kind of different ages. They also showed that males are less infected than their female partner by this
infection. Sweileh et al. [15] discussed the global research activity on mathematical modeling of
transmission and control of 23 selected infectious disease outbreak. Wu et al. [16] investigated the
fractional-order HIV-1 infection model withuncertainty in the initial data. Ayele et al. [17] established
an HIV/AIDS mathematical model that includes important compartments such as individuals who are
aware and unaware of their susceptibility to the disease, undiagnosed HIV infections, diagnosed HIV
infectious with and without AIDS symptoms, and people who have been treated for the disease.
Aljahdaly et al. [18] introduced fractional-order into a mathematical model of HIV infection of
healthy T-cells combining with the rate of multiply uninfected T-cells through mitosis and stem cell
therapy. Sultanoglu et al. [19] used a mathematical model to analyse HIV transmission in Cyprus.
Duro et al. [20] illustrated the CD4+ T-cells monitoring in HIV infected peoples with the help of
CD4+ T-cells counts. They also found the chance of CD4+ T-cells maintaining during viral
suppression by using Kaplan-Meier technique. In open literature, various approximate analytical
techniques, such as HAM, LADM, VIM and HPM, etc., are widely used for the solution of the
models describing the real world phenomena. Khan et al. [21] described the mathematical modeling
and dynamics of a novel corona virus (2019-nCoV) solved numerically and presented many graphical
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results. Ongun [22] employed the laplace adomain decomposition method (LADM) to the model
described in [3]. Merdan [23] applied homotopy perturbation method (HPM) to the model studied by
Ongun for finding the approximate solution. Ghoreishi et al. [24] utilized the homotopy analysis
method (HAM) and solved the governing model. Ali et al. [25] computed solution of HIV infected
model by using Adomian decomposition method (ADM) that illustrate the solution of ODEs in term
of infinite series components. Attaullah et al. [26] discussed the dynamical behaviour of HIV
infection and show the influence of significant parameters involved in the model. They solved the
model utilizing Galerkin method and compared the results with those obatained from RK4-method.
Yuzbasi and Karacayir [27] considered a model of HIV infection and determined solution of the
model by using exponential Galerkin method (EGM). They used a technique of residual correction.
The purpose of this technique to reduce the error of solution. They also showed his result numerically
and compared with numerous existing method. Attaullah and Sohaib [28] implemented two numerical
schemes namely continuous GalerkinPetrov (cGP(2)) and Legendre Wavelet Collocation
Method (LWCM).

1.1. Main contributions

The main objectives of the present article is to extend the work of Ghoreishi et al. [24], which is
based on HIV infection of CD4+ T-cells. Therein, the production of new CD4+ T-cells from thymus is
considered as constant. But HIV may have the ability to infect these cells in bone marrow as well as
in thymus [2]. For this reason we extend our work with the assumption that the production of new
CD4+ T-cells from thymus (source term) is a decreasing function of viral load [1, 2, 29]. We solved
these models numerically utilizing Galerkin discretization schemes known as continuous
Galerkin-Petrov method (see [26, 28, 30] for details information) and examined the influence of
different parameters used in these models. Particularly, the cGP(2)-method is employed having the
accuracy of 4th order in the discrete time points [26, 28, 30]. It is accurate and avoids the difficulties
and massive computational work that commonly arise from traditional techniques, such as LADM,
HPM, and HAM, etc. The results obtained by the proposed scheme are more reliable than the
previous methods used for this model. Moreover, we have solved the model by using the Runge Kutta
scheme of order four (RK4). By means of numerical experiments we compared the solutions of the
RK4 scheme with the solutions obtained by the Galerkin discretization scheme with respect to
accuracy. Graphical results are presented and discussed quantitatively to illustrate the solution. All
the computations are performed by using a MATLAB code.

1.2. Structures of the manuscript

The manuscript is organized as follows: Section 2 discusses the basic mathematical model for HIV
infection. The details of the numerical methods employed in the model are described in Section 3. In
Section 4, we demonstrated the results and discussion of the study. Section 5 introduces the comparison
of the results achieved through the suggested schemes. Section 6 concludes the paper by outlining the
future areas of research.
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2. Mathematical model

The model for HIV infection of CD4+ T-cells described by Ghoreishi et al. [24] is

dT
dt

= f1 (T (t), I(t),V(t)) = r0 − dT T + αT
(
1 −

T + I
Tmax

)
− k1VT, (2.1)

dI
dt

= f2 (T (t), I(t),V(t)) = k2VT − IdI , (2.2)

dV
dt

= f3 (T (t), I(t),V(t)) = NdbI − k1VT − dVV, (2.3)

where T (t), I(t) and V(t) denote the concentration of healthy, infected CD4+ T-cells and the free HIV
virus particles at any time t, respectively.

The major parameter which shows the total number of HIV virus particles released by one cell
during its lifetime is denoted by N. Since the model discussed here focuses on the population healthy
CD4+ T-cells and infected CD4+ T-cells. Throughout the remainder of this study we will use the
term healthy T-cells and infected T-cells to mean healthy CD4+ T-cells and infected CD4+ T-cells
respectively. The initial values of dependent variables, parameter, constant and their explanation are
given in Table 1.

Table 1. List of parameters and variables used in the model [24].

Variables Description Values
T0 Population of healthy T-cells 1000 mm−3

I0 Population of infected T-cells 0
V0 Population of free HIV virus particles 10−3mm−3

Parameters and constants
r0 The supply rate of healthy T-cells from

precursors
10 day−1mm−3

α Growth rate in the concentration of healthy T-
cells

0.03 day−1

dT Death rate of healthy T-cells 0.02 day−1

dI Death rate of latently infected T-cells 0.26 day−1

db Death rate of actively infected T-cells 0.24 day−1

dV Death rate of free virus particles 2.4 day−1

k1 Constant rate at which the healthy T-cells
infected by HIV virus

2.4 × 10−5 days−1

k2 Constant rate at which the latently infected T-
cells change to actively infected T-cells

2 × 10−5 days−1

Tmax Maximum population level of healthy T-cells 1500mm−3

N Number of virus produced by infected T-cells 1000

Ghoreishi et al. [24] proposed a model with a constant source term of healthy T-cells r0, where r0

represents the production of new T-cells from thymus in uninfected individual. But HIV may have the
ability to infect healthy T-cells in the bone marrow and in thymus and thus lead to reduced the supply

AIMS Mathematics Volume 7, Issue 6, 11292–11310.



11297

rate of new healthy T-cells [2]. Therefore, instead of taking the production of new healthy T-cells from
thymus is constant r0, we modified the model by taking the supply rate of these cells as a decreasing
function of the viral load (for detail information see [2]) as follows:

r(V) =
r0γ

χ + V
,

where χ is constant. r0χ

χ+V is a source term which represents the generation rate of new healthy T-cells
from thymus. If V = 0, then r is a constant and r will be decreased to half of its normal value if the viral
load increases to the point V = χ. The initial values of dependent variables, parameter, constant and
their explanation can be found in Table 1 and χ = 1mm−3. We assumed that the dynamics of healthy
T-cells, infected T-cells and free HIV virus particles populations are:

dT
dt

= f1 (T (t), I(t),V(t)) =
r0χ

χ + V
− dT T + αT

(
1 −

T + I
Tmax

)
− k1VT, (2.4)

dI
dt

= f2 (T (t), I(t),V(t)) = k2VT − IdI , (2.5)

dV
dt

= f3 (T (t), I(t),V(t)) = NdbI − k1VT − dVV. (2.6)

3. The numerical methods for the HIV model

3.1. Continuous Galerkin-Petrov method

The system of ODEs for HIV models (2.1)–(2.3) or (2.4)–(2.6) can considered as:
Find u : [0, tmax]toV = Rd such that

dtu(t) = F(t,u(t)) for t ∈ (0, tmax),
u(0) = u0,

(3.1)

where u(t) = [T (t), I(t), V(t)] and F is the nonlinear right hand side vector valued function. At t = 0,
u1(0) = T (0) = T0, u2(0) = I(0) = I0 and u3(0) = V(0) = V0, where T0, I0 and V0 are the initial
conditions given in Table 1.

In order to find the approximate solution of (3.1), we partitioned the time interval I := [0, tmax] into
a number of small pieces In := (tn−1, tn), where n ∈ {1, . . . ,N} and

0 = t0 < t1 < · · · < tN−1 < tN = tmax.

The symbol τ = tn − tn is used to represent the maximum time step size. For the derivation of
the cGP-method, the system of equations in (3.1) is multiplied with a suitable test functions (see [26,
28, 30, 31] for more details) and integrate over In. The discrete solution ut|In can be represent by the
polynomial ansatz

ut|In(t) :=
k∑

j=0

U j
nφn, j(t), (3.2)

where U j
n are the members of the function space V and the basis functions φn, j ∈ Pk(In) can be chosen

as Lagrange basis functions w. r. t. the k + 1 points tn, j ∈ In with the following assumption

φn, j(tn,i) = δi, j, i, j = 0, . . . , k (3.3)
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where δi, j the usual Kronecker delta. We choose the points as tn,0 = tn−1 and tn,1, . . . , tn,k the (k + 1)-
quadrature points of Gauß-Lobatto formula on each time interval. In this way, the initial condition can
be written as

U0
n = ut|In−1(tn−1) if n ≥ 2 or U0

n = u0 if n = 1. (3.4)

The basis functions φn, j ∈ Pk(In) of (3.2) are defined using the reference transformations (see [26,28,
30, 31] for more details). Similarly, the test basis functions ψhi ∈ Pk−1(Î) are defined with appropriate
choice in order to compute the coefficients (see [26,28,30,31] for details). Finally, the cGP(k)-method
reads:

k∑
j=0

αi, jU j
n =

τn

2

{
F(tn,i,Ui

n) + βiF(tn,0,U0
n)
}
∀ i = 1, 2, 3, · · · , k, (3.5)

where U0
n = Uk

n−1 for n > 1 and U0
1 = u0 for n = 1, are the initial values and αi, j and βi are defined are

αi, j = ϕ̂′j(t̂i) + βiϕ̂
′
j(t̂0), tn,u = ωn(t̂µ) and βi = ŵ0ψ̂i(t̂0). (3.6)

Once the above system is solved, the initial condition for the next time interval Īn+1 is set to U0
n+1 =

Uk
n. For k = 2, the coefficients αi, j and βi, j of the cGP(2)-method are computed as follows.

3.1.1. The cGP(2) method

Three-point Gauß-Lobatto formula (Simpson rule) is used to define the quadratic basis functions
with weights ŵ0 = ŵ2 = 1/3, ŵ1 = 4/3 and t̂0 = −1, t̂1 = 0, t̂2 = 1. Then, we get

αi, j =

(
−5

4 1 1
4

2 −4 2

)
, βi =

( 1
2
−1

)
, i = 1, 2, j = 0, 1, 2.

Thus, the system to be solved for U1
n,U2

n ∈ V from the known U0
n = U2

n−1 becomes:

α1,1U1
n + α1,2U2

n = −α1,0U0
n +

τn

2

{
F(tn,1,U1

n) + β1F(tn,0,U0
n)
}
, (3.7)

α2,1U1
n + α2,2U2

n = −α2,0U0
n +

τn

2

{
F(tn,2,U2

n) + β2F(tn,0,U0
n)
}
, (3.8)

where U0
n represents the initial condition at the current time interval.

3.2. Classical explicit Runge-Kutta method

This method is very famous having order four developed by Kutta [32] (see [33] for more details).
The Runge-Kutta method of order four is used to solve numerically the first order initial value
problems. The detail information is given in Appendix-I.

4. Numerical solutions

We implemented the cGP(2)-scheme to the proposed model and presented all the solutions
graphically. The solution for different values of N=500, 750 and 1000 in Figures 1a–1c is illustrated
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using the initial conditions and parameter values given in Table 1. In Figure 1a, for N=500, it is
observed that the disease is characterized by a lag-phase in when there is no observable healthy
T-cells depletion, followed by a stage in which the healthy T-cells clearly decrease. This stage is acute
and symptomatic. Three to 6 weeks after initial infection, the HIV virus spreads throughout the body
due to the burst of viral replication. About 50% to 90% of human beings will experience a nonspecific
flu like syndrome during this acute phase. As the immune system has the ability to identify and fight
against the external invaders to control the infection. Due to the killing of viral particles and cells
response, the population size of T-cells again increasing after the initial decline. After 200 days the
oscillations effectively disappear and the concentration of healthy T-cells remain constant. This is
chronic infection phase. Figure 1b shows the changes in the amount of infected T-cells versus time
after HIV infection. For N=500, we see that, the amount of infected T-cells remains small,
approximately equal to zero in the first 25 days indicating virus particles are in dormant stage. Three
to 6 weeks after initial infection, the HIV virus spread throughout the body due to the burst of viral
replication. The virus replicate and infect healthy T-cells, so the population size of infected T-cells
increases rapidly, and attaining a maximum value approximately 300mm−1. Meanwhile, the immune
system has the ability to identify and fight off against pathogen to control the infection, therefore the
amount of infected T-cells again decreases and shows very small change from 60 to 90 days. After
depletion, the population of infected T-cells again increases, the periodic change slows down and
disappears after 180 days. Figure 1c represents the change in the population of virus particles versus
time after HIV infection. Comparing the dynamics infected T-cells with HIV virus shows that the free
virus follows considerably the same dynamics as the infected T-cells. As the value of N increasing,
they will infect larger amounts of healthy T-cells. Therefore, the amount of free HIV virus particles
and infected T-cells increases, where as the number of healthy T-cells becoming smaller. We also
observe that the equilibrium level of infected T-cells is approximately same, the equilibrium level of
free HIV virus particles is becoming higher and the equilibrium level of healthy T-cells is becoming
lower with increasing the value of N. Changing the initial value of HIV virus particles only affect the
time from infection to depletion, e.g, increasing V0, decreases the time to depletion as illustrated in
Figures 1d–1f. Since the characteristic of the dynamics of infected T-cells and free HIV virus
particles after infection is approximately same, so similar effects are seen if the initial condition of
infected T-cells were changed. Figures 1g–1i show the effect of changing the growth rate α, of healthy
T-cells on the population dynamics of healthy T-cells, infected T-cells, and free HIV virus particles
after infection. We concluded that, by increasing the values of α, increases the population of healthy
T-cells, infected T-cells, and virus particles. We also observed that the equilibrium level of infected
T-cells and free HIV virus particles becomes higher, but the equilibrium level of healthy T-cells does
not change with increasing α. Decreasing the death rate of virus particles dV , decreases the number of
healthy T-cells, and also speeds up the depletion. While the population of virus particles and infected
T-cells increases, the time for the growth of viruses and infected T-cells also decreases. Moreover, the
equilibrium level of infected T-cells does not change, the equilibrium level of virus particles becomes
higher, and the equilibrium level of healthy T-cells changes downward. Also, the oscillations
effectively disappear in each case, as shown in Figures 1j–1l clearly.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. The influence of changing the number of virus produced per infected T-cells N,
initial viral load V0, growth rate of healthy T-cells α and the death rate of virus particles dV on
the dynamics of healthy T-cells, infected T-cells and free HIV virus particles after infection
with constant source term of new healthy T-cells from thymus.
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Numerical solution of the model modified is represented in Figures 2a–2l, where the source term r0

of healthy T-cells replaced by r(V), using the other parameter values given in Table 1 with χ = 1mm−3.
Here the production rate of new healthy T-cells from thymus is a monotonically decreasing function of
viral load depending on the population of virus particles V. Figure 2a shows the dynamics of healthy
T-cells after infection by HIV virus particles. For N=500, we see that, decreasing in the population of
healthy T-cells is now more gradual than in Figure 1a. Generally, most of the HIV infected peoples
have a more gradual depletion in their healthy T-cells concentration [34]. After the initial depletion,
the amount of healthy T-cells is again increases and show damped oscillatory behavior. As the value
of N increases the concentration as well as time to depletion of healthy T-cells decreases. In case
of constant source term the dynamics of healthy T-cells again increase after the initial decline and
the periodic change becomes slowdown and effectively disappear after 230 days which is complete
accordance with Figure 1a. Figure 2b represents the change in the concentration of infected T-cells
versus time after infection. For N=500, we observe that the amount of infected T-cells increases and
reach to maximum value approximately 225mm−3 and then decreases due to cells response and killing
of virus particles. The oscillation in the population of infected T-cells can be seen even after 365 days
while in case of constant source term the oscillation disappear after 150 day approximately. The time
for growth in the amount of infected T-cells decreases but the population of these T-cells increases by
increasing the value of N. Comparison of the dynamics of free HIV virus particles with infected T-cells
shows that the free virus particles follows considerably the same dynamics as the infected T-cells as
illustrated in Figure 2c. Figures 2d–2f show the change in the population dynamics of healthy T-cells,
infected T-cells and free HIV virus particles by changing the value of initial viral load V0. As the value
of V0 decreases then the time for depletion of healthy T-cells also decreases as well as the time for
growth in the concentration of free HIV virus particles and infected T-cells decreases. Moreover, the
dynamics of healthy T-cells, infected T-cells and free HIV virus particles show the damped oscillatory
behaviour, while in case of constant source term the population of healthy T-cells, infected T-cells
and free HIV virus show no change by increasing the initial viral load after 100 days approximately.
When the growth rate of healthy T-cells α increases the concentration of healthy T-cells show the
same behaviour as in case of constant source term initially but after the initial decline the oscillation
disappear after 100 days approximately. The oscillation even shown after 365 days incase of source
term depending on the virus particles. Figures 2h–2i demonstrate the change in the growth rate of
infected T-cells and free HIV virus particles after infection whenever the value of α increases the
amount of free HIV virus particles and infected T-cells increases but after some time decreases rapidly.
Furthermore, we observe that the time for oscillation in the concentration of HIV virus particles and
infected T-cells decreases. But there is no oscillation in case of constant source term after 100 days
only the equilibrium level of infected T-cells and free HIV virus becoming higher with increasing the
value of α. In Figures 2j–2l we have shown the variation in the death rate of virus particles on the
population dynamics of healthy T-cells, infected T-cells and free HIV virus particles respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. The influence of changing the number of virus produced per infected T-cells N,
initial viral load V0, growth rate of healthy T-cells α and the death rate of virus particles dV on
the dynamics of healthy T-cells, infected T-cells and free HIV virus particles after infection
with a source term depending on the concentration of virus particles on the dynamics of
healthy T-cells, infected T-cells and free HIV virus particles.
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5. Comparison of the CGP(2)-Method with RK4 Method

In this section, we applied the RK4 method to the proposed model and obtained the numerical
solution using the initial conditions and parameters values given in Tables 1. In order to validate
our proposed scheme, we compared the results of the cGP(2)-method with those obtained from the
RK4 method concerning the achieved accuracy. Comparison of the numerical results obtained by both
techniques are presented in Table 2–4 for T (t), I(t) and V(t). The comparison clearly reveals that the
presented time discretization cGP(2)-method yields the results of the model with fairly good accuracy.
Additionally, we presented these results graphically. Figures 2a–2c represent the graphical out puts of
both techniques. From the graphical results, it can be seen that the cGP(2) method solutions match
the RK4 method solutions very well. Finally in Table 5, we provide the absolute errors between the
numerical results of the cGP(2) method and RK4 method. From Table 5, we conclude that the presented
scheme provides highly accurate result as compare to traditional methods e.g., HAM, HPM, LADM
and so on. Tables 2–5 and Figures 2a–2c clearly expose that the proposed technique provides the results
of the proposed model in a reasonably good agreement with RK4, using only eleven iterations for the
given time interval. This shows that the numerical approximations to the solutions of the HIV model
are reliable and confirm the power and ability of the Galerkin time discretization cGP(2)-method for
computing the solutions of other nonlinear systems.

Table 2. Comparison between cGP(2)-method and RK4 for T (t) with χ = 1mm−3.

ti cGP(2) RK4
0.0 1.000000000000000E+003 1.000000000000000E+003
0.1 0.999999104965540E+003 0.999999105068776E+003
0.2 0.999998367439021E+003 0.999998367580701E+003
0.3 0.999997723388042E+003 0.999997723534031E+003
0.4 0.999997127259621E+003 0.999997127393578E+003
0.5 0.999996545972910E+003 0.999996546088477E+003
0.6 0.999995954776223E+003 0.999995954872379E+003
0.7 0.999995334381568E+003 0.999995334459921E+003
0.8 0.999994668972726E+003 0.999994669035983E+003
0.9 0.999993944809048E+003 0.999993944860195E+003
1.0 0.999993149233985E+003 0.999993149275880E+003
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Table 3. Comparison between cGP(2)-method and RK4 for I(t) with χ = 1mm−3.

ti cGP(2) RK4
0.0 0.000000000000000E+00 0.000000000000000E+00
0.1 0.017662539099673E-004 0.017660347221435E-004
0.2 0.031815642422818E-004 0.031812636073994E-004
0.3 0.043804770411412E-004 0.043801675246377E-004
0.4 0.054579262731168E-004 0.054576426378487E-004
0.5 0.064820419598640E-004 0.064817977553517E-004
0.6 0.075029597368755E-004 0.075027571824862E-004
0.7 0.085588963695615E-004 0.085587321100228E-004
0.8 0.096803577557237E-004 0.096802261081707E-004
0.9 0.108930734329924E-004 0.108929681340365E-004
1.0 0.122200650474356E-004 0.122199801221182E-004

Table 4. Comparison between the cGP(2)-method and RK4 for V(t) with χ = 1mm−3.

ti cGP(2) RK4
0.0 1.000000000000000E-003 1.000000000000000E-003
0.1 0.805099097289008E-003 0.805137622412878E-003
0.2 0.685620394983829E-003 0.685673138676729E-003
0.3 0.619425774387181E-003 0.619479914337898E-003
0.4 0.591543563571781E-003 0.591592935861783E-003
0.5 0.591932211947543E-003 0.591974385958422E-003
0.6 0.613951294810791E-003 0.613985830127396E-003
0.7 0.653317239119282E-003 0.653344669906023E-003
0.8 0.707391349931357E-003 0.707412611337208E-003
0.9 0.774695789859689E-003 0.774711908659138E-003
1.0 0.854586091538357E-003 0.854598031364786E-003
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Table 5. Absolute errors for T (t), I(t) and V(t) between the cGP(2)-method and RK4 with
χ = 1mm−3.

T(t) I(t) V(t)
ti |cGP(2) - RK4| |cGP(2) - RK4| |cGP(2) - RK4|

0.0 0.000000000000000E+0 0.000000000000000E+0 0.000000000000000E+0
0.1 0.103236175164056E-06 0.219187823785546E-09 0.385251238701166E-07
0.2 0.141679493026459E-06 0.300634882419647E-09 0.527436928998573E-07
0.3 0.145989702104998E-06 0.309516503469633E-09 0.541399507170137E-07
0.4 0.133956859826867E-06 0.283635268078997E-09 0.493722900017906E-07
0.5 0.115567104330694E-06 0.244204512354412E-09 0.421740108795012E-07
0.6 0.096156554718618E-06 0.202554389291434E-09 0.345353166049476E-07
0.7 0.078353082244575E-06 0.164259538745632E-09 0.274307867418819E-07
0.8 0.063256948124035E-06 0.131647553032398E-09 0.212614058508554E-07
0.9 0.051147480917280E-06 0.105298955912001E-09 0.161187994492627E-07
1.0 0.041895191316144E-06 0.084925317402366E-09 0.119398264284429E-07

6. Conclusions and future recommendations

In this paper, two forms of the HIV model have been studied. In the first form, the supply rate of
new healthy T-cells r0 from thymus is constant, whereas in the other form, we modified the model by
considering the source term of healthy T-cells as a monotonically decreasing function depending on
the concentration of viral load. We have implemented the cGP(2)-method to solve the time-dependent
ODE systems of both these HIV models and studied the influence of different key parameters involved
in the models on the population dynamics of healthy T-cells, infected T-cells, and free HIV virus
particles for each case. Figures 1a–1l show the graphical output of the extended model. From the
models discussed in this paper, we concluded that N, the number of viruses produced by infected
T-cells during their life time, is the major parameter that affects the population of healthy T-cells.
Figure 2a shows the dynamics of healthy T-cells after infection by HIV virus particles. For N=500, we
observed that the decrease in the population of healthy T-cells is now more gradual than in Figure 1a.
As the value of N increases, the concentration as well as the time to depletion of healthy T-cells
decrease and then show a periodic change. In the case of constant source terms, the dynamics of
healthy T-cells again increases after the initial decline. The periodic change in the amount of healthy
T-cells becomes slow and effectively disappears after 230 days, approximately, as shown in Figure 1a.
The oscillation in the population of infected T-cells can be seen even after 365 days, while in the
case of constant source term, the oscillation disappears after approximately 150 days. A comparison
of the dynamics of free HIV virus particles with infected T-cells shows that the free virus follows
considerably the same behaviour as the infected T-cells as shown in Figures 2b–2c. When the growth
rate of healthy T-cells α increases the concentration of healthy T-cells shows the same behaviour as
in the case of a constant source term initially, but after the initial decline, the oscillation disappears
after approximately 100 days. The oscillation is even shown after 365 days in the case of the source
term depending on the virus particles. Furthermore, we observe that the time for oscillation in the
concentration of infected T-cells and free HIV virus particles decreases. But there is no oscillation in
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the case of constant source term; after 100 days, only the equilibrium level of infected T-cells and free
HIV virus particles becomes higher with increasing the value of α.Moreover, we solved the model with
a variable source term by using the RK4 method and compared the results obtained by both methods.
Tables 2–5 and Figures 3a–3c show that the cGP(2)-method solutions for the model are very close to
the RK4 method solutions. From the comparison, we concluded that the proposed scheme is effective
and reliable for obtaining the numerical solution of nonlinear real-world problems.

(a) (b) (c)

Figure 3. Comparison between cGP(2) and RK4 methods for T (t), I(t) and V(t).

In the future, we plan to develop a model for HIV infection with a cure and vaccination rate and
show the influence of COVID-19 on the dynamics of the HIV virus. These basic and applied studies
can be expected to benefit each other as more is learned about HIV and how it affects people. This
knowledge can then be used to come up with more effective ways to stop the virus from hurting people.

Acknowledgments

The authors Ramzi Drissi and Attaullah would like to thank the Deanship of Scientific Research
at Umm Al-Qura University for supporting this work by Grant Code (22UQU4350518DSR01). The
author Wajaree Weera would like to thank the Department of Mathematics, Faculty of Science, Khon
Kaen University, Fiscal Year 2022.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. S. Perelson, Modeling the interaction of the immune system with HIV, In: Mathematical
and statistical approaches to AIDS epidemiology, Berlin: Springer, 1989, 350–370.
https://doi.org/10.1007/978-3-642-93454-4 17

2. A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T-cells, Math.
Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-a

3. R. V. Culshaw, S. Ruan, A delay- differential equation model of HIV infection of CD4+ T-cells,
Math. Biosci., 165 (2000), 27–39. https://doi.org/10.1016/S0025-5564(00)00006-7

AIMS Mathematics Volume 7, Issue 6, 11292–11310.

http://dx.doi.org/https://doi.org/10.1007/978-3-642-93454-4_17
http://dx.doi.org/https://doi.org/10.1016/0025-5564(93)90043-a
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(00)00006-7


11307

4. X. Wang, X. Song, Global stability and periodic solution of a model for HIV infection of CD4+

T-cells, Appl. Math. Comput., 189 (2007), 1331–1340. https://doi.org/10.1016/j.amc.2006.12.044

5. M. S. Mechee, N. Haitham, Application of lie symmetry for mathematical model of HIV infection
of CD4+ t-cells, Int. J. Appl. Eng. Res., 13 (2018), 5069–5074.

6. Q. Li, Y. Xiao, Global dynamics of a virus immune system with virus guided
therapy and saturation growth of virus, J. Mathe. Prob. Engi., 2018 (2018), 4710586.
https://doi.org/10.1155/2018/4710586

7. L. J. G. Lima, M. S. Espindola, L. S. Soares, F. A. Zambuzi, M. Cacemiro, C. Fontanari, et al.
Classical and alternative macrophages have impaired function during acute and chronic HIV-1
infection, Braz. J. Infect. Dis., 21 (2017), 42–50. https://doi.org/10.1016/j.bjid.2016.10.004

8. S. A. Kinner, K. Snow, A. L. Wirtz, F. L. Altice, C. Beyrer, K. Dolan, et
al. Age-specific global prevalence of hepatitis B, hepatitis C, HIV and tuberculosis
among incarcerated people: A systematic review, J. Math. Biol., 62 (2018), 18–26.
https://doi.org/10.1016/j.jadohealth.2017.09.030

9. J. M. C. Angulo, T. A. C. Cuesta, E. P. Menezes, C. Pedroso, C. Brites, A systematic review on the
influence of HLA-B polymorphisms on HIV-1 mother to child transmission, Braz. J. Infect. Dis.,
23 (2019), 53–59. https://doi.org/10.1016/j.bjid.2018.12.002

10. K. Theys, P. Libin, A. C. P. Pena, A. Nowe, A. M. Vandamme, A. B. Abecasis, The impact of
HIV-1 within host evolution on transmission dynamics, Curr. Opin. Virol., 28 (2018), 92–101.
https://doi.org/10.1016/j.coviro.2017.12.001

11. D. Hallberg, T. D. Kimario, C. Mtuya, M. Msuya, G. Bjorling, Factors affecting HIV
disclosure among partners in morongo, tanzania, Int. J. Afr. Nurs. Sci., 10 (2019), 49–54.
https://doi.org/10.1016/j.ijans.2019.01.006

12. Y. Ransome, K. A. Thurber, M. Swen, N. D. Crawford, D. Germane, L. T. Dean, Social capital
and HIV/AIDS in the united states: Knowledge, gaps and future directions, SSM-Popul. Heal., 5
(2018), 73–85. https://doi.org/10.1016/j.ssmph.2018.05.007

13. K. Naidoo, S. Gengiah, S. Singh, J. Stillo, N. Padayatchi, Quality of tb care among people
living with HIV: Gaps and solutions, J. liCnical Tuberc. Mycobacterial Dis., 17 (2019), 100122.
https://doi.org/10.1016/j.jctube.2019.100122

14. E. O. Omondi, W. R. Mbogo, L. S. Luboobi, A mathematical modeling study of HIV
infection in two heterosexual age groups in kenya, J. Infect. Dis. Model., 4 (2019), 83–98.
https://doi.org/10.1016/j.idm.2019.04.003

15. W. M. Sweileh, Global research activity on mathematical modeling of transmission
and control of 23 selected infectious disease outbreak, Global. Health, 18 (2022), 4.
https://doi.org/10.1186/s12992-022-00803-x

16. Y. Wu, S. Ahmad, A. Ullah, K. Shah, Study of the fractional-order hiv-1 infection
model with uncertainty in initial data, Math. Probl. Eng., 2022 (2022), 7286460.
https://doi.org/10.1155/2022/7286460

17. T. K. Ayele, E. F. D. Goufo, S. Mugisha, Mathematical modeling of HIV/AIDS

AIMS Mathematics Volume 7, Issue 6, 11292–11310.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2006.12.044
http://dx.doi.org/https://doi.org/10.1155/2018/4710586
http://dx.doi.org/https://doi.org/10.1016/j.bjid.2016.10.004
http://dx.doi.org/https://doi.org/10.1016/j.jadohealth.2017.09.030
http://dx.doi.org/https://doi.org/10.1016/j.bjid.2018.12.002
http://dx.doi.org/https://doi.org/10.1016/j.coviro.2017.12.001
http://dx.doi.org/https://doi.org/10.1016/j.ijans.2019.01.006
http://dx.doi.org/https://doi.org/10.1016/j.ssmph.2018.05.007
http://dx.doi.org/https://doi.org/10.1016/j.jctube.2019.100122
http://dx.doi.org/https://doi.org/10.1016/j.idm.2019.04.003
http://dx.doi.org/https://doi.org/10.1186/s12992-022-00803-x
http://dx.doi.org/https://doi.org/10.1155/2022/7286460


11308

with optimal control: A case study in ethiopia, Results Phys., 26 (2021), 104263.
https://doi.org/10.1016/j.rinp.2021.104263

18. N. H. Aljahdaly, R. Alharbey, Fractional numerical simulation of mathematical
model of hiv-1 infection with stem cell therapy, AIMS Math., 6 (2021), 6715–6726.
https://doi.org/10.3934/math.2021394

19. N. Sultanoglu, F. Saad, T. Sanlidag, E. Hincal, M. Sayan, K. Suer, Analysis of hiv infection in
cyprus using a mathematical model, Erciyes Med. J., 44 (2022), 63–68.

20. R. Duro, N. R. Pereira, C. Figueiredo, C. Pineiro, C. Caldas, R. Serrao, et al. Routine CD4
monitoring in HIV patients with viral suppression: Is it really necessary? A portuguese cohort,
J. Microbiol. Immunol., 52 (2018), 593–597. https://doi.org/10.1016/j.jmii.2016.09.003

21. M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus
(2019-ncov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389,
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.02.033

22. M. Medan, Homotopy perturbation method for solving a model for HIV infection of CD4+ T-cells,
Istanbul Ticaret Universitesi Fen Bilimleri Dergisi, 12 (2007), 39–52.

23. M. Y. Ongun, The laplace adomian decomposition method for solving a model
for HIV infection of CD4+ T-cells, Math. Comput. Model., 53 (2011), 597–603.
https://doi.org/10.1016/j.mcm.2010.09.009

24. M. Ghoreishi, A. I. B. Ismail, A. K. Alomari, Application of the homotopy analysis method for
solving a model for HIV infection of CD4+ T-cells, Math. Comput. Model., 54 (2011), 3007–3015.
https://doi.org/10.1016/j.mcm.2011.07.029

25. N. Ali, S. Ahmad, S. Aziz, G. Zaman, The adomian decomposition method for
solving HIV infection model of latently infected cells, MSMK, 3 (2019), 5–8.
https://doi.org/10.26480/msmk.01.2019.05.08
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Appendix-I

A. Runge-Kutta method of order four (RK-4 method)

The Runge-Kutta method of order four is used to solve numerically the first order initial value
problems. Let

ẏ = g(t, y), a ≤ t ≤ b, (A.1)

is the initial value problem with the initial condition y(a) = α, let N > 0 be an integer and set h = b−a
N

is the step size. Partition the whole interval into N subinterval with mesh points ti = a + ih, for i =

0, 1, 2, · · · ,N − 1. Then the Runge-Kutta method of order four is described as

yi+1 = yi +
1
6
(
k1 + 2(k2 + k3) + k4

)
, for i = 0, 1, 2, · · · ,N − 1, (A.2)

where

k1 = hg(ti, yi),

k2 = hg(ti +
h
2
, yi +

k1

2
),

k3 = hg(ti +
h
2
, yi +

k2

2
),

k4 = hg(ti + h, yi + k3).

(A.3)

The Runge Kutta method of order four (RK-4) agrees with the Taylor series method up to terms
of O(h4). This method can be extended to solve a system of n first-order differential equations. The
generalization of the method as follows.

Let

dy1

dt
= g1(t, y1, y2, . . . , yn),

dy2

dt
= g2(t, y1, y2, . . . , yn),

...

dyn

dt
= gn(t, y1, y2, . . . , yn),

(A.4)
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be the nth-order system of first-order initial value problems with the initial conditions

y1(a) = α1, y2(a) = α2, · · · , yn(a) = αn.

Use the notation y j
i , for each i = 0, 1, 2, · · · ,N and j = 1, 2, · · · , n, to denote an approximation to

y j(ti). That is, y j
i approximates the jth solution y(t) of (A.4) at the ith mesh points ti. For the initial

condition, set
y1

0 = α1, y2
0 = α2, · · · , yn

0 = αn.

Suppose that the values y1
i , y2

i , · · · , y
n
i have been computed. We obtain y1

i+1, y2
i+1, · · · , y

n
i+1 by first

calculating

k j
1 = hg j

(
ti, y1

i , y
2
i , . . . , y

n
i
)
, (A.5)

k j
2 = hg j

(
ti +

h
2
, y1

i +
k1

1

2
, y2

i +
k2

1

2
, . . . , yn

i +
kn

1

2
)
, (A.6)

k j
3 = hg j

(
ti +

h
2
, y1

i +
k1

2

2
, y2

i +
k2

2

2
, . . . , yn

i +
kn

2

2
)
, (A.7)

k j
4 = hg j

(
ti + h, y1

i + k1
3, y

2
i + k2

3, . . . , y
n
i + kn

3
)
, (A.8)

for each j = 1, 2, · · · , n; and then

y j
i+1 = y j

i +
1
6
(
k j

1 + 2(k j
2 + k j

3) + k j
4
)
, (A.9)

for each j = 1, 2, · · · , n. The values k1
1, k

2
1, · · · , k

n
1, must be computed before any of the terms of the

form k j
2 can be determined. For more questions regarding reference style, please refer to the Citing

Medicine.
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