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1. Introduction

Convexity and generalized convexity play important roles in optimization theory and applied
mathematics. Various generalizations of convexity have appeared in the literature. A crucial
generalization of convexity is E-convexity, introduced by Youness [1] where classes of E-convex
sets and E-convex functions have been introduced, based on the effect of an operator E. A class of
quasi E-convex functions has been presented in [2]. The initial results have inspired a great deal of
subsequent works which have greatly expanded the role of E-convexity in the optimization theory. A
class of semi-E-convex functions has been defined, and its properties have been discussed [3]. The
classes of semi-(E, F)-convexity have been introduced, and some sufficient conditions of optimality
and duality theorem have been established in [4]. The concept of strongly E-convexity has been
introduced in [5]. Additional properties about E-convexity have been discussed in [6, 7]. Fulga and
Preda [8] have introduced the class of E-preinvex functions as well as the related classes of local E-
preinvex and E-prequasiinvex functions. The properties and characterizations of these classes have
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been given, and some results for the corresponding nonlinear programming have been discussed. Two
classes of functions called E-B-vex and E-B-preinvex functions have been introduced in [9]. As a
generalization of semi-E-convex functions, a class of semi-E-preinvex functions has been defined
in [10]. Some basic properties of E-B-vex functions have been studied in [11]. A class of quasi-(E, F)-
convex functions has been introduced in [12]. Some properties of semi-E-preinvex maps in Banach
spaces have been studied in [13]. A class of geodesic semi-E-convex functions has been introduced,
and their properties have been discussed in [14]. Mirzapour [15] has stated additional properties to
semi-E-convex and quasi-semi-E-convex functions. Megahed et al [16,17] have studied the duality and
optimality conditions of E-convex programming for E-differentiable functions. In [18], the duality and
optimality conditions for more general problem containing (F, α, ρ, d, E)-convex function have been
studied. New characterizations of E-convex functions have been discussed in [19]. The concepts of
strongly (E, F)-convex sets and functions have been introduced in [20]. Recently, in [21], the notions
of M -convex functions, log-M -convex functions, quasi M -convex functions have been introduced
where bounds for natural phenomena have been described by integrals. In [22, 23], a problem of
E-differentiable vector optimization with the multiple interval-valued objective function has been
studied. In [24], a new class of semi strongly (E, F)-convex functions has been presented. In [25],
a semi-infinite vector E-convex optimization problem involving support functions has been studied.
In [26], the concepts of logarithmic and exponential E-convexity have been introduced for functions
defined on a Banach space. However, the concepts of generalized convexity throughout these papers
regarding to sets and functions were considered in real space. On the other hand, many concepts of
real programming have been generalized to complex programming, see e.g., [27–34].

In this paper, we extend the concept of (E, F)-convexity to complex sets as well as concepts of
(E, F)-convexity and semi-(E, F)-convexity to include complex functions, and discuss their properties
and interrelations. We apply the associated results on a non-linear semi-(E, F)-convex programming
problem with cone-constraints in complex space. We discuss the existence and uniqueness of its
optimal solution and establish the necessary and sufficient conditions for a feasible point to be an
optimal solution for such a problem. The corresponding results in real space can be deduced from this
work as special cases.

The article in the following is prepared as: Section 2 introduces the extended notation and
preliminaries of convexity in complex space that will be used throughout the paper. Section 3 discusses
some properties and relations of complex (E, F)-convex and semi-(E, F)-convex functions. Section 4 is
concerned with results of a non-linear complex semi-(E, F)-convex programming problem. Section 5
is the conclusion of the paper.

2. Notation and preliminaries

In this section, we extend some notation of the generalized convexity to complex space that will be
used throughout the paper. The extensions include the concepts of (E, F)-convexity and semi-(E, F)-
convexity found in [4].

Definition 1. A non-empty set M ⊆ Cn is said to be

(1) convex if
λz0 + (1 − λ)z ∈ M, ∀z0, z ∈ M, ∀λ ∈ [0, 1], (2.1)
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(2) (E, F)-convex if there are two point-to-set maps E, F : M −→ 2C
n

such that

λE(z0) + (1 − λ)F(z) ⊆ M, ∀z0, z ∈ M, ∀λ ∈ [0, 1], (2.2)

(3) cone if λM ⊆ M, for λ ≥ 0.

Remark 1. A convex set M ⊆ Cn is (E, F)-convex by taking E(z0) = {z0} and F(z) = {z}, ∀z0, z ∈ M.

It is easy to show, for two point-to-set maps E, F : M −→ 2C
n
, that:

(1) If M ⊆ Cn is an (E, F)-convex, then E(M)
⋃

F(M) ⊆ M.
(2) If M ⊆ Cn is a convex set and E(M)

⋃
F(M) ⊆ M, then M is an (E, F)-convex set.

(3) If E(M)
⋃

F(M) is a convex subset of M ⊆ Cn, then M is an (E, F)-convex set.

Example 1. Let M = {z ∈ C : 0 ≤ arg z ≤ π/4}, and E, F : M → C be defined by E(z) = {Re z} and
F(z) = {(1 + i)Re z}. Since M is a convex set in C and E(M)

⋃
F(M) ⊆ M, then M is an (E, F)-convex

set.

Example 2. Let S 1 = {z ∈ C : 0 ≤ arg z ≤ π/4}, S 2 = {z ∈ C : 3π/4 ≤ arg z ≤ π} and M = S 1 ∪ S 2. Let
E, F : M → C be defined by E(z) = {Re z} and F(z) = {−Re z}. Since E(M)

⋃
F(M) is a convex subset

of M, then M is (E, F)-convex in C.

In Example 1, M is convex and E(M)
⋃

F(M) is not convex. The converse is in Example 2. The
following example shows that both M and E(M)

⋃
F(M) may not be convex, but M is (E, F)-convex.

Example 3. Let S 1 = {z ∈ C : 0 ≤ arg z ≤ π/4}, S 2 = {z ∈ C : 3π/4 ≤ arg z ≤ π} and M = S 1 ∪ S 2.
Let E, F : M → C be defined by E(z) = {|Re z|} and F(z) = {(1 + i)|Re z|}. Clearly, the set M is
(E, F)-convex in C, although M and E(M)

⋃
F(M) are not convex sets.

Definition 2. For a closed convex cone T in Cm and M ⊆ Cn, the function f : M → Cm is said to be

(1) convex on M with respect to T if M is convex and

λ f (z0) + (1 − λ) f (z) − f (λz0 + (1 − λ)z) ∈ T, ∀z0, z ∈ M, ∀λ ∈ [0, 1], (2.3)

(2) (E, F)-convex on M with respect to T if there are two point-to-set maps E, F : M −→ 2C
n

such
that M is (E, F)-convex and

λ f (w0)+ (1−λ) f (w)− f (λw0 + (1−λ)w) ∈ T, ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z), ∀λ ∈ [0, 1],
(2.4)

(3) semi-(E, F)-convex on M with respect to T if there are two point-to-set maps E, F : M −→ 2C
n

such that M is (E, F)-convex and

λ f (z0) + (1− λ) f (z)− f (λw0 + (1− λ)w) ∈ T, ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z), ∀λ ∈ [0, 1].
(2.5)

Remark 2. The convex function f on M with respect to T is (E, F)-convex and semi-(E, F)-convex on
M with respect to T by taking E(z0) = {z0} and F(z) = {z}, ∀z0, z ∈ M.

In particular, if T = Rm
+ , the non-negative orthant of Rm, one obtains

AIMS Mathematics Volume 7, Issue 6, 11119–11131.



11122

Definition 3. For M ⊆ Cn, the real part of a function f : M → Cm is said to be

(1) convex on M if M is convex and

Re f (λz0 + (1 − λ)z) ≤ Re [λ f (z0) + (1 − λ) f (z)], ∀z0, z ∈ M, ∀λ ∈ [0, 1], (2.6)

(2) (E, F)-convex on M if there are two point-to-set maps E, F : M −→ 2C
n

such that M is (E, F)-
convex and

Re f (λw0+(1−λ)w) ≤ Re [λ f (w0)+(1−λ) f (w)], ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z), ∀λ ∈ [0, 1],
(2.7)

(3) semi-(E, F)-convex on M if there are two point-to-set maps E, F : M −→ 2C
n

such that M is
(E, F)-convex and

Re f (λw0+(1−λ)w) ≤ Re [λ f (z0)+(1−λ) f (z)], ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z), ∀λ ∈ [0, 1],
(2.8)

(4) strictly convex, strictly (E, F)-convex, or strictly semi-(E, F)-convex on M if the inequalities in
(2.6), (2.7), or (2.8) holds strictly respectively for z , z0 and λ ∈ (0, 1).

Moreover, if f is a real function, one obtains the classical definitions.

3. Properties of complex semi-(E, F)-convex functions

In this section, we discuss some properties and relations of complex (E, F)-convex and semi-(E, F)-
convex functions. In the the subsequent of the paper, we assume that E, F : M −→ 2C

n
are two

point-to-set maps defined on M ⊆ Cn. We begin with the some properties of (E, F)-convex functions.

Lemma 1. Let T be a closed convex cone in Cm and E(M)
⋃

F(M) be a convex subset of M. Then a
function f : M → Cm is (E, F)-convex on M with respect to T iff f is convex on E(M)

⋃
F(M) with

respect to T .

Corollary 1. Let E(M)
⋃

F(M) be a convex subset of M. Then a function Re f : M → Rm is (E, F)-
convex on M iff Re f is convex on E(M)

⋃
F(M).

Remark 3. Intuitively, if Re f is a convex function on a convex set M with E(M)
⋃

F(M) ⊆ M, then
Re f is (E, F)-convex on M.

The following results gives some properties of semi-(E, F)-convex functions.

Theorem 1. Let T be a closed convex cone in Cm and M be an (E, F)-convex set. If f : M → Cm is
semi-(E, F)-convex on M with respect to T , then

f (z0) − f (w0) ∈ T and f (z) − f (w) ∈ T, ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z). (3.1)

Proof. If f is semi-(E, F)-convex on M with respect to T , then λw0 + (1 − λ)w ∈ M and we obtain
conditions (3.1) by letting λ = 1 and λ = 0 in (2.5), separately. �

Corollary 2. Let M be an (E, F)-convex set and Re f is semi-(E, F)-convex on M, then

Re f (w0) ≤ Re f (z0) and Re f (w) ≤ Re f (z), ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z). (3.2)
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An (E, F)-convex function on an (E, F)-convex set is not necessary a semi-(E, F)-convex function.
The following example provides an (E, F)-convex function, which is not a semi-(E, F)-convex
function.

Example 4. Let M = {z ∈ C : 0 ≤ arg z ≤ π/4} and let E, F : M → C be defined by E(z) = {z + 1}
and F(z) = {Re z}. Since M ⊂ C is a convex set and E(M)

⋃
F(M) ⊂ M, then M is (E, F)-convex.

According to Remark 3, the function f : M → C defined by f (z) = |z|2 is so (E, F)-convex on M. For
the point z0 = 0 ∈ M, we have 1 = w0 ∈ E(z0), and consequently, f (w0) = 1 > 0 = f (z0), then from
Corollary 2, it follows that f is not semi-(E, F)-convex on M.

Theorem 2. Let T be a closed convex cone in Cm, M be an (E, F)-convex set and f : M → Cm be an
(E, F)-convex function on M with respect to T . Then f is semi-(E, F)-convex on M with respect to T if
conditions (3.1) above are satisfied.

Proof. Since f is (E, F)-convex on M with respect to T , (2.4) is satisfied.
Suppose that conditions (3.1) are given, then ∀z0, z ∈ M, ∀w0 ∈ E(z0), ∀w ∈ F(z), ∀λ ∈ [0, 1], we

have
λ( f (z0) − f (w0)) ∈ T and (1 − λ)( f (z) − f (w)) ∈ T, (3.3)

which implies
λ f (z0) + (1 − λ) f (z) − [λ f (w0) + (1 − λ) f (w)] ∈ T. (3.4)

By adding the above expression with that in (2.4), then (2.5) follows. Hence f is semi-(E, F)-convex
on M with respect to T . �

Corollary 3. Let M be an (E, F)-convex set and Re f : M → Rm be an (E, F)-convex function on M.
Then Re f is semi-(E, F)-convex on M if conditions (3.2) hold.

By combining Corollaries 2 and 3, we deduce, for an (E, F)-convex function on an (E, F)-convex
set M, that a function Re f is semi-(E, F)-convex on M if and only if the conditions (3.2) are fulfilled.

Corollary 4. Let M be an (E, F)-convex set and Re f : M → Rm be an (E, F)-convex function on M.
Then Re f is strictly semi-(E, F)-convex on M iff the inequalities in (3.2) hold strictly.

Corollary 5. Let M be an (E, F)-convex set and Re f : M → Rm be a strictly (E, F)-convex function
on M. Then Re f is strictly semi-(E, F)-convex on M iff conditions (3.2) hold.

Theorem 3. Let T be a closed convex cone in Cm, M be an (E, F)-convex set and f : M → Cm be a
semi-(E, F)-convex function on M with respect to T . Then for any complex vector α ∈ Cm, the level set

Γα,T := {z ∈ M : − f (z) + α ∈ T }, (3.5)

is an (E, F)-convex set.

Proof. ∀z0, z ∈ Γα,S and ∀λ ∈ [0, 1], we have

λ(− f (z0) + α) ∈ T, (3.6)

and
(1 − λ)(− f (z) + α) ∈ T. (3.7)
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Since M is an (E, F)-convex set and f is a semi-(E, F)-convex function on M with respect to T , then
λE(z0) + (1 − λ)F(z) ⊆ M, and

λ f (z0) + (1 − λ) f (z) − f (λw0 + (1 − λ)w) ∈ T, ∀w0 ∈ E(z0), ∀w ∈ F(z). (3.8)

Adding (3.6)–(3.8) yields

− f (λw0 + (1 − λ)w) + α ∈ T, ∀w0 ∈ E(z0), ∀w ∈ F(z). (3.9)

Hence
λw0 + (1 − λ)w ∈ Γα,T , (3.10)

that is
λE(z0) + (1 − λ)F(z) ⊆ Γα,T . (3.11)

It follows that Γα,T is an (E, F)-convex set. �

Corollary 6. Let T be a closed convex cone in Cm, M be an (E, F)-convex set, and f : M → Cm be a
semi-(E, F)-convex function on M with respect to T . Then the set

X := {z ∈ M : − f (z) ∈ T }, (3.12)

is an (E, F)-convex set.

Corollary 7. Let M be an (E, F)-convex set and Re f : M → Rm be a semi-(E, F)-convex function on
M. Then the set

Γα := {z ∈ M : Re f (z) ≤ α}, (3.13)

is an (E, F)-convex set for any real vector α ∈ Rm.

To characterize a semi-(E, F)-convex function, we need to define the extended maps Ê, F̂ : M ×
Cm −→ 2C

n+m
by Ê(z, α) = E × I(z, α) = (E(z), α) and F̂(z, α) = F × I(z, α) = (F(z), α) for any

(z, α) ∈ M × Cm.

Theorem 4. Let T be a closed convex cone in Cm and M be an (E, F)-convex set. The function
f : M → Cm is semi-(E, F)-convex on M with respect to T iff its epigaph

epi( f ,T ) := {(z, α) : z ∈ M, α ∈ Cm,− f (z) + α ∈ T }, (3.14)

is an (Ê,F̂)-convex set on Cn+m.

Proof. Assume that epi( f ,T ) is an (Ê, F̂)-convex set on Cn+m, then ∀z0, z ∈ M, we have (z0, f (z0)),
(z, f (z)) ∈ epi( f ,T ). It follows, ∀λ ∈ [0, 1], that

λÊ(z0, f (z0)) + (1 − λ)F̂(z, f (z)) ⊆ epi( f ,T ), (3.15)

i.e.,
(λE(z0) + (1 − λ)F(z), λ f (z0) + (1 − λ) f (z)) ⊆ epi( f ,T ). (3.16)

Since λE(z0) + (1 − λ)F(z) ⊆ M, we have

− f (λw0 + (1 − λ)w) + λ f (z0) + (1 − λ) f (z) ∈ T, ∀w0 ∈ E(z0), ∀w ∈ F(z) and ∀λ ∈ [0, 1]. (3.17)
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Therefore f is a semi-(E, F)-convex function on M with respect to T .
Conversely, assume that f is a semi-(E, F)-convex on M with respect to T . Then

λ f (z0) + (1 − λ) f (z) − f (λw0 + (1 − λ)w) ∈ T, ∀w0 ∈ E(z0), ∀w ∈ F(z) and ∀λ ∈ [0, 1]. (3.18)

To prove epi( f ,T ) is an (Ê, F̂)-convex set, let (z0, α), (z, β) ∈ epi( f ,T ), so z0, z ∈ M,− f (z0) + α ∈ T
and − f (z) + β ∈ T . We get, ∀λ ∈ [0, 1],

λ(− f (z0) + α) + (1 − λ)(− f (z) + β) ∈ T,

which, by adding with (3.18), implies

− f (λw0 + (1 − λ)w) + (λα + (1 − λ)β) ∈ T ∀w0 ∈ E(z0), ∀w ∈ F(z) and ∀λ ∈ [0, 1].

This means that
(λw0 + (1 − λ)w, λα + (1 − λ)β) ∈ epi( f ,T ),

that is
(λ(w0, α) + (1 − λ)(w, β)) ∈ epi( f ,T ),

or
λ(E(z0), α) + (1 − λ)(F(z), β) ⊆ epi( f ,T ).

It follows that
λÊ(z0, α) + (1 − λ)F̂(z, β) ⊆ epi( f ,T ),

and therefore, epi( f ,T ) is an (Ê, F̂)-convex set. �

Corollary 8. Let T be a closed convex cone in Cm and M be an (E, F)-convex set. The function − f :
M → Cm is semi-(E, F)-convex on M with respect to T iff its hypograph

hyp( f ,T ) := {(z, α) : z ∈ M, α ∈ Cm, f (z) + α ∈ T }, (3.19)

is an (Ê,F̂)-convex set on Cn+m.

4. Results of a complex semi-(E, F)-convex programming problem

We consider the non-linear complex programming problem:

min Re f (z)
sub ject to z ∈ M,

(4.1)

where f : M → C. We have the following results.

Theorem 5. Let M be an (E, F)-convex set and

Re f (w1) ≤ Re f (z1) and Re f (w2) ≤ Re f (z2), ∀z1, z2 ∈ M, ∀w1 ∈ E(z1), ∀w2 ∈ F(z2). (4.2)

If w0 is a solution of
min Re f (w)
sub ject to w ∈ E(z)

⋃
F(z) and z ∈ M,

(4.3)

then w0 is a solution of problem (4.1).
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Proof. Let w0 ∈ E(M) be a solution of problem (4.3), i.e., w0 ∈ E(z0) for some z0 ∈ M. From the
(E, F)-convexity of M, w0 ∈ M. Suppose that w0 is not a solution of problem (4.1), then there exists
z∗ ∈ M such that Re f (z∗) < Re f (w0), which implies by (4.2) to Re f (w) ≤ Re f (z∗) < Re f (w0), for
any w ∈ E(z∗), which contradicts the optimality of w0 of problem (4.3). If w0 ∈ F(M), the proof is
similar. �

Notice that, under the conditions of the above theorem, a solution of problem (4.1), if exists, should
lie in E(M)

⋃
F(M).

Corollary 9. Let M be an (E, F)-convex set and Re f : M → R be a semi-(E, F)-convex on M. If w0

is a solution of problem (4.3), then w0 is a solution of problem (4.1).

Proof. The proof follows directly from Corollary 2 above. �

Theorem 6. Let M be an (E, F)-convex set, and Re f : M → R be an (E, F)-convex function on M
with Re f (w1) ≤ Re f (z1), ∀z1 ∈ M, ∀w1 ∈ F(z1) (or Re f (w2) ≤ Re f (z2), ∀z2 ∈ M, ∀w2 ∈ E(z2)). If
w0 ∈ E(M)

⋃
F(M)) is a local solution of problem (4.1), then w0 is a global solution of problem (4.1).

Proof. Suppose that w0 ∈ E(z0) ⊆ E(M), for some z0 ∈ M, is not a global solution of problem (4.1),
then there exists another z∗ ∈ M such that Re f (z∗) < Re f (w0). Since M is an (E, F)-convex set, then
for any w ∈ F(z∗) and for λ ∈ (0, 1) small enough, w0 + λ(w − w0) ∈ M ∩ Nε(w0). Then

Re f (w0 + λ(w − w0)) = Re f (λw + (1 − λ)w0),

which implies, by (E, F)-convexity of Re f , to

Re f (w0 + λ(w − w0)) ≤ Re [λ f (w) + (1 − λ) f (w0)].

Therefore,

Re f (w0 + λ(w − w0)) ≤ Re [λ f (z∗) + (1 − λ) f (w0)] < Re [λ f (w0) + (1 − λ) f (w0)] = Re f (w0),

which contradicts the fact that w0 is a local solution of problem (4.1). This proves the theorem. �

Corollary 10. Let M be an (E, F)-convex set, and Re f : M → R be a semi-(E, F)-convex function
on M. If w0 ∈ E(M)

⋃
F(M)) is a local solution of problem (4.1), then w0 is a global solution of

problem (4.1).

Proof. The proof follows directly from Corollary 2 above. �

Corollary 11. Let M be an (E, F)-convex set, and Re f : M → R be a semi-(E, F)-convex function
on M, and z0 ∈ M be a fixed point of E or F, i.e., z0 ∈ E(z0)

⋃
F(z0). If z0 is a local solution of

problem (4.1), then z0 is a global solution of problem (4.1).

Corollary 12. Let M be an (E, F)-convex set, and Re f : M → R be a (E, F)-convex function on M
satisfying Re f (w1) ≤ Re f (z1), ∀z1 ∈ M, ∀w1 ∈ F(z1) and Re f (w2) ≤ Re f (z2), ∀z2 ∈ M, ∀w2 ∈

E(z2), and z0 ∈ M be a fixed point of E or F. If z0 is a local solution of problem (4.1), then z0 is a
global solution of problem (4.1).
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Theorem 7. Let M be an (E, F)-convex set, and Re f : M → R be a strictly semi-(E, F)-convex
function on M, then the global solution of problem (4.1) is unique.

Proof. Let z1 and z2 be two different global solutions of problem (4.1), then Re f (z1) = Re f (z2).
Since M is an (E, F)-convex set and Re f (z) is a strictly semi-(E, F)-convex function on M, then
∀w1 ∈ E(z1), ∀w2 ∈ F(z2) and ∀λ ∈ (0, 1), we have

Re f (λw1 + (1 − λ)w2) < Re (λ f (z1) + (1 − λ) f (z2) = Re f (z1),

which contradicts the global optimality of z1 of problem (4.1). Hence the global solution is unique. �

Corollary 13. Let M be an (E, F)-convex set, and Re f : M → R be an (E, F)-convex function on M
satisfying Re f (w1) < Re f (z1), ∀z1 ∈ M, ∀w1 ∈ E(z1) and Re f (w2) < Re f (z2), ∀z2 ∈ M, ∀w2 ∈

F(z2), then the global solution of problem (4.1) is unique.

Corollary 14. Let M be an (E, F)-convex set, and Re f : M → R be a strictly (E, F)-convex function
on M satisfying Re f (w1) ≤ Re f (z1), ∀z1 ∈ M, ∀w1 ∈ E(z1) and Re f (w2) ≤ Re f (z2), ∀z2 ∈ M, ∀w2 ∈

F(z2), then the global solution of problem (4.1) is unique.

Theorem 8. Let M be an (E, F)-convex set, and Re f : M → R be a semi-(E, F)-convex function on
M, then the set of all optimal solutions of problem (4.1) is (E, F)-convex.

Proof. Let z0 be an optimal solution of problem (4.1), then the set Z0 := {z ∈ M : Re f (z) ≤ Re f (z0)} =

Γ f (z0) of all optimal solutions is (E, F)-convex, according to Corollary 7. �

Now, we investigate the necessary and sufficient optimality criteria for a nonlinear complex
programming problem (4.1).

Theorem 9. Let M be an (E, F)-convex set, and Re f : M → R be a differentiable function on M.

(1) If w0 ∈ E(M) is a solution of problem (4.1), then

Re [〈∇z f (w0) ,w − w0〉 + 〈∇z f (w0), w − w0〉] ≥ 0,∀z ∈ M,∀w ∈ F(z). (4.4)

(2) If w0 ∈ F(M) is a solution of problem (4.1), then

Re [〈∇z f (w0) ,w − w0〉 + 〈∇z f (w0), w − w0〉] ≥ 0,∀z ∈ M,∀w ∈ E(z), (4.5)

where kth elements of the vectors∇z f (w0) and∇z f (w0) for k = 1, ..., n are ∂ f (w0)
∂zk

and ∂ f (w0)
∂zk

, respectively.

Proof. (i) Let w0 ∈ E(z0) be an optimal solution of problem (4.1) for some z0 ∈ M. For any z ∈ M,
w ∈ F(z) and for λ ∈ (0, 1], we note that λw + (1 − λ)w0 ∈ M, and then we have

Re f (w0) ≤ Re f (λw + (1 − λ)w0) = Re f (w0 + λ(w − w0)).

Since Re f is differentiable on M, it follows for λ ∈ (0, 1] that

Re f (w0) ≤ Re[ f (w0) + λ〈∇z f (w0) ,w − w0〉 + λ〈∇z f (w0), w − w0〉 + o(λ)],

where o(λ)/λ→ 0 as λ→ 0+. Hence

Re[λ〈∇z f (w0) ,w − w0〉 + λ〈∇z f (w0), w − w0〉 + o(λ)] ≥ 0.

Therefore, by dividing by λ and taking λ→ 0+, the condition 4.4 follows.
(ii) The proof is similar to part (i). �

AIMS Mathematics Volume 7, Issue 6, 11119–11131.



11128

Theorem 10. Let M be an (E, F)-convex set, and Re f : M → R be a differentiable semi-(E, F)-convex
function on M. Then a fixed point z0 ∈ M of E or F is a solution of problem (4.1), if

(i) Re [〈∇z f (z0) ,w − z0〉 + 〈∇z f (z0), w − z0〉] ≥ 0,∀z ∈ M,∀w ∈ F(z), (4.6)

or
(ii) Re [〈∇z f (z0) ,w − z0〉 + 〈∇z f (z0), w − z0〉] ≥ 0,∀z ∈ M,∀w ∈ E(z). (4.7)

Proof. (i) Let z0 ∈ E(z0). Since Re f is semi-(E, F)-convex on M, then for any z ∈ M, w ∈ F(z) and
λ ∈ [0, 1], we have

Re f (z0 + λ(w − z0)) ≤ Re [ f (z0) + λ( f (z) − f (z0))],

which yields

Re [( f (z) − f (z0))] ≥
Re f (z0 + λ(w − z0)) − Re f (z0)

λ
, λ ∈ (0, 1].

As λ→ 0+, the differentiability of Re f on M yields

Re [ f (z) − f (z0)] ≥ Re [〈∇z f (z0) ,w − z0〉 + 〈∇z f (z0), w − z0〉].

By using 4.6, we have Re [ f (z) − f (z0)] ≥ 0, proving that z0 is a solution of (4.1).
(ii) For z0 ∈ F(z0), the proof is similar to part (i). �

Again, the semi-(E, F)-convexity condition of Re f can be replaced by (E, F)-convexity with the
conditions (3.2).

In the remainder of this section, we reconsider the complex programming problem (4.1) but with
cone-constraints as

min Re f (z)
sub ject to z ∈ Mg := {z ∈ Cn : g(z) ∈ S } ,

(4.8)

where f : Cn → C and g : Cn → Cm are two functions, and S is a cone in Cm. We apply the associated
results to problem 4.8.

Theorem 11. Let S be a closed convex cone in Cm and −g be a semi-(E, F)-convex function on Cn with
respect to S . Then the feasible region Mg ⊆ C

n of problem 4.8 is an (E, F)-convex set.

Proof. The proof follows directly according to Corollary 6. �

As a consequent of Theorem 11, if −g is a semi-(E, F)-convex function on Cn with respect to S ,
then all results of this section are fulfilled on Mg instead of M.

Example 5. Let the set M ⊆ C be defined by M = {z ∈ C : 0 ≤ arg z ≤ π/4}, the maps E, F : M → C
be defined by E(z) = {Re z}, F(z) = {(1 + i)Im z}, and the objective f : M → C be defined by
f (z) = |z|2. It is easy to show that the set M is (E, F)-convex and the function f is semi-(E, F)-convex
on M. The point w0 = 0 is the optimal solution of problem (4.3) and according to Corollary 9, it is the
optimal solution of problem (4.1). Further, w0 = 0 is the global solution of problem (4.1) according to
Corollary 10 or Corollary 11.
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5. Conclusions

In this paper, we have extended the concepts of (E, F)-convexity to include complex sets as well
as concepts of (E, F)-convexity and semi-(E, F)-convexity to include complex functions, and we have
discussed their properties and relations. We have proved that the solution of a non-linear semi-(E, F)-
convex programming problem, if exists, lies in E(M)

⋃
F(M) and that the local solution is global.

In the case of Re f is strictly semi-(E, F)-convex, the global solution is unique. Finally, we have
investigated the necessary and sufficient optimality criteria for a feasible point to be an optimal solution
to such a problem. Some illustrative examples have been given. It is worth noting that the related results
in real problems can be deduced from this work as special cases.
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