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Abstract: In present study, the Boussinesq equation is obtained by means of the Sardar Sub-Equation
Technique (SSET) to create unique soliton solutions containing parameters. Using this technique,
different solutions are obtained, such as the singular soliton, the dark-bright soliton, the bright soliton
and the periodic soliton. The graphs of these solutions are plotted for a batter understanding of the
model. The results show that the technique is very effective in solving nonlinear partial differential
equations (PDEs) arising in mathematical physics.
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1. Introduction

In recent decades, researchers have paid considerable attention to nonlinear waves at the ocean
surface. Phenomena of nonlinear waves play a key role in many fields of engineering and science, such
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as ocean engineering, plasma physics, Control theory, tsunami waves, communications industry, fluid
dynamics, and coastal engineering, etc.

Non-linear PDEs have great potential for application in various fields; therefore, researchers pay
special attention to their analytical and numerical solutions [1–8]. In the literature, many researchers
in mathematics and physics have developed various methods to analyze the nonlinear evolution
equations (NLEEs), such as the exp-function approach [9], the modified simple equation technique
[10–14], the generalized Kudryashov technique [15,16], the G′

G -expansion approach [17–23], the
extended rational function expansion approach [23], the Hirota bilinear method [24–30], the extended
homoclinic approach [31], the traveling wave scheme [32], the Darboux transformation method [32–
35], the sine-cosine approach [36], the semi-inverse variational principle [37], He’s variational iteration
technique [38], the sine-Gordon method [39–41], A special kind of distributive product [42], the
Lie symmetric method [43], the extended homogeneous principal method [44], the power series
method [45] and some other methods [46–47].

The Boussinesq equation represents a long-wavelength and weakly nonlinear approximation used
in numerical models, water waves, and coastal engineering for simulating water waves in shallow
seas and harbors. A Scottish engineer named John Scott Russell closely observed solitary waves
(also called translational waves and solitons). Joseph Boussinesq based his approximation on the
obervation of John Scott Russell observation. In 1872, the simulation of one-dimensional water waves
was determined by Boussinesq which states that the horizontal velocity is constant and the vertical
velocity is linear in addition to the water depth, referred to as the Boussinesq equation [48]. Previously,
the Boussinesq equation was investigated using various mathematical approaches [49–53].

Consider, the Boussinesq equation in the following form

Qtt − Qxx = (Q2)xx + λQxxxx, (1.1)

where Q = Q(x, t) represents the wave envelope containing x as a spatial variable and t as a temporal
variable. Here λ is an arbitrary constant. This is called frequency dispersion phenomenon when water
waves of different wavelengths are related, and in the case of an infinitesimal wave amplitude it is also
called a linear frequency dispersion. For this reason, this is a valid approximation. The Boussinesq
equation allows for waves to propagate in different directions as well, but it is advantageous to consider
waves that propagate in the same direction. To form strong and reliable solitons of the Boussinesq
equation using (SSET) [54–56], the following traveling wave transformation is used.

X(x, t) = X(β), β = ηx + χt. (1.2)

Here η and χ are real constants. Applying Eq (1.2) in Eq (1.1), the following ordinary differential
equation (ODE) is constructed.

χ2Q′′ − η2Q′′ − η2(Q2)′′ − λη4Q(iv) = 0. (1.3)

Integrating Eq (1.3) twice with respect to β and neglecting the integration constants, we obtain the
following equation.

(χ2 − η2)Q − η2Q2 − λη4Q′′ = 0. (1.4)

Where χ and η are the velocity and frequency of the propagating wave.
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2. Mathematical description

We proceed with these main steps in this work:
Step 1:

H(X, Xx, Xt, Xxx, Xtt, ...) = 0, (2.1)

where H is a polynomial of X and X(β) = X(x, t) is a unknown function. Consider the wave
transformation

β = ηx + χt,

where χ , 0 is a constant to be determined later.
Using the transformation, Eq (2.1) is converted to the following ODE.

G = (Q,Q′,Q′′, ..., ) = 0. (2.2)

Step 2: G is a function of Q(β) and prime express the derivatives in regard to β.
Solution of Eq (2.2) can be formulated as

Q(β) =

N∑
l=0

clMl(β), cl , 0, (2.3)

where cl(0 ≤ l ≤ N) are real constants and M(β) satisfying the ODE in the form

M′(β) =
√
ξ + uM(β)2 + M(β)4. (2.4)

Here ξ and u are real constants and Eq (2.4) presents the solutions as
Case I: If u > 0 and ξ = 0, then

M±
1 (β) = ±

√
−pqu sechpq(

√
uβ),

M±
2 (β) = ±

√
pqu cschpq(

√
uβ),

where

sechpq(β) = 2
peβ+qe−β , cschpq(β) = 2

peβ−qe−β .

Case II: If u < 0 and ξ = 0, then

M±
3 (β) = ±

√
−pqu secpq(

√
−uβ),

M±
4 (β) = ±

√
−pqu cscpq(

√
−uβ),
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where

secpq(β) = 2
peιβ+qe−ιβ , cscpq(β) = 2ι

peιβ−qe−ιβ .

Case III: If u < 0 and ξ = u2

4 , then

M±
5 (β) = ±

√
−u
2

tanhpq(

√
−u
2
β),

M±
6 (β) = ±

√
−u
2

cothpq(

√
−u
2
β),

M±
7 (β) = ±

√
−u
2

(tanhpq(
√
−2uβ) ± ι

√
pq sechpq(

√
−2uβ)),

M±
8 (β) = ±

√
−u
2

(cothpq(
√
−2uβ) ±

√
pq cschpq(

√
−2uβ)),

M±
9 (β) = ±

√
−u
8

(tanhpq(

√
−u
8
β) + cothpq(

√
−u
8
β)),

where

tanhpq(β) =
peβ−qe−β

peβ+qe−β , cothpq(β) =
peβ+qe−β

peβ−qe−β .

Case IV: If u > 0 and ξ = u2

4 , then

M±
10(β) = ±

√
u
2

tanpq(
√

u
2
β),

M±
11(β) = ±

√
u
2

cotpq(
√

u
2
β),

M±
12(β) = ±

√
u
2

(tanpq(
√

2uβ) ±
√

pq secpq(
√

2uβ)),

M±
13(β) = ±

√
u
2

(cotpq(
√

2uβ) ±
√

pq cscpq(
√

2uβ)),

M±
14(β) = ±

√
u
8

(tanpq(
√

u
8
β) + cotpq(

√
u
8
β)),

where

tanpq(β) = −ι peιβ−qe−ιβ

peιβ+qe−ιβ , cotpq(β) = ι peιβ+qe−ιβ

peιβ−qe−ιβ .

These are generalized trigonometric and hyperbolic functions with parameters p and q. If we take
p = q = 1, they become known trigonometric and hyperbolic functions.
Step 3: We calculate the integer N by balancing the capital. Substituting Eq (2.3) into Eq (2.2) we
obtain an algebraic equation in the form of Ml(β), which we balance by equating the powers of Ml(β)
l=(0,1,2, ... ) to zero thus obtaining a set of algebraic equations.
Step 4: This set of equations leads to the required parameters and the exact solution of the given
equation.
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3. Execution of Sardar sub-equation technique

In this section, SSET is applied to the Boussinesq equation to construct the traveling wave solution.
By the equilibrium rule Eq (2.3) reduces into

Q(β) = c0 + c1M(β) + c2M(β)2, (3.1)

where c0, c1, c2 are constants. Substitute Eq (3.1), Eq (1.4) into Eq (2.4), we obtain a polynomial in
the form of Ml(β) and equate powers of Ml(β) to zero resulting in algebraic equations in c0, c1, c2, χ, η
and λ.

Set of algebraic equations are as:

−2c2η
4λξ − c2

0η
2 − c0η

2 + c0χ
2 = 0,

−2c0c1η
2 − c1η

2 + c1η
4λ(−u) + c1χ

2 = 0,

−2c0c2η
2 − c2η

2 − c2
1η

2 − 4c2η
4λu + c2χ

2 = 0,

−2c1η
4λ − 2c1c2η

2 = 0,

−6c2η
4λ − c2

2η
2 = 0. (3.2)

With the help of Mathematica software, the following parameters are determined.

c0 = 1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
, c1 = 0, c2 = c2,

χ = −

√
3η2 − 2η2

√
c2

2
(
u2 − 3ξ

)
√

3
, λ = −

c2

6η2 . (3.3)

Using Eqs (2.4), (3.1) and (3.3) with Eq (1.2), following solutions are constructed.
Case I: If u > 0 and ξ = 0, then

Q±1 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±
√
−pqu

)2
sechpq

(√
u(tχ + ηx)

)2
, (3.4)

Q±2 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±
√

pqu
)2 cschpq

(√
u(tχ + ηx)

)2
. (3.5)

Case II: If u < 0 and ξ = 0, then

Q±3 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±
√
−pqu

)2
secpq

(√
−u(tχ + ηx)

)2
, (3.6)
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Q±4 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±
√
−pqu

)2
cscpq

(√
−u(tχ + ηx)

)2
. (3.7)

Case III: If u < 0 and ξ = u2

4 , then

Q±5 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
−u
√

2

)2

tanhpq

( √
−u(tχ + ηx)
√

2

)2

, (3.8)

Q±6 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
−u
√

2

)2

cothpq

( √
−u(tχ + ηx)
√

2

)2

, (3.9)

Q±7 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
−u
√

2

(
tanhpq

(√
2
√
−u(tχ + ηx)

)
±i
√

pqsechpq

(√
2
√
−u(tχ + ηx)

)))2
, (3.10)

Q±8 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
−u
√

2

(
cothpq

(√
2
√
−u(tχ + ηx)

)
±
√

pqcschpq

(√
2
√
−u(tχ + ηx)

)))2
, (3.11)

Q±9 (x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
−u

2
√

2

(
tanhpq

( √
−u(tχ + ηx)

2
√

2

)
+

cothpq

( √
−u(tχ + ηx)

2
√

2

)))2

. (3.12)

Case IV: If u > 0 and ξ = u2

4 , then

Q±10(x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
u
√

2

)2

tanpq

( √
u(tχ + ηx)
√

2

)2

, (3.13)

Q±11(x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
u
√

2

)2

cotpq

( √
u(tχ + ηx)
√

2

)2

, (3.14)

Q±12(x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
u
√

2

(
tanpq

(√
2
√

u(tχ + ηx)
)

±
√

pq secpq

(√
2
√

u(tχ + ηx)
)))2

, (3.15)

Q±13(x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
u
√

2

(
cotpq

(√
2
√

u(tχ + ηx)
)

±
√

pq cscpq

(√
2
√

u(tχ + ηx)
)))2

, (3.16)

Q±14(x, t) =
1
3

(
c2u −

√
c2

2u2 − 3c2
2ξ

)
+ c2

(
±

√
u

2
√

2

(
tanpq

( √
u(tχ + ηx)

2
√

2

)
+

cotpq

( √
u(tχ + ηx)

2
√

2

)))2

. (3.17)
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3.1. Results and discussion

Mathematical calculations of achieved exact solutions are more proficient and advantageous in
analyzing the dynamical behavior of non-linear wave phenomena based upon their graphical depiction.
These obtained solutions elaborates different types of soliton solutions. Some of which are presented
in 3D, 2D and contour plots with the help of maple. Figure 1 represents bright soliton solution, Figure
2 represents singular soliton solution for Eqs (3.4) and (3.5) respectively. Figures 3 and 5 demonstrate
periodic singular soliton solutions for Eqs (3.7) and (3.17). Solution (3.10) represents dark-bright
soliton and is plotted in Figure 4.

(a) (b)

(c)

Figure 1. (a) and (b), 3D and contour graphs of Q±1 (x, t) are sketched with η=0.91, ξ = 0, p =

0.98, q = 0.95, u = 0.2, for −8 ≤ x ≤ 8, −8 ≤ t ≤ 8 respectively. (c) 2D graph with η=0.91,
ξ = 0, p = 0.98, q = 0.95, u = 0.2, and t = 0, 0.2, 0.4, 0.6, 0.8, 1 for −10 ≤ x ≤ 10.
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(a) (b)

(c)

Figure 2. (a) and (b), 3D and contour graphs of Q±2 (x, t) are sketched with η=0.9, ξ = 0, p =

0.98, q = 0.99, u = 0.21 for −10 ≤ x ≤ 10, −10 ≤ t ≤ 10 respectively. (c) 2D graph with
η=0.9, ξ = 0, p = 0.98, q = 0.99, u = 0.1, and t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 for −20 ≤ x ≤ 20.
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(a) (b)

(c)

Figure 3. (a) and (b), 3D and contour graphs of Q±4 (x, t) are sketched with η=0.91, ξ = 0, p =

0.98, q = 0.95, u = −0.2, for −7 ≤ x ≤ 7, −7 ≤ t ≤ 7 respectively. (c) 2D graph with η=0.91,
ξ = 0, p = 0.98, q = 0.95, u = −0.2, and t = 0, 0.1, 0.14, 0.16, 0.18, 0.2 for −12 ≤ x ≤ 12.
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(a) (b)

(c)

Figure 4. (a) and (b), 3D and contour graphs of Q±7 (x, t) are sketched with η=0.91, ξ =

0.0200, p = 0.98, q = 0.95, u = −0.2, for −8 ≤ x ≤ 8, −8 ≤ t ≤ 8 respectively. (c) 2D graph
with η=0.91, ξ = 0.0200, p = 0.98, q = 0.95, u = −0.2, and t = 0, 0.01, 0.02, 0.03, 0.04, 0.05
for −15 ≤ x ≤ 15.
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(a) (b)

(c)

Figure 5. (a) and (b), 3D and contour graphs of Q±14(x, t) are sketched with η=0.91, ξ =

0.0200, p = 0.98, q = 0.95, u = 0.2, for −8 ≤ x ≤ 8, −8 ≤ t ≤ 8 respectively. (c) 2D
graph with η=0.91, ξ = 0.0200, p = 0.98, q = 0.95, u = 0.2, and t = 0, 0.5, 1, 1.5, 2, 2.5 for
−25 ≤ x ≤ 25.

4. Conclusions

SSET is a realistic, effective, and expressive tool that has been successfully implemented in the
Boussinesq equation to extract exact traveling wave solutions that are highly beneficial. The obtained
results are in the form of rational, hyperbolic and trigonometric functions. As we can see, this method
is powerful, efficient and simple tool for solving various types of nonlinear PDEs found in different
models of engineering and natural sciences. The obtained results may be practical, beneficial and can
explain the water waves in marine engineering, shallow water with long wavelength, optics, nonlinear
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grids, coupled circuits, elastic rods and so on. At the end 3D, 2D and contour plots of these solutions
are sketched using maple.
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