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Abstract: The fuzzy reinstatement labelling (FRL) puts forward a reasonable method to rewind the
acceptable degrees of arguments in fuzzy argumentation frameworks. The fuzzy labelling algorithm
(FLAlg) computes the FRL by infinitely approximating the limits of an iteration sequence. However,
the FLAlg is unable to provide an exact FRL, and its computation complexity depends on not only the
number of arguments but also the accuracy. This brings a quick increase in complexity when higher
accuracy is acquired. In this paper, through the in-depth study of the FLAlg, we introduce an effective
algorithm for decomposing FRL by strongly connected components. For simple fuzzy frameworks
in the form of trees, odd cycles, and even cycles, the new algorithm provides an exact value of the
limit. Therefore, by avoiding the infinite approximation process, it is independent of accuracy. And
for complex frames, the new algorithm outputs an approximate value to the FLAlg. It is more efficient
because the number of arguments in the approximation process is usually reduced.
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1. Introduction

Dung’s theory of argumentation frameworks (abbreviated as AF) [1] has been applied in a large
variety of fields, ranging from decision-making [2, 3], non-monotonic reasoning [4], multi-agent
systems [5, 6], to law [7], voting [8], etc. In fuzzy AFs, arguments and/or attacks are assigned fuzzy
degrees to capture the uncertainty issued from the partly trusted information in case of
incompleteness, ambiguity, vagueness, etc.

A core problem in fuzzy AFs is to explore the fuzzy semantics, i.e., to calculate an acceptable
degree for each argument by changing the initial fuzzy degree of the argument. Researchers has
proposed a variety of approaches for this aim. Some literature identified the acceptable degrees of
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arguments by establishing fuzzy semantic systems. For example, [9, 10] partly accepted the attack
relation and defence relation between fuzzy argument sets, and built a fuzzy system including the
x-conflict-free sets, y-admissible sets, y-preferred sets, etc.; [11] introduced sufficient attacks and
weakening acceptability between fuzzy sets of arguments, then established a fuzzy extension system
in Dung’s way. More works provided algorithms for modifying the degrees based on the investigation
of the principles for modifying the degrees of arguments and/or the properties of the accepted degrees.

For instance, [12–14] investigated more than twenty principles and/or properties, and established
several algorithms to calculate the acceptable degrees of arguments. [15] introduced three principles
and defined a semantics called the fuzzy reinstatement labelling (FRL), which identified a class of
acceptable degrees of arguments and has been proven to be a preferred extension in [11].
Moreover, [15, 16] investigated an algorithm named the fuzzy labelling algorithm (FLAlg), to
calculate the FRL by infinitely approximating the limit of an iteration sequence.

The theory in [15,16] not only established the semantic system FRL to identify the acceptability of
arguments, but also studied the algorithm FLAlg to calculate the FRL. However, the FLAlg can not
provide an exact FRL. In addition, its complexity not only depends on the number of arguments, but
also depends on the accuracy of approximation degrees. When higher accuracy is acquired, the length
of the sequence and hence the amount of computation will quickly increase. Therefore, if an algorithm
can avoid the process of infinite approximation, its computational complexity will be significantly
reduced because it has nothing to do with accuracy. The purpose of this paper is to explore such a new
algorithm for FRL.

In this paper, firstly, we investigate the limits of the FLAlg for some basic cases of fuzzy AFs,
including trees, even cycles, and odd cycles. Exact values of the limit are provided for such fuzzy AFs
instead of the approximation proposed by FLAlg. Then, we give a new algorithm of FRL: A fuzzy
AF is divided into simple subframes along strongly connected components (SCCs). Every subframe
on different SCCs is calculated separately. And the final result for FRL is obtained by combining the
values in the subframes.

The efficiency of the new algorithm is embodied in two aspects. First, an exact limit of the FLAlg
is provided directly for trees, odd cycles, and even cycles by the theorems in Section 3. In particular,
for the trees and odd cycles, the infinite approximation process is avoided; and for the even cycles, the
infinite approximating process is converted into a finite process by adding a stop condition in Theorem
5 (2). Second, for the complex fuzzy AFs, the complexity of the new algorithm decreases with the
reduction of the number of arguments: The limit of the FLAlg for simple subframe can be obtained
directly; and the values of complicated subframe, whose arguments are less, is computed by the FLAlg.

The contents are arranged as follows. Section 2 reviews some basic concepts of fuzzy AFs. In
Section 3, we provide some calculation methods for some basic cases of fuzzy AFs, including trees,
odd cycles, and even cycles. In Section 4, the efficient algorithm of fuzzy reinstatement labelling is
provided. In Section 5, we show the relationship between the fuzzy reinstatement labelling and the
preferred semantics in [11]. Finally, we conclude this paper.

2. Fuzzy labellings of da Costa Pereira et al.

In this section, we will review some related background knowledge in the paper [15] by da Costa
Pereira et al.
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The uncertainty in da Costa Pereira et al.’s framework comes from the trustworthiness of the source
proposing the piece of information (argument).

Definition 1. A fuzzy AF in [15] is a tuple ⟨A,→⟩, where A : Args → [0, 1] assigns a trust degree to
each argument in Args, and→ is a crisp set of attacks between the arguments in Args.

Denote src(A) the set of the sources of A. The value ofA(A) is shown below,

A(A) = max
s∈src(A)

τs, ∀A ∈ Args,

where τs is the degree to which the source s ∈ src(A) is trusted.

Definition 2. (Fuzzy AF-labelling) Let ⟨A,→⟩ be a fuzzy argumentation framework. A fuzzy AF-
labelling is a total function α : A → [0, 1].

In fact, there are many argumentation systems similar to the above models, such as [12, 13, 17–19].
And in this paper, we take da Costa Pereira’s model as an example to illustrate our algorithm.

In order to explore the acceptability of arguments, two intuitive postulates are introduced in [15]:

• The acceptability of an argument should not be greater than the degree to which the arguments
attacking it are unacceptable:

α(A) ≤ 1 − max
B : B→A

α(B).

• An argument cannot be more acceptable than the degree to which its sources are trusted:

α(A) ≤ A(A).

Definition 3. (Fuzzy reinstatement labelling) Let α be a fuzzy AF-labelling. It is said that α is a fuzzy
reinstatement labelling iff, for each argument A,

α(A) = min{A(A), 1 − max
B : B→A

α(B)}.

The definition of fuzzy reinstatement labelling is very similar to a preferred semantics, which
indicates that an agent should accept as large as possible trust degree of argument. Naturally, the
acceptable degree of each argument cannot be greater than the initial degree of trust. In the meantime,
intuitively, the acceptable degree of each argument cannot be greater than the complement of defeated
degree which is defeated. It seems as B is defeated by A and A is accepted, then B is unacceptable.
Also in Caminada’s labelling theory [20], if Lab(A) = in and A attacks B, then Lab(B) = out. So the
arguments with a defeated degree are futile since they are defeated by accepted arguments. Therefore,
the belief degree of argument cannot be greater than the complement degree of defeated degree,
namely α(A) ≤ 1 −maxB : B→A α(B).

In order to define admissible labelling, the absence of illegally labeled arguments is required. In
fact, some arguments may be illegally labeled, i.e. α(A) , min{A(A), 1 − maxB : B→A α(B)}. Inspired
by Caminada’s idea in [21], a fuzzy labelling algorithm for calculating fuzzy reinstatement labelling is
provided. The way of changing the illegal label of an argument, without creating other illegally labeled
arguments, is introduced as follows.
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Definition 4. (The fuzzy labelling algorithm (FLAlg), Definition 12 on Page 5 of [15]) Let αt be a
fuzzy labelling. An iteration in αt is carried out by computing a new labelling αt+1 for all arguments A
as follows:

αt+1(A) =
1
2
αt(A) +

1
2

min{A(A), 1 − max
B : B→A

αt(B)}, (2.1)

where α0(A) = A(A).

Note that Eq (2.1) guarantees that αt(A) ≤ A(A) for all arguments A and each t. This definition
defines a sequence {αt}t=0,1,... of labellings.

Theorem 1. (Theorem 1 in [15]) The sequence {αt}t=0,1,... defined above converges.

Then the limit of αt(A) is the fuzzy reinstatement labelling of A, i.e. α(A) = limt→∞ αt(A) ∈ [0, 1].
da Costa Pereira et al. [15] show that the convergence speed of the labelling algorithm is linear (as their
proof of convergence suggests).

In the following sections, we will find a way to calculate the exact values of α for some special
cases, instead of approaching it by αt.

3. Limits of the FLAlg in some special fuzzy AFs

This section further studies the FLAlg, and presents its limits for some particular fuzzy AFs: (1)
The trees [22]—the fuzzy AFs without cycles, (2) the cycles with odd/even number of nodes.

In a fuzzy AF, if a set of arguments A1, A2, ..., An satisfies that (Ai, Ai+1) ∈→, for i = 1, 2, ..., n, and
(An, A1) ∈→, then we call it a cycle in the fuzzy AF. Intuitively, a cycle is the following graph.

A1 → A2 → ...→ An → A1.

Moreover, if n is odd, the cycle is called an odd cycle; and if n is even, the cycle is called an even cycle.

3.1. Limits of FLAlg in trees

In the previous literature, there are amounts of related work that concentrates on the semantics of
uncertain AFs without circles, such as [13, 17, 23]. In their papers, under the uncertain argumentation
settings, every argument may have a basic strength, which is expressed as the weight of the argument.
In this paper, the weight is represented by fuzzy degrees. Generally speaking, the exploitation of the
semantics of acyclic argument frameworks is a basic requirement. An acyclic fuzzy AF is formed
as Figure 1, we intend to directly obtain the exact limit of these arguments rather than continuously
approaching the limit of the iteration sequence in Definition 4.
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Figure 1. An example of an acyclic uncertain AF (the subscripts of arguments represent trust
degree).

We first introduce some notations, for an argument A ∈ Args, denote the set {B ∈ Args : (B, A) ∈→}
by att(A). And for a set S ⊆ Args of arguments, denote the set {B ∈ Args : ∃A ∈ S s.t. (B, A) ∈→} by
att(S).

First, we calculate the FRL for some simple cases, which will be helpful to understand the main
calculation theorem. If an argument is not attacked, it is reasonable to maintain its initial value. Then
we have the next lemma.

Lemma 1. Suppose A is an argument in a fuzzy AF ⟨A,→⟩, with att(A) = ∅. Then limt→∞ αt(A) =
A(A).

If an argument B is attacked by an argument A with A(A) + A(B) ≤ 1, then we can ignore the
influence of A on B. In this case, the FRL of B also should keep its initial value. This can be
summarised as the next lemma.

Lemma 2. If att(B) = {A}, withA(A) +A(B) ≤ 1, then αt(B) = A(B) for all t = 0, 1, ... Therefore,

lim
t→∞
αt(B) = A(B).

Another simple case is that B is attacked by only one argument A, which is not attacked. In this
case, the FRL of B is eitherA(B) or 1 −A(A). And we get the next lemma.

Lemma 3. Suppose att(B) = {A} and att(A) = ∅ in a fuzzy AF ⟨A,→⟩. The limit of αt(B) is the
minimum ofA(B) and 1 −A(A), i.e. limt→∞ αt(B) = min{A(B), 1 −A(A)}.

Proof. See Appendix A.1. □

As we know, for any A ∈ A, αt(A) always converges. The following theorem shows that if an
argument B has only one attacker A, then the limits of B is the minimum ofA(B) or 1 − α(A).

Theorem 2. Suppose att(B) = {A} and limt→∞ αt(A) = a. Then the limit of αt(B) is the minimum of
A(B) and 1 − a, i.e.

lim
t→∞
αt(B) = min{A(B), 1 − lim

t→∞
αt(A)}.

α(B) = min{A(B), 1 − α(A)}.
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Proof. See Appendix A.2. □

Example 1. Consider the AF in the form of attack sequence A0 → A1 → A2 → ... → An. By
Theorem 2, if for each Ai, i = 0, 1, ..., n, the initial labellingA(Ai) is big enough, the limits of them will
be a, 1 − a, a, 1 − a, ..., where a = A(A0).

For an attack sequence A0 → A1 → A2 → ..., if we calculate the arguments one by one according
to Theorem 2, we can obtain the next result.

Proposition 1. Given an attack sequence A0 → A1 → A2 → ..., if for some i0 ∈ N, A(Ai0) ≤
min j : j<i0{1 −A(A j),A(A j)}, then

lim
t→∞
αt(Ai0) = A(Ai0).

Proof. See Appendix A.3. □

Theorem 2 can be extended to the next theorem, which is the main result of this subsection and
computes the FRL of nodes in acyclic fuzzy AF.

Theorem 3. (Calculation theorem for acyclic nodes) In a fuzzy AF ⟨A,→⟩, if att(B) = {A1, ..., An} and
α(Ai), i = 1, 2, ..., n, are already obtained, then

α(B) = min{A(B), 1 − α(A1), 1 − α(A2), ..., 1 − α(An)}.

Proof. See Appendix A.4. □

Example 2. Let ⟨A,→⟩ be a fuzzy AF with A = {(A, 0.3), (B, 0.6), (C, 0.7), (D, 0.8), (E, 0.8)} and
→= {A→ B, B→ C,C → E, A→ D,D→ E}.

The fuzzy reinstatement labelling of each argument can be calculated as follows:
From Lemma 1,

α(A) = A(A) = 0.3.

By Theorem 2, we can get

α(B) = min{A(B), 1 − α(A)} = 0.6,
α(C) = min{A(C), 1 − α(B)} = 0.4,
α(D) = min{A(D), 1 − α(A)} = 0.7.

By Theorem 3, we have

α(E) = min{A(E), 1 − α(C), 1 − α(D)} = 0.3.

3.2. Limits of FLAlg in cycles

Now, we deal with fuzzy AFs of odd circles and even circles.
We first introduce some notations. Given a cycle A1 → A2 → ...→ An → A1, by Theorem 1, for any

1 ≤ i ≤ n, α(Ai) always exists. And we denote α(Ai) = ai. Given a finite set of arguments {A1, ..., An},
there must be some i0 ∈ {1, 2, ..., n} s.t. A(Ai0) = mini=1,...,nA(Ai). When {A1, ..., An} is a cycle, even or
odd, without loss of generality, we can suppose i0 = 1, i.e.,A(A1) = mini=1,...,nA(Ai).

The fuzzy reinstatement labelling of odd cycles can be calculated by the following theorem.
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Theorem 4. (Calculation theorem for odd circle) Suppose ⟨A,→⟩ is a fuzzy AF in the form of an odd
cycle, like A1 → A2 → ... → An → A1. Without loss of generality, we may assume that A(A1) =
mini=1,...,nA(Ai). Let a = A(A1).

(1) If a < 0.5, the fuzzy reinstatement labelling can be calculated as the line

A1 → A2 → ...→ An.

(2) If a ≥ 0.5, all the fuzzy reinstatement labellings are 0.5, i.e., α(Ai) = 0.5, for all 1 ≤ i ≤ n.

Proof. See Appendix A.5. □

Example 3. Consider AF = {A → B → C → A}. If A(A) = 1,A(B) = 0.8,A(C) = 0.7, then by
Theorem 4, α(A) = α(B) = α(C) = 0.5.

IfA(A) = 4,A(B) = 0.8,A(C) = 0.7, then by Theorem 4, α(A) = α(C) = 0.4 and α(B) = 0.6.

Now, let’s consider the even cycles.

Theorem 5. (Calculation theorem for even circle) Let ⟨A,→⟩ be fuzzy AF in form of an even cycle:

A1 → A2 → ...→ A2n−1 → A2n → A1.

Suppose m1 = mini=1,...,n{A(A2i−1)} = A(A1) and m2 = mini=1,...,n{A(A2i)} = A(A2i0), for some i0 ≤ n.
(1) If m1 + m2 ≤ 1, then the reinstatement labellings can be calculated as a line

A1 → A2 → ...→ A2i0−1 → A2i0 → A2i0+1 → ...→ A2n. (3.1)

(2) If m1+m2 > 1, then there must exist some N ∈ N, such that ∀t ≥ N, αt(A2i−1) ∈ (1−m2,m1), and
αt(A2i) ∈ (1 − m1,m2), ∀i = 1, 2, ..., n. And the reinstatement labellings can be calculated as follows:
For any i ∈ {1, 2, ..., n},

α(A2i) =
n∑

k=1

αN(A2k)/n,

α(A2i−1) =
n∑

k=1

αN(A2k−1)/n.

(3.2)

Moreover,
∑2n

i=1 α(Ai) = n.

From the suppositionA(A1) = mini=1,2,...,2nA(Ai), we have m1 ≤ m2. In other words, given an even
cycle, the line in Eq (3.1) is started from the least element of the even cycle.

Proof. See Appendix A.6. □

Corollary 1. For the case m1 + m2 > 1 in Theorem 5, suppose that for i ∈ {0, 1, 2, ..., n − 1},

α(A2i) =
n−1∑
k=0

α1(A2k)/n,

α(A2i+1) =
n−1∑
k=0

α1(A2k+1)/n.

(3.3)

Then α is a fuzzy reinstatement labelling.
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Proof. In this case, let N = 1, then from the proof of Theorem 5, it is valid. □

It should be emphasized that the result of Theorem 5 coincides with the exact value of the limit of
da Costa Pereira’s FLAlg while the result of Corollary 1 is not. But the result of Corollary 1 satisfies
the requirement of fuzzy reinstatement labelling in Definition 3. Namely, the result of Corollary 1 also
can be regarded as a reasonable fuzzy reinstatement labelling.

Example 4. Let AF = {A → B → C → D → A}, and A(A) = 1,A(B) = 0.34,A(C) = 0.8,A(D) =
0.3. Then the fuzzy reinstatement of A, calculated by Theorem 5, is 0.78, instead of 0.79, which is
calculated by Eq (3.3) in the corollary.

4. An efficient algorithm of fuzzy reinstatement labelling

The main aim of this section is to propose a new algorithm for fuzzy reinstatement labelling
considering a single node, a simple cycle, or a complicated cycle.

In the previous section, we calculated the fuzzy reinstatement labellings for three simple fuzzy
AFs: Fuzzy AFs without cycles and fuzzy AFs consisting of odd cycles or even cycles. However, for
a general fuzzy AF, it often consists of many simple nodes (not in circles), odd circles, even circles,
and complicated circles (including multiple odd circles and even circles). For instance, the fuzzy AF
in Figure 2.

Figure 2. A fuzzy AF with simple nodes, simple circles, and complicated circles.

It is beyond doubt that the fuzzy AF in Figure 2 can be calculated by the algorithm in Definition 4.
However, it should be emphasized that when using the previous fuzzy labelling algorithm FLAlg to
calculate each argument, we should always consider the fuzzy labelling of all the attackers, and in
turn the attackers of attackers. And thus in the case of arbitrary fuzzy AF, no matter simple nodes, odd
circles, even circles, and complicated circles, we need to iteratively use the Eq (2.1) in Definition 4. The
complexity of this algorithm is obviously high even for these simple nodes and simple circles. Inspired
by Baroni’s idea in [24], in this section, we will provide a strongly connected components decomposed
scheme for a general fuzzy AF. Unlike crisp AFs, the arguments of fuzzy AFs are associated with
fuzzy degrees and thus we need to provide some modifications to this scheme. In this partition, each
fuzzy AF is partitioned into many sub-frameworks which are simply strongly connected components
(abbreviated as SCCs) and each SCC is a single node, odd circle, even circle, or complicated circle.
For these single-node SCCs, odd circle SCCs, and even circle SCCs, they will be resolved by our
method in Section 3 and complicated circle SCCs are computed by Eq (2.1) in FLAlg. It should be
stressed that the complexity of FLAlg is positively correlated with the number of arguments. And
thus, with the reduction of arguments, those complicated circles sub-frameworks are easily calculated
by da Costa Pereira’s technology. In this way, each complicated fuzzy AF is partitioned into many
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simple sub-frameworks whose fuzzy reinstatement labellings can be efficiently computed. Therefore,
an efficient algorithm can be provided based on this decomposition.

4.1. Partition of fuzzy AFs

In this section, we introduce the strongly connected components decomposed for fuzzy AFs. When
a fuzzy AF is partitioned into many sub-frameworks, the raised question is that in which condition, the
combination fuzzy reinstatement labellings of these sub-frameworks is a fuzzy reinstatement labelling
of the original fuzzy AF. Since our partition is based on strongly connected components in graph theory,
we first introduce the definition of strongly connected components in fuzzy AFs.

Definition 5. Given a fuzzy AF ⟨A,→⟩, the binary relation of path-equivalence between nodes,
denoted as PEFAF ⊆ Args × Args, is defined as follows:

• ∀A ∈ Args, (A, A) ∈ PEFAF .
• Given two distinct arguments A, B ∈ Args, (A, B) ∈ PEFAF if and only if there is a chain of attack

relation from A to B and a chain of attack relation from B to A.

Definition 6. The strongly connected components of fuzzy AFs are the equivalence classes of nodes
with the belief degree in A under the relation of path-equivalence. Given a node A ∈ Args, we
define the strongly connected component A belongs to is denoted as S CCFAF(A) where S CCFAF(A) =
{(B,A(B)) | (A, B) ∈ PEFAF}. The set of the strongly connected components of fuzzy AF is denoted as
S CCS FAF .

We extend to strongly connected components the notion of parents, denoting the set of the other
strongly connected components that attack a strongly connected component S as sccparentsFAF(S ).

Definition 7. Given a fuzzy argumentation framework ⟨A, ρ⟩ and a strongly connected component
S ∈ S CCS FAF , we define

sccparentsFAF(S ) = {P ∈ S CCS FAF | P , S and P attacks S}.

A strongly connected component S such that sccparentsFAF(S ) = ∅ is called initial.

Example 5. In Figure 2, S CC1 = {(A, 0.4)}, S CC2 = {(B, 0.8)}, S CC3 = {(C, 0.7), (D, 0.8)},
S CC4 = {(E, 0.7), (F, 0.9), (G, 0.6)}, S CC5 = {(H, 0.6), (L, 0.6), (M, 0.6), (N, 0.6)}}, S CCS FAF =

{{(A, 0.4)}, {(B, 0.8)}, {(C, 0.7), (D, 0.8)}, {(E, 0.7), (F, 0.9), (G, 0.6)}, {(H, 0.6), (L, 0.6), (M, 0.6), (N, 0.6)}}.

From Definition 3, it shows that the fuzzy reinstatement labelling of each argument is only
dependent on the fuzzy reinstatement labellings of its attackers. Thus, according to attack relation, we
can draw a partial order of SCCs. For instance, for the fuzzy AF in Figure 2, we can first calculate the
fuzzy reinstatement labelling of A and B. This step is easy to complete by applying Theorem 3. Then
according to the fuzzy reinstatement labelling of B, the following SCC (C and D) can be calculated by
Theorem 5. But, the fuzzy reinstatement labellings of C and D are certainly affected by the fuzzy
reinstatement labelling of B from Definition 3. Therefore, the core of the question is how to remove
the influence of the previous SCCs on the next SCC. We take the fuzzy AF in Figure 2 as an example.

Example 6. From Theorem 3, we have α(A) = 0.4 and α(B) = 0.6. Since B attacks C and α(B) = 0.6,
we have that B with a degree of at least 0.4 is defeated by C and thus the maximum fuzzy reinstatement
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labelling of B cannot surplus 0.6 from Definition 3. In other words, the defeated degree of B is 0.4.
As we have shown in Section 2, the arguments with the defeated degrees are futility since it is defeated
by accepted arguments. Therefore, the arguments with defeated degrees form a defeated part which
is defeated by the fuzzy reinstatement labellings of their attackers. The maximal possibility of an
argument is the extent to which the other arguments fail to refute its truth. Thus, for an SCC, if we
remove the defeated part which is affected by their parents, then this SCC is obviously unaffected by
its SCC parents. For example, in Figure 2, from that α(B) = 0.6 and thus the defeated degree of C
w.r.t. B is 0.6. Consequently, S CC3 is modified as {(C, 0.4), (D, 0.8)} (see Figure 3). In which, (C, 0.4)
is unaffected by α(B) = 0.6.

Figure 3. The modification of S CC3.

Then by applying Theorem 5, the fuzzy reinstatement labelling of the modified S CC3 is α(C) = 0.3
and α(D) = 0.7. From that α(D) = 0.7, S CC4 is modified as {(E, 0.3), (F, 0.9), (G, 0.6)} (see Figure 4).

Figure 4. The modification of S CC4.

Then by applying Theorem 4, the fuzzy reinstatement labelling of the modified S CC4 can be directly
obtained: α(E) = 0.3, α(F) = 0.7, and α(G) = 0.3. From that α(F) = 0.7, S CC5 is modified as
{(H, 0.3), (L, 0.6), (M, 0.6), (N, 0.6)} (see Figure 5).

Figure 5. The modification of S CC5

Then by applying fuzzy labelling algorithm, the fuzzy reinstatement labelling of the modified S CC5

is α(H) = 0.3, α(L) = 0.6, α(M) = 0.4, and α(N) = 0.4.
From the above statement, we can obtain a combination fuzzy reinstatement labelling α(A) = 0.4,

α(B) = 0.6, α(C) = 0.3, α(D) = 0.7, α(E) = 0.3, α(F) = 0.7, α(G) = 0.3, α(H) = 0.3, α(L) = 0.6,
α(M) = 0.4, and α(N) = 0.4. From Definition 3, it is easy to verify that the combination labelling is a
fuzzy reinstatement labelling of the original fuzzy AF.
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From this example, we can see that when a fuzzy AF is partitioned into many simple
sub-frameworks by removing the defeated part, the complexity of the computation can be largely
decreased. Is this example a coincidence? We will prove that when we partition a general fuzzy AF
into many sub-frameworks by our means, the combination labelling is always a fuzzy reinstatement
labelling of the original fuzzy AF.

Before the important theorem, we provide some notations.

Definition 8. Given a fuzzy AF (Args,→). Suppose S ∈ S CCS FAF and α be a fuzzy reinstatement
labelling of sccparents(S ). The defeat part of S is denoted as

DPS = {(A, a) ∈ S | a = max
B:B→A

α(B) where B ∈ sccparents(S )}.

Then the residual part is denoted as

RPS = {(A, a) ∈ S | a = min{A(A), 1 − DPS (A)}}.

Definition 9. Given a fuzzy AF (Args,→) and S ∈ S CCS FAF . The sub-frameworks partition of the
fuzzy AF along the strongly connected components is processed as follows:

A sub-framework refers to S is defined as

FAFS = FAF ↓RPS= ⟨RPS ,→S ⟩,

where→S=→ ∩(RPS × RPS ).

From Definitions 8 and 9, it shows that the partition forms a partial order. A modification of the
specific SCC is based on its parents.

Suppose α1, α2, α3,...,αn are fuzzy reinstatement labellings of these sub-frameworks respectively,
then the combination fuzzy reinstatement labelling is defined as follows:

Definition 10. Suppose α1, α2, α3,...,αn are fuzzy reinstatement labellings of these sub-frameworks
respectively, then the combination labelling α is defined as the disjunction of α1, α2, α3,...,αn.

α = α1 ∨ α2 ∨ α3 ∨ ... ∨ αn.

Namely for each argument A ∈ Args and A ∈ S i, α(A) = αi(A).

Then the main conclusion is introduced in the following theorem.

Theorem 6. Suppose α1, α2, α3,...,αn are fuzzy reinstatement labellings of these sub-frameworks
respectively, then the combination labelling α is a fuzzy reinstatement labelling of the original fuzzy
AF.

Proof. See Appendix B. □

From the above definitions and theorem, we provide a SCC decomposed scheme for fuzzy AF. This
method can partition a fuzzy AF into many simple sub-frameworks along with the strongly connected
components. And the combination labelling of these sub-frameworks is a fuzzy reinstatement labelling
of the original fuzzy AF.
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4.2. Efficient algorithm of fuzzy reinstatement labelling

In this section, we provide the application of our SCC-decomposed method. The application
procedure can be summarized as follows:

(1) The fuzzy AF is partitioned into its strongly connected components; they form a partial order
which encodes the dependencies existing among them according to the attack relation.

(2) The initial SCCs remain unchanged and are calculated by our method or FLAlg; the following
SCCs are modified according to the fuzzy reinstatement labelling of their parents SCCs.

(3) When all the sub-frameworks are computed, the fuzzy reinstatement labellings of these
sub-frameworks are obtained; the combination of these fuzzy reinstatement labellings is a fuzzy
reinstatement labelling of the original fuzzy AF.

Algorithm 1 Algo1: Computing fuzzy reinstatement labelling of simple fuzzy AF
Input: Γ = ⟨S ,→⟩
Output: α

1: if Γ is a single node then
2: for Ai ∈ S upp(S ) do
3: α(Ai) = S (A)
4: end for
5: else if Γ is an odd circle then
6: m := minAi∈S upp(S ) S (Ai)
7: if m < 0.5 then
8: α(Ai) = m
9: for A j ∈ S upp(S ) do

10: α(A j) = min{maxB:B→A j 1 − α(B), S (A j)}
11: end for
12: else m ≥ 0.5
13: for A ∈ S upp(S ) do
14: α(A) = 0.5
15: end for
16: end if
17: else if Γ is an even circle then
18: m1 := S i(A j) = minA2i∈S upp(S i) S i(A2i)
19: m2 := S i(Ak) = minA2i+1∈S upp(S i) S i(A2i+1)
20: if m1 + m2 ≤ 1 then
21: α(A j) := m1

22: for Ai ∈ {S upp(S ) − A j} do
23: α(Ai) := min{maxB:B→Ai 1 − α(B), S (Ai)}
24: end for
25: else m1 + m2 > 1
26: for Ai ∈ S upp(S ) do
27: α0(Ai) := S (Ai)
28: end for
29: for Ai ∈ S upp(S ) do
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30: α1(Ai) := 1
2α0(Ai) + 1

2 min{A(Ai), 1 −maxB : B→Ai α0(B)}
31: end for
32: for i = 0, 1, 2, ..., n − 1 do
33: α(A2i) :=

∑n−1
k=0 α1(A2k)/n

34: α(A2i+1) :=
∑n−1

k=0 α1(A2k+1)/n
35: end for
36: end if
37: else Γ is a complicated circle
38: for Ai ∈ S upp(S ) do
39: α(Ai) := S (Ai)
40: end for
41: repeat
42: for Ai ∈ S upp(S ) do
43: α(Ai) := 1

2α(Ai) + 1
2 min{A(Ai), 1 −maxB : B→Ai α(B)}

44: end for
45: until {α satisfies the precision requirement}
46: end if

Algorithm 2 Algo2: Computing fuzzy reinstatement labelling of a fuzzy AF
Input: Γ = ⟨A,→⟩
Output: α

1: (S 1, ..., S n) := S CCS S EQ(Γ)
2: for i ∈ {1, ..., n} do
3: if sccparents(S i) = ∅ then
4: Γi := ⟨S i,→S i⟩

5: αi := Algo1(Γi)
6: else
7: Γ j := ⟨RPS j ,→S j⟩

8: αi := Algo1(Γi)
9: end if

10: end for
11: for i ∈ {1, ..., n} do
12: for A j ∈ S upp(S i) do
13: α(A j) = αi(A j)
14: end for
15: end for
16: return α

The algorithm for the computation of fuzzy reinstatement labelling consists of Algorithms 1 and 2.
In Algorithm 1, we process the computation of simple argumentation, which is a single node, a simple
circle, or a complicated circle. If fuzzy AF is a single node, then the fuzzy reinstatement labelling
is easy to obtain (lines 1–4). Analogously, if fuzzy AF is an odd circle, then the fuzzy reinstatement
labelling can be calculated by Theorem 4 (lines 5–16). And, if fuzzy AF is an even circle, then the
fuzzy reinstatement labelling can be calculated by Theorem 5 (lines 17–36). Finally, if fuzzy AF
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is a complicated circle, then the fuzzy reinstatement labelling can be calculated by the algorithm in
Definition 2.1 (lines 37–45). Algorithm 2 implements the partition of a general fuzzy AF. In line 1, the
strongly connected components of the fuzzy AF are identified. From [25], we have that an algorithm
is available, which receives as input a fuzzy AF and returns as output a sequence (S 1, ..., S n) including
the strongly connected components of the fuzzy AF in topological order, i.e. if ∃A ∈ S upp(S i),
B ∈ S upp(S j) such that A attacks B then i < j. This can be done in linear time under the number of
attacks [26]. Hence, if an SCC is initial, then it remains unchanged and be calculated by Algorithm
1. If an SCC is not initial, then it should be modified according to Definition 9. Then Algorithm 1 is
again provoked. Finally, the fuzzy reinstatement labelling α is a combination of fuzzy labelling of all
the strongly connected components.

Compared to FLAlg, our algorithm directly provides an exact value of three types of simple fuzzy
AFs—the trees, the even cycles, and the odd cycles. For these simple cases, the infinite approximation
process in FLAlg is avoided, and the computational complexity has nothing to do with accuracy. For
fuzzy AFs with many simple SCCs, our algorithm effectively puts forward the approximate limit of
FLAlg by reducing the number of arguments in the infinite approximation process. But for the
complex SCCs including few such simple nodes, our algorithm is not evidently better than the FLAlg.
As a result, when being applied in other fields, like the multi-agent systems [5, 27], the input-output
systems [28–30], control theory [31–33], etc., our algorithm is more suitable for the fuzzy AFs with
many simple SCCs, especially for the most common fuzzy AFs—the trees.

5. Relation to Gödel fuzzy AFs

This section makes a parallel between the fuzzy reinstatement labelling and preferred extension in
Gödel fuzzy AFs (abbreviated as GFAF).

In the past sections, we have shown that: Regardless of the too low values,

(1) In sequences, the values of α(A) can be listed as a, 1 − a, a, 1 − a...
(2) In cycles, no matter even or odd, the values of α(A) can be listed as a, 1− a, a, 1− a...
(3) For the arguments A, which there are no arguments attack, α(A) = A(A).

Actually, these are also properties of preferred/stable extensions in GFAF. Then we can guess: Fuzzy
reinstatement labelling can be seen as a preferred/stable extension. Before proving this result, let’s see
a lemma first.

Lemma 4. For each argument A, α(A) = A(A) or, there is an argument B, which attacks A, such that
α(A) + α(B) = 1.

Proof. See Appendix C. □

Theorem 7. Denote a fuzzy set E as E(A) = α(A),∀A ∈ Args. Then, when considering ⟨A,→⟩ as a
GFAF, E is a preferred/stable extension.

Proof. If B attacks A, then E(A) + E(B) ≤ 1. That is, E is conflict-free.
By Lemma 4, it sufficiently attacks all the arguments inA out of E.
Then it is a stable extension. Thus a preferred extension. □
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From the above theorem and statement, we can show that the fuzzy reinstatement labelling is a
preferred semantics extension of GFAF. And thus our algorithm can also be used to calculate the
preferred semantics of GFAF.

6. Discussion

Fuzzy AFs deal with the uncertain arguments and/or attacks caused by incompleteness, ambiguity,
vagueness, etc. The basic method of studying fuzzy semantics is to restore the initial ambiguity and
establish fuzzy extensions, such as [9, 11, 14, 15]. In recent years, these achievements have been
developed in various ways. For example, [34] extended the extension method by combining the
ranking method. [35] considers the inverse problem for gradual semantics: Given an AF and a desired
argument ranking, whether there exist initial weights such that a particular semantics produces the
given ranking. [36] explores the AFs with support in the labelling approach, and introduces a
polynomial-time algorithm to execute it. [37] redefines the argumentative process and characterises
graded entailment of arguments through a label-based framework. Unlike these works, this paper does
not introduce any new semantics. On the contrary, an optimized algorithm for the semantics FRL is
proposed.

In the previous literature, the decomposition of AFs is usually used to reduce the computational
complexity of argument acceptance. For instance, [24] first provided the SCC-decomposed scheme
for Dung’s AFs. [38] introduced a decomposition in the context of dynamics AFs, while [39]
exploited a tree-based decomposition. [40, 41] proposed a division-based method based on the
directionality principle and the SCC-recursiveness principle. [25] investigated an SCC-recursive
meta-algorithm based on some topology-related properties. In this paper, we have implemented a
simple SCC-recursive decomposition on fuzzy AF to reduce the computational complexity of FRL.

This work develops the calculation of FRL in two aspects: Firstly, the new algorithm directly
provides an exact value of the limits of the algorithm FLAlg for simple fuzzy AFs (including trees,
odd cycles and even cycles). Since the new algorithm avoids the infinite approximation process in
FLAlg, its calculation complexity depends only on the number of the arguments and the structure of
the AFs. But it has nothing to do with accuracy. Secondly, this paper modifies the SCC method [24]
to calculate the fuzzy semantics FRL. The results show that this decomposition method is not only
suitable for regular AFs, but also suitable for fuzzy AFs, and it may be applied to other quantitative
AFs.

There are also some limitations in our method. For the complicated cycles, the exact limit of the
FLAlg has not been put forward. This kind of subframe is still calculated by FLAlg. Therefore, the
new algorithm can only partly solve the infinite approximation process. Especially, for the fuzzy AFs,
where most elements are in complicated subframes, this method is not obviously better than the FLAlg.

7. Conclusions

In this paper, we explored the semantics of an uncertain argumentation system—fuzzy AF. We
focused on the fuzzy reinstatement labelling of fuzzy AFs. And we provide an efficient algorithm for
fuzzy reinstatement labelling. It should be noted that the results of our algorithm are approximate to,
but not equal to, the outcomes of FLAlg. The main contributions of this paper are listed as follows:
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• We provided some results to directly calculate the exact result of the limits of FLAlg for simple
fuzzy AFs, like the trees, the odd cycles, and the even cycles.
• We provided a SCC decomposed scheme for fuzzy AF. By this scheme, the semantics of fuzzy

AFs can be calculated separately on their SCCs sub-frameworks.
• We provided an effective algorithm for calculating the fuzzy reinstatement labelling in fuzzy

AFs. The more SCCs in fuzzy AFs (especially simple nodes and simple circles), the higher the
efficiency of the algorithm. The more SCCs (especially simple nodes and simple circles) in fuzzy
AFs, the more efficient the algorithm is. And it is also applicable to the preferred semantics of
GFAF.

In the future, the SCC decomposition can be applied to other argumentation frameworks, including
qualitative argumentation frameworks and quantitative argumentation frameworks, such as GFAF,
Janssen’s fuzzy AF, and weighted AF. And more topological properties will be investigated for the
AFs.

Appendix

A. Proofs of lemmas and theorems in Section 3

A.1. Proof of Lemma 3

From Eq (2.1), ifA(B) ≤ 1−A(A), Lemma 2 shows limt→∞ αt(B) = A(B) = min{A(B), 1−A(A)}.
SupposeA(B) > 1 −A(A). From Eq (2.1), we have

αt+1(B) =
1
2
αt(B) +

1
2

min{A(B), 1 −A(A)} =
1
2
αt(B) +

1
2

(1 −A(A))

=
1
2

[
1
2
αt−1(B) +

1
2

min{A(B), 1 −A(A)}] +
1
2

(1 −A(A))

=
1
22αt−1(B) + (1 −

1
22 )(1 −A(A))

= ... =
1

2t+1α0(B) + (1 −
1

2t+1 )(1 −A(A)).

(A.1)

As t → ∞, limt→∞ αt(B) = 1 −A(A) = min{A(B), 1 −A(A)}.

A.2. Proof of Theorem 2

Before the proof of Theorem 2, let’s look at Lemma 5.

Lemma 5. Let {at}t=0,1,..., {bt}t=0,1,... be two convergent sequence in [0,1]. Then the following two
formulas are valid:

lim
t→∞

min{at, bt} = min{lim
t→∞

(at), lim
t→∞

(bt)},

lim
t→∞

max{at, bt} = max{lim
t→∞

(at), lim
t→∞

(bt)}.

Proof. We only prove the first one here, and the second one can also prove the same.
Let limt→∞(at) = a, limt→∞(bt) = b.
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If a < b, then as at converges to a and bt converges to b, there is some natural number N, such that
∀t > N, at < bt, i.e. ∀t > N, min{at, bt} = at. Therefore,

lim
t→∞

min{at, bt} = lim
t→∞

at = a = min{a, b}.

a > b is similar to the above.
Finally, let’s consider the case a = b. For any ε > 0, there is some natural number N, such that

∀t > N, a − ε < at < a + ε, b − ε < bt < b + ε, i.e. ∀t > N, min{at, bt} ∈ (a − ε, a + ε). It is

lim
t→∞

min{at, bt} = a = min{a, b},

which ends the proof. □

Now, let’s show the proof of Theorem 2.

Proof. For convenience, denote limt→∞ αt(A) = a and limt→∞ αt(B) = b.
In Eq 2.1, let t tend to∞ on both sides of =, we can get

lim
t→∞
αt+1(B) = lim

t→∞
(
1
2
αt(B) +

1
2

min{A(B), 1 − max
A : A→B

αt(A)}).

Since limt→∞ αt(B) = b, limt→∞ αt(A) = a andA(B) converges to itself, as a constant sequence. By
Lemma 5, we have

lim
t→∞
αt+1(B) = lim

t→∞
(
1
2
αt(B) +

1
2

min{A(B), 1 − lim
t→∞
αt(A)}),

which means b = 1
2b + 1

2 min{A(B), 1 − a}, i.e. b = min{A(B), 1 − a)}. □

A.3. Proof of Proposition 1

Obviously, limt→∞ αt(Ai0−1) is no bigger than max j<i0{1 −A(A j),A(A j)}. Then

A(Ai0) + lim
t→∞
αt(Ai0−1) ≤ A(Ai0) +max

j<i0
{1 −A(A j),A(A j)}.

If max j<i0{1 − A(A j),A(A j)} = 1 − A(A j0) for some j0 < i0, we have A(Ai0) + 1 − A(A j0) ≤ 1,
becauseA(Ai0) ≤ A(A j0).

If max j<i0{1 − A(A j),A(A j)} = A(A j1), for some j1 < i0, we haveA(Ai0) +A(A j1) = A(Ai0) + 1 −
(1 −A(A j1)) ≤ 1, becauseA(Ai0) ≤ 1 −A(A j1).

Therefore, in both cases, we have

A(Ai0) + lim
t→∞
αt(Ai0−1) ≤ A(Ai0) +max

j<i0
{1 −A(A j),A(A j)} ≤ 1,

i.e. A(Ai0) ≤ 1 − limt→∞ αt(Ai0−1).
By Theorem 2, limt→∞ αt(Ai0) = A(Ai0) is valid.
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A.4. Proof of Theorem 3

Let’s first look at Lemma 6.

Lemma 6. Suppose part of an AF ⟨A,→⟩ is in the form

...→ A→ C ← B← ...,

with limt→∞ αt(A) = a and limt→∞ αt(B) = b. If there are no more arguments in Args attacking C, then
the limit of αt(C) equals to the minimum ofA(C), 1 − a and 1 − b, i.e.

lim
t→∞
αt(C) = min{A(C), 1 − lim

t→∞
αt(A), 1 − lim

t→∞
αt(B)}.

Proof. For convenience, suppose limt→∞ αt(C) = c.
Let t tend to∞ on both sides of “=” in Eq (2.1),

lim
t→∞
αt+1(C) = lim

t→∞
(
1
2
αt(C) +

1
2

min{A(C), 1 −max{αt(A), αt(B)}}). (A.2)

By Lemma 5, we get

lim
t→∞
αt+1(C) = lim

t→∞

1
2
αt(C) +

1
2

min{A(C), 1 −max{lim
t→∞
αt(A), lim

t→∞
αt(B)}}.

Therefore, c = 1
2c + 1

2 min{A(C),min{1 − a, 1 − b}}. It equals c = min{A(C), 1 − a, 1 − b}. □

According to Lemma 6, the fuzzy reinstatement labelling of nodes attacked by multiple arguments
can be calculated.

Theorem 3 can be proven the same as Lemma 6. Together with Theorem 2, the fuzzy reinstatement
labelling of any fuzzy AFs without cycles can be calculated.

A.5. Proof of Theorem 4

(1) It’s only necessary to show a1 = α(A1) = A(A1).
If a1 < a = A(A1) < 0.5, then from Theorem 2, we have a2 = min{1 − a1,A(A∈)}. Because

a1 < a < 0.5 and a ≤ A(A∈), we have a2 ≥ a.
Then a3 = min{1 − a2,A(A3)} ≤ 1 − a. Following, we can get for all odd i, ai ≤ 1 − a and for all

even i, ai ≥ a.
Particularly, n is odd and an ≤ 1 − a. By Theorem 2, we have a1 ≥ 1 − an ≥ 1 − (1 − a) = a.

Contradiction.
From the fact that a1 ≤ A(A1), we have a1 = A(A1). Following, all the other limits can be calculated

by Theorem 2 step by step.
(2) If a1 < 0.5, we can get a2 = min{1 − a1,A(A2)} ≥ 0.5 by Theorem 2. Following, a3 ≤ 0.5,

a4 ≥ 0.5,..., an ≤ 0.5. Next, we can get a1 ≥ 0.5. Contradiction. Hence, a1 ≥ 0.5.
Similarly, we have ai ≥ 0.5 for all i ∈ {1, 2, ..., n}. It follows that 1−ai ≤ A(Ai), for all i = 1, 2, ..., n.
Therefore, for i = 1, 2, ..., n − 1, ai+1 = min{A(Ai), 1 − ai} = 1 − ai; and a1 = 1 − an. Because n is

odd, the unique solution is a1 = a2 = ... = an = 0.5.
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A.6. Proof of Theorem 5

(1) It is only necessary to show that α(A1) = A(A1).
From a2i0 ≤ A(A2i0) = m2, we have 1 − a2i0 ≥ 1 − m2 ≥ m1. Together withA(A2i0+1)} ≥ m1, we get

a2i0+1 = min{1 − a2i0 ,A(A2i0+1)} ≥ m1. Next, we can get a2i0+2 = min{1 − a2i0+1,A(A2i0+2)} ≤ 1 − m1.
Similarly, for all i ≥ i0, a2i ≤ 1 − m1. Particularly, a2n ≤ 1 − m1.

By Theorem 2, we have a1 = min{1 − a2n,A(A1)} = m1.
(2) It can be obtained by the following four lemmas, i.e. Lemmas 7–10.
Before proving the case (2), let’s show some facts.

Lemma 7. There exists some natural number N ∈ N, such that ∀t ≥ N, αt(A2i+1) ∈ (1 − m2,m1), and
αt(A2i) ∈ (1 − m1,m2), ∀i = 0, 1, ..., n − 1.

Proof. Because m1 + m2 > 1, we have 1 − m1 < m2 ≤ A(A2i) and 1 − m2 < m1 ≤ A(A2i−1), for all
i = 1, 2, ..., n. It just needs to show that, ∀i = 0, 1, ..., n − 1

limt→∞αt(A2i+1) ∈ (1 − m2,m1) and limt→∞αt(A2i) ∈ (1 − m1,m2).

Obviously, the limits are in [1 − m2,m1] and [1 − m1,m2]. The rest is to show limt→∞αt(A2i+1) ,
m1 and limt→∞αt(A2i) , m2.

If not, suppose limt→∞αt(A2i+1) = m1, then limt→∞αt(A2i) = 1 − m1. Given another AF′ = (A′,→),
with the same arguments and attack relations of AF. But the initial value of Ak, k = 0, 1, ..., 2n − 1, is
A′(Ak) = A(Ak−1) (for simplicity, we denote A−1 = A2n−1, and the same goes for the rest of the paper).
Consequently, the value of α(A2i+1) should be m2, which does not equal to 1 − m1. Contradiction. □

Lemma 8. There is some natural number N ∈ N, such that

∀t ≥ N,
2n−1∑
k=0

αt(Ak) = n.

Proof. By Lemma 7, there is some t0 ∈ N, such that ∀i = 0, 1, ..., n − 1, αt0(A2i+1) + m2 > 1, and
αt0(A2i) + m1 > 1. It follows that for all i = 0, 1, ..., n − 1,

αt0+1(A2i+1) =
1
2
αt0(A2i+1) +

1
2

(1 − αt0(A2i)),

αt0+1(A2i) =
1
2
αt0(A2i) +

1
2

(1 − αt0(A2i−1)).
(A.3)

Sum both sides of both equations for all i = 0, 1, ..., n − 1, we can obtain

2n−1∑
k=0

αt(Ak) =
n−1∑
i=0

(αt(A2i) + αt(A2i+1)) = n.

Let N = t0 + 1, the proof ends. □

Lemma 9. Let N ∈ N such that ∀t ≥ N,
∑2n−1

k=0 αt(Ak) = n.
And suppose

x =
n−1∑
k=0

αN(A2k)/n and y =
n−1∑
k=0

αN(A2k+1)/n.
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Then for all t ≥ N,

x =
n−1∑
i=0

αt(A2k)/n and y =
n−1∑
i=0

αt(A2k+1)/n.

Proof. From Lemma 8, clear for t = N. And by summing both sides of the Eqs A.3 separately, we can
get that for t + 1 the results hold. □

Lemma 10. Let N ∈ N such that ∀t ≥ N,
∑2n−1

k=0 αt(Ak) = n. Then for all t ≥ N, ∃i1t, i2t, j1t, j2t, such
that αt(A2i1t) ≤ x, αt(A2i2t) ≥ x, αt(A2 j1t+1) ≤ y and αt(A2 j2t+1) ≥ y.

Proof. Obvious from Lemma 9. □

The proof of Theorem 5 is clear by the above lemmas and the first part of Theorem 5.

B. Proof of Theorem 6 in Section 4

We only need to prove that the combination labelling α satisfies the equation in Definition 3.
Namely for each argument A,

α(A) = min{A(A), 1 − max
B : B→A

α(B)}.

If A ∈ S i = S CCi and α(A) , A(A), then we only need to prove that α(A) = 1−maxB : B→A α(B). From
that α1, α2, α3,...,αn is a fuzzy reinstatement labelling of these sub-frameworks respectively and α is
a combination labelling, we have that α(A) = αi(A) = min{RPS i(A), 1 − maxB : B→A α(B)}. If αi(A) =
1−maxB : B→A α(B), then the prove is complete. Otherwise, if αi(A) = RPS i(A), then from Definition 8,
αi(A) = RPS i(A) = min{A(A), 1 − DPS i(A)}. Since αi(A) = α(A) , A(A), we have α(A) = αi(A) = 1 −
DPS i(A). Again utilizing Definition 8, DPS i = {(A, a) | a = maxB:B→A α(B) where B ∈ sccparents(S i)}
and thus α(A) = αi(A) = 1 − DPS i(A) = 1 −maxB : B→A α(B). As a result, α(A) = 1 −maxB : B→A α(B).
The proof is complete.

C. Proof of Lemma 4 in Section 5

If not, i.e. α(A) < A(A) and for any B, which attacks A, α(A) + α(B) < 1. Let’s deduce some
contradictions.

Denote b = max{α(B) : B attacks A}, and

ϵ = (min{1 − b,A(A)} − α(A))/4.

Because αt(A), t = 1, 2, ... is convergent to α(A), for all arguments A, there is a natural number N, such
that ∀t > N, αt(A) > α(A) − ϵ and αt(B) < b + ϵ, for any B attacks A. Then,

αt+1(A) = αt(A)/2 +min{1 − αt(B),A(A)}/2 ≥ (α(A) + ϵ)/2 +min{1 − b − ϵ,A(A)}/2 (C.1)

By the definition of ϵ, min{1 − b − ϵ,A(A)} > α(A) + 3ϵ, which means

αt+1(A) > (α(A) + ϵ)/2 + (α(A) + 3ϵ)/2 = α(A) + ϵ,

contradiction.

AIMS Mathematics Volume 7, Issue 6, 11165–11187.



11185

Conflict of interest

The authors declare no conflicts of interest.

References

1. P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artif. Intell., 77 (1995), 321–357.
https://dx.doi.org/10.1016/0004-3702(94)00041-X

2. J. Ahmmad, T. Mahmood, R. Chinram, A. Lampan, Some average aggregation operators based on
spherical fuzzy soft sets and their applications in multi-criteria decision making, AIMS Math., 6
(2021), 7798–7832. https://dx.doi.org/10.3934/math.2021454

3. A. Saha, D. Dutta, S. kar, Some new hybrid hesitant fuzzy weighted aggregation operators based
on archimedean and dombi operations for multi-attribute decision making, Neural Comput. Appl.,
33 (2021), 8753–8776. https://dx.doi.org/10.1007/s00521-020-05623-x

4. P. Baroni, F. Toni, B. Verheij, On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games: 25 years later, Argum. Comput.,
11 (2020), 1–14. https://dx.doi.org/10.3233/AAC-200901

5. S. P. Ferrando, E. Onaindia, Defeasible-argumentation-based multi-agent planning, Inf. Sci., 411
(2017), 1–22. https://dx.doi.org/10.1016/j.ins.2017.05.014

6. X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay
systems, Automatica, 103 (2019), 135–140. https://dx.doi.org/10.1016/j.automatica.2019.01.031

7. K. Atkinson, T. Bench-Capon, Argumentation schemes in AI and law, Argum. Comput., 12 (2021),
417–434. https://dx.doi.org/10.3233/AAC-200543

8. I. Benedetti, S. Bistarelli, From argumentation frameworks to voting systems and back, Fund.
Inform., 150 (2017), 25–48. https://dx.doi.org/10.3233/FI-2017-1459

9. J. Janssen, M. De Cock, D. Vermeir, Fuzzy argumentation frameworks, In: Information processing
and management of uncertainty in knowledge-based systems, 2008, 513–520.
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