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Abstract: In this paper, we deal with the reconstruction problem of aperture in the plane from their
diffraction patterns. The problem is severely ill-posed. The reconstruction solutions of classical
Tikhonov method and Fourier truncated method are usually over-smoothing. To overcome this
disadvantage of the classical methods, we introduce a quasi-boundary regularization method for
stabilizing the problem by adding a-priori assumption on the exact solution. The corresponding
error estimate is derived. At the continuation boundary z = 0, the error estimate under the a-priori
assumption is also proved. In theory without noise, the proposed method has better approximation
than the classical Tikhonov method. For illustration, two numerical examples are constructed to
demonstrate the feasibility and efficiency of the proposed method.

Keywords: inverse diffraction problem; ill-posed; regularization; quasi-boundary method; Tikhonov
method
Mathematics Subject Classification: 35R25, 35R30, 47A52

1. Introduction

The reconstruction problem of aperture in the plane from their diffraction patterns arises in acoustics
and optics. Consider the following inverse diffraction problem. Let A be a bounded aperture in an
infinite perfectly soft screen which is located in the plane z = 0 in R3. A harmonic plane wave with
wave-number k propagates along with the positive z direction. It hits the screen and escapes through
the aperture A. The measured data at receiving screen z = d > 0 is given. The problem is to reconstruct
the shape (domain) of the aperture A. By Kirchhoff approximation, the mathematical modeling can be
formulated as follows.

Inverse problem. Let u(x, y, z) be the solution of the following problem:

uxx + uyy + uzz + k2u(x, y, z) = 0, (x, y) ∈ R2, z > 0, (1.1)
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u(x, y, d) = g(x, y), (x, y) ∈ R2, (1.2)

lim
r→∞

r(
∂u
∂r
− iku) = 0, where r =

√
x2 + y2 + z2. (1.3)

It is explained here that “r” always equals “
√

x2 + y2 + z2” in this article. Here, we wish to find the
u(x, y, 0) = χA(x, y) from the data g(x, y), where χA(x, y) is the characteristic function of the domain A.

But we deal with a more general case where the χA(x, y) is replaced by a general function f (x, y) that
belongs to L2(R2) (if A is the support of f , this corresponds to assuming an arbitrary incident wave).

Before investigating the inverse problem, we discuss briefly the forward problem. The
corresponding forward problem is as follow.

Forward problem. Let u(x, y, z) be the solution of the following problem:

uxx + uyy + uzz + k2u(x, y, z) = 0, (x, y) ∈ R2, z > 0, (1.4)
u(x, y, 0) = f (x, y), (x, y) ∈ R2, (1.5)

lim
r→∞

r(
∂u
∂r
− iku) = 0. (1.6)

We wish to find the u(x, y, z) = g(x, y) ∈ L2(R2) from the data f (x, y) ∈ L2(R2) for a fixed 0 < z ≤ d.
It is well known that if f (x, y) has bounded support A, then the forward problem admits a unique

solution u(x, y, z) which is given by

u(x, y, z) =
∫
R2

Hz(x − µ, y − ν) f (µ, ν)dµdν := F(z) f (x, y), (1.7)

where

Hz(x, y) = −
1

2π

∂
(

eik
√
τ2+x2+y2

√
τ2+x2+y2

)
∂τ

∣∣∣
τ=z
,

and F(z) : L2(A)→ L2(R2) is the solution operator.
The problem can be reposed in the Fourier domain. Let

ĥ(ξ, η) =
1

2π

∫
R2

h(x, y)e−i(ξx+ηy)dxdy (1.8)

be the Fourier transform of the function h(x, y) ∈ L2(R2). The corresponding inverse Fourier transform
of the function ĥ(ξ, η) is given by

h(x, y) =
1

2π

∫
R2

ĥ(ξ, η)ei(ξx+ηy)dξdη. (1.9)

By taking Fourier transform of (1.4)–(1.6) with respect to variables x and y, the solution of forward
problem in frequency domain is given by

û(ξ, η, z) = e−za(ξ,η) f̂ (ξ, η) = F̂(z) f , (1.10)

where a(ξ, η) =
√
ξ2 + η2 − k2 if ξ2 + η2 ≥ k2 and a(ξ, η) = i

√
k2 − ξ2 − η2 if ξ2 + η2 < k2.
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From this formula, formally we have the solution for the inverse problem

f̂ (ξ, η) = eda(ξ,η)ĝ(ξ, η) (1.11)

and
û(ξ, η, z) = e(d−z)a(ξ,η)ĝ(ξ, η). (1.12)

Following [1], the plane waves with frequencies
√
ξ2 + η2 < k are called homogeneous waves

and the plane waves with frequencies
√
ξ2 + η2 > k are called evanescent waves. The reconstruction

regions are divided two cases:
(1) Near-field region: Corresponds to distances d < λ = 2π

k , and in this case the evanescent waves
are important.

(2) Far-field region: Corresponds to distances d > λ = 2π
k , and in this case the homogeneous waves

are important, and one can assume that the û(ξ, η, d) has a support given by B = {(ξ, η) : ξ2 + η2 ≤ k2}.
The problem of inverse diffraction from plane to plane is well-known ill-posed problem in the near-

field pattern and in the far-field pattern [2–7]. There are some machine learning methods for solving
inverse scattering problems conveniently, such as neural network [8, 9]. In this paper, we discuss the
inverse diffraction problem from the aspect of regularization theory for solving ill-posed problems. To
stabilize the ill-posed problem and improve the resolution of the solution, a priori information about
unknown solution is introduced [10] necessarily.

The problem is similar to the Cauchy problem for the Helmholtz equation. Regularization
methods for solving Cauchy problem have been suggested by various authors. For instance,
the modified Tikhonov regularisation method [11–13], the truncation method [14, 15], quasi-
reversibility method [16,17], mapped regularization methods [18], operator regularization method [19],
mollification method [20], fractional Tikhonov method [21], a slow-evolution-from-the-continuation-
boundary (SECB) method [22], posteriori regularization [23], Spectral Galerkin method [24], etc.

A priori information about unknown solution has been proved to be essential in the analysis of ill-
posed problems in mathematical physics. Otherwise, without the priori information the convergence
rate of the constructed regularization method is arbitrarily slow [25–27].

Although this problem has been investigated by Sondhi [28], Bertero [29], Magnanini [10] and
Santosa [30], most of the existing results are devoted to the numerical aspects, e.g., a level set
method has been proposed for solving the problem in [30]. In this work, we will focus on the
regularization method and the error estimate from the viewpoint of regularization for ill-posed
problems. In references [22, 31], we studied this problem by slow-evolution-from-the-continuation-
boundary (SECB) method and spectral method respectively. Here we propose a quasi-boundary
regularization for solving this inverse problem and corresponding error estimates are derived. It is
well-known that the classical Tikhonov method has an over-smoothing regularization solution and the
truncated Fourier method also has one, therefore we try to give a simple method to overcome this
disadvantage. The total variation method [32] is a good alternative for resolve this problem, but it
is difficult to treat both numerically and theoretically. In this paper, we find out that the proposed
quasi-boundary regularization has better approximation than the classical Tikhonov method in the case
of noiseless data theoretically. Although this result doesn’t has real meaning in practice, the quasi-
boundary method has its advantage. The proposed method could give better approximation by using
few cost when we want to reconstruct the non-smooth exact object. The numerical examples show the
regularization method is effective and support the results.
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The paper is organized as follow. In Section 2, a quasi-boundary regularization method is presented
and the error bounds are proved; in Section 3, a comparison between the classical Tikhonov method
and the quasi-boundary method is given; in Section 4, some numerical results are reported in order to
show that the quasi-boundary method is more effective for the inverse diffraction problem.

2. The quasi-boundary regularization method

Let g(x, y) denotes the exact data, and we would actually have noisy data function gδ(x, y) ∈ L2(R2),
for which

∥gδ(x, y) − g(x, y)∥ ≤ δ, (2.1)

where the constant δ > 0 represents a bound on the measured error, ∥·∥ denotes the L2−norm throughout
this paper. An a-priori knowledge about the true solution is an essential element in the successful
computation of ill-posed inverse problems [25]. We assume there exists a constant E > 0, such that the
exact solution u(·, ·, 0) := f (·, ·) satisfies

∥u(·, ·, 0)∥p ≤ E, (2.2)

where ∥ · ∥p denotes the norm of Sobolev space Hp(R2).
In this section, we follow the idea from Ames et al. [33] where they used a quasi-boundary method

(or so-called modified boundary method) for solving a classical backward heat equation. Let us
consider the problem with noisy data for the current inverse problem:

uxx + uyy + uzz + k2u(x, y, z) = 0, (x, y) ∈ R2, z > 0, (2.3)
u(x, y, d) = gδ(x, y), (x, y) ∈ R2, (2.4)

lim
r→∞

r(
∂u
∂r
− iku) = 0. (2.5)

We try to use a quasi-boundary regularization method to solve the problem (2.3)–(2.5), i.e., let us
consider the following modified boundary problem:

(vαδ )xx + (vαδ )yy + (vαδ )zz + k2(vαδ )(x, y, z) = 0, (x, y) ∈ R2, z > 0, (2.6)
α(vαδ )(x, y, 0) + (vαδ )(x, y, d) = gδ(x, y), (x, y) ∈ R2, (2.7)

lim
r→∞

r(
∂(vαδ )
∂r
− ik(vαδ )) = 0, (2.8)

where α > 0 is a small parameter.
By the technique of Fourier transform, we can get the solution of the modified boundary problem

in the frequency domain:

ˆ(vαδ )(ξ, η, z) =
e(d−z)a(ξ,η)

1 + αeda(ξ,η) ĝδ(ξ, η), (2.9)

where a(ξ, η) is the same as in (1.10).

Proposition 2.1. Let gδ ∈ L2(R2) and make the solution of problem (2.3)–(2.5) exist, then the solution
of problem (2.6)–(2.8) approximates the solution of problem (2.3)–(2.5) in L2-norm when α→ 0.
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Proof. The solution of (2.3)–(2.5) is given by

ûδ(ξ, η, z) = e(d−z)a(ξ,η)ĝδ(ξ, η).

From (2.9) we can easily see that as α→ 0, v̂αδ → ûδ and ∥v̂αδ − ûδ∥ → 0 , uniformly in z.

Lemma 2.1. If 0 ≤ z < d, 0 < α < 1, then

sup
ξ2+η2≥k2

∣∣∣ e(d−z)
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

∣∣∣ ≤ α z
d−1. (2.10)

sup
ξ2+η2<k2

∣∣∣ ei(d−z)
√

k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2

∣∣∣ ≤ 1
1 − α

. (2.11)

Proof. If ξ2 + η2 ≥ k2, by inequality (see Lemma 3.1 in [16])

sup
s>0

esz

1 + αesd ≤ α
− z

d , (2.12)

we have

sup
ξ2+η2≥k2

∣∣∣ e(d−z)
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

∣∣∣ ≤ α− d−z
d = α

z
d−1.

If ξ2 + η2 < k2, we have

sup
ξ2+η2<k2

∣∣∣ ei(d−z)
√

k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2

∣∣∣ ≤ 1

1 − |αeid
√

k2−ξ2−η2
|

=
1

1 − α
.

Proposition 2.2. Let gδ ∈ L2(R2), then the solution of problem (2.6)–(2.8) continuously depends on
the data in L2-norm if the parameter α is selected appropriately.
Proof. For problem (2.6)–(2.8), we have the following conclusion: If any two functions gδ,1 and gδ,2
satisfy ∥gδ,1 − gδ,2∥ ≤ ε, let vα,1δ and vα,2δ be the corresponding solutions, respectively, setting α = O(ε),
then ∥vα,1δ − vα,2δ ∥ → 0, as ε→ 0. In fact, by Parseval’s identity and Lemma 2.1, we have

∥vα,1δ − vα,2δ ∥

=∥v̂α,1δ − v̂α,2δ ∥ = ∥
e(d−z)a(ξ,η)

1 + αeda(ξ,η) (ĝδ,1 − ĝδ,2)∥

=
( ∫
ξ2+η2≥k2

|
e(d−z)

√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

(ĝδ,1 − ĝδ,2)|2dξdη +
∫
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
(ĝδ,1 − ĝδ,2)|2dξdη

)1/2
≤ sup
ξ2+η2≥k2

|
e(d−z)

√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

| ∥ĝδ,1 − ĝδ,2∥ + sup
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
| ∥ĝδ,1 − ĝδ,2∥

≤ sup
ξ2+η2≥k2

|
e(d−z)

√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

|ε + sup
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
|ε

≤α
z
d−1ε +

ε

1 − α
. (2.13)
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Hence if α = O(ε), then
∥vα,1δ − vα,2δ ∥ → 0, for ε→ 0.

For the inverse problem, we can obtain the error estimate between the regularized solution vαδ (x, y, z)
and the exact solution u(x, y, z).

Theorem 2.1. Suppose u(x, y, z) is the solution of the problem (1.1)–(1.3) with the exact data g(x, y) ∈
L2(R2) and vαδ (x, y, z) is the regularization solution whose Fourier transform is given by (2.9) with the
noisy data gδ(x, y) ∈ L2(R2), let (2.1) and the a-priori condition (2.2) hold with p = 0. If α = δ

E , then
for a fixed 0 < z < d we have the error estimate

∥vαδ (·, ·, z) − u(·, ·, z)∥ ≤ 2δ
z
d E1− z

d (1 + o(1)), f or δ→ 0. (2.14)

Proof. We take two steps to prove it.
Step I: Convergence. We need to prove the regularization solution vα whose Fourier transform is

given by (2.9) approaches the exact solution u with the same exact data g.
By Parseval’s identity, we have

∥vα(·, ·, z) − u(·, ·, z)∥ = ∥v̂α(·, ·, z) − û(·, ·, z)∥

=∥
e(d−z)a(ξ,η)

1 + αeda(ξ,η) ĝ(ξ, η) − e(d−z)a(ξ,η)ĝ(ξ, η)∥

=∥α
e(2d−z)a(ξ,η)

1 + αeda(ξ,η) ĝ(ξ, η)∥. (2.15)

From (1.12), there holds

ĝ(ξ, η) =
û(ξ, η, 0)

eda(ξ,η) .

Therefore,

∥v̂α(·, ·, z) − û(·, ·, z)∥

=α∥
e(d−z)a(ξ,η)

1 + αeda(ξ,η) û(ξ, η, 0)∥

=α
( ∫
ξ2+η2≥k2

|
e(d−z)

√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

û(ξ, η, 0)|2dξdη

+

∫
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
û(ξ, η, 0)|2dξdη

)1/2
≤α sup

ξ2+η2≥k2
|

e(d−z)
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

|(
∫

(ξ,η)∈R2
|û(ξ, η, 0)|2dξdη)1/2

+ α sup
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
|(
∫

(ξ,η)∈R2
|û(ξ, η, 0)|2dξdη)1/2. (2.16)

By the a-priori assumption (2.2) and Lemma 2.1, (2.16) yields

∥v̂α(·, ·, z) − û(·, ·, z)∥ ≤ αEα
z
d−1 +

αE
1 − α

.
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If α = δ/E, we have

∥v̂α(·, ·, z) − û(·, ·, z)∥ ≤ δ
z
d E1− z

d +
δ

1 − δ/E
= δ

z
d E1− z

d (1 + o(1)), f or δ→ 0. (2.17)

Step II: Stability. We now prove that the regularization solution is dependent continuously on the
data. Using the Parseval’s equality and Lemma 2.1, we obtain

∥vαδ (·, ·, z) − vα(·, ·, z)∥

=∥v̂αδ (·, ·, z) − v̂α(·, ·, z)∥ = ∥
e(d−z)a(ξ,η)

1 + αeda(ξ,η) (ĝδ − ĝ)∥

=
( ∫
ξ2+η2≥k2

|
e(d−z)

√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

(ĝδ − ĝ)|2dξdη

+

∫
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
(ĝδ − ĝ)|2dξdη

)1/2
≤ sup
ξ2+η2≥k2

|
e(d−z)

√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

|δ + sup
ξ2+η2<k2

|
ei(d−z)

√
k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
|δ

≤α
z
d−1δ +

δ

1 − α
.

Noting α = δ/E, we have

∥v̂αδ (·, ·, z) − v̂α(·, ·, z)∥ ≤ δ
z
d E1− z

d +
δ

1 − δ/E
= δ

z
d E1− z

d (1 + o(1)), f or δ→ 0. (2.18)

The conclusion of the theorem now follows immediately by using the triangle inequalities (2.17)
and (2.18).

We find that the error estimate (2.14) is not valid for the location at z = 0. This is common in
ill-posed problems. If a stronger a-priori condition is added, for example, ∥u(·, ·, 0)∥p ≤ E, with p > 0,
where ∥ · ∥p denotes the norm of Sobolev space Hp(R2), then the convergence order is logarithmic.

Theorem 2.2. Suppose that f (x, y) := u(x, y, 0) is the exact solution with exact data g(x, y) ∈
L2(R2), (2.9) is the regularization solution with z = 0 and noisy data gδ(x, y) ∈ L2(R2), respectively,
let (2.1) and (2.2) hold with p > 0, if α = ( δE )r with 0 < r < 1, then we have for p > 0,

∥vαδ (·, ·, 0) − u(·, ·, 0)∥ ≤ O((ln
E
δ

)−p), f or δ→ 0. (2.19)

Proof. (I) (Stability) From Parseval’s identity and Lemma 2.1, we have

∥vαδ (·, ·, 0) − vα(·, ·, 0)∥ = ∥v̂αδ (·, ·, 0) − v̂α(·, ·, 0)∥

=∥
eda(ξ,η)

1 + αeda(ξ,η) ĝδ(ξ) −
eda(ξ,η)

1 + αeda(ξ,η) ĝ(ξ)∥ = ∥
eda(ξ,η)

1 + αeda(ξ,η) (ĝδ(ξ) − ĝ(ξ))∥

=
( ∫
ξ2+η2≥k2

|
ed
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

(ĝδ − ĝ)|2dξdη +
∫
ξ2+η2<k2

|
eid
√

k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
(ĝδ − ĝ)|2dξdη

)1/2
AIMS Mathematics Volume 7, Issue 6, 11070–11086.
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≤ sup
ξ2+η2≥k2

|
ed
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

| ∥ĝδ − ĝ∥ + sup
ξ2+η2<k2

|
eid
√

k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
| ∥ĝδ − ĝ∥

≤ sup
ξ2+η2≥k2

|
ed
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

|δ + sup
ξ2+η2<k2

|
eid
√

k2−ξ2−η2

1 + αeid
√

k2−ξ2−η2
|δ

≤
δ

α
+
δ

1 − α
.

If α = ( δE )r with 0 < r < 1, then we have

∥vαδ (·, ·, 0) − vα(·, ·, 0)∥ ≤ δ1−rEr +
δ

1 − δrE−r = δ
1−rEr(1 + o(1)), f or δ→ 0. (2.20)

(II) (Convergence) Via Parseval’s identity, we have

∥vα(·, ·, 0) − u(·, ·, 0)∥ = ∥v̂α(·, ·, 0) − û(·, ·, 0)∥

=∥
eda(ξ,η)

1 + αeda(ξ,η) ĝ(ξ, η) − eda(ξ,η)ĝ(ξ, η)∥ = ∥
αeda(ξ,η)

1 + αeda(ξ,η) û(ξ, η, 0)∥

=∥
αeda(ξ,η)(1 + ξ2 + η2)−p/2

1 + αeda(ξ,η) (1 + ξ2 + η2)p/2û(ξ, η, 0)∥

=
( ∫
ξ2+η2≥k2

|
αed
√
ξ2+η2−k2(1 + ξ2 + η2)−p/2

1 + αed
√
ξ2+η2−k2

(1 + ξ2 + η2)p/2û(ξ, η, 0)|2dξdη

+

∫
ξ2+η2<k2

|
αeid
√

k2−ξ2−η2(1 + ξ2 + η2)−p/2

1 + αeid
√

k2−ξ2−η2
(1 + ξ2 + η2)p/2û(ξ, η, 0)|2dξdη

)1/2
≤E sup

ξ2+η2≥k2
|
αed
√
ξ2+η2−k2(1 + ξ2 + η2)−p/2

1 + αed
√
ξ2+η2−k2

| + E sup
ξ2+η2<k2

|
αeid
√

k2−ξ2−η2(1 + ξ2 + η2)−p/2

1 + αeid
√

k2−ξ2−η2
|

:=I1 + I2.

For I2, by (2.11) and (1 + ξ2 + η2)−p/2 ≤ 1, we obtain

I2 = E sup
ξ2+η2<k2

|
αeid
√

k2−ξ2−η2(1 + ξ2 + η2)−p/2

1 + αeid
√

k2−ξ2−η2
| ≤
αE

1 − α
=
δrE1−r

1 − δrE−r . (2.21)

Next we estimate the term I1 = E supξ2+η2≥k2 |
αed
√
ξ2+η2−k2 (1+ξ2+η2)−p/2

1+αed
√
ξ2+η2−k2 |. Denote ζ :=

√
ξ2 + η2 − k2,

therefore, we need to estimate the term

|
αed
√
ξ2+η2−k2(1 + ξ2 + η2)−p/2

1 + αed
√
ξ2+η2−k2

| =
αedζ(1 + k2 + ζ2)−p/2

1 + αedζ .

It is divided into two cases for ζ.
Case I. ζ ≤ 1

d ln( 1
√
α
). It yields αedζ ≤

√
α. From

αedζ(1 + k2 + ζ2)−p/2

1 + αedζ ≤ αedζ ≤
√
α = δr/2E−r/2.
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Case II. ζ ≥ 1
d ln( 1

√
α
). Firstly, we have

αedζ(1 + k2 + ζ2)−p/2

1 + αedζ ≤
αedζ(1 + k2 + ζ2)−p/2

αedζ ≤ ζ−p.

Now we need to estimate ζ−p under the condition ζ ≥ 1
d ln( 1

√
α
).

If ζ ≥ 1
d ln( 1

√
α
), we have

ζ−p ≤ (
1
d

ln(
1
√
α

))−p = (
r

2d
ln

E
δ

)−p.

Therefore, combining (I) Stability and (II) Convergence, and using the triangle inequality, we have

∥vαδ (·, ·, 0) − u(·, ·, 0)∥ ≤ O((ln
E
δ

)−p), f or δ→ 0.

Remark 2.1. In this paper, we only consider the reconstruction of χA(x, y), where the domain A is a
two-dimensional cube-like shape and belongs to the Sobolev space H s(R2) with s < 1/2. Therefore, in
this theorem when 0 < p < 1/2, the result is convergence and when p < 0, the result is divergence.

3. Quasi-boundary methods versus Tikhonov method

In this section, we give the comparison between the quasi-boundary method and Tikhonov method
in the situation of free noise. Firstly, we concentrate on the Tikhonov regularization method [34].
The method consists of looking for the solution for the inverse problem, and minimizes the quadratic
functional, i.e., finding a minimizer uδα,tik(x, y, z) such that

uδα,tik(x, y, z) = argminu{∥F(z)u(·, ·, z) − gδ(·, ·)∥2 + α∥u(·, ·, 0)∥2}, (3.1)

where α = δ2/E2 with δ and E given by (2.1) and (2.2), respectively, F(z) : u(x, y, z) → g(x, y) is
the forward operator of the problem. By Parseval’s identity and according to (1.12), the variational
problem becomes

argminu{∥e
−(d−z)a(ξ,η)û(ξ, η, z) − ĝδ(ξ, η)∥2 + α∥eza(ξ,η)û(ξ, η, z)∥2}. (3.2)

Let ûδα,tik(ξ, η, z) be the solution of above problem, then it satisfies the Euler equation

[e−2(d−z)a(ξ,η) + αe2za(ξ,η)]ûδα,tik(ξ, η, z) = e−(d−z)a(ξ,η)ĝδ(ξ, η). (3.3)

The Tikhonov regularization solution ûδα,tik(ξ, η, z) in frequency domain can be given:

ûδα,tik(ξ, η, z) =
e(d−z)a(ξ,η)

1 + αe2da(ξ,η) ĝδ(ξ, η). (3.4)

The restoration of Tikhonov method is then obtained by inverse Fourier transforming ûδα,tik(ξ, η, z).
Under the conditions (2.1) and (2.2), we can prove the following error estimate for Tikhonov method
in the same way:

∥uδα,tik(·, ·, z) − u(·, ·, z)∥ ≤ 2δ
z
d E

d−z
d (1 + o(1)), f or δ→ 0. (3.5)
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It is natural for us to compare the quasi-boundary regularization method with the Tikhonov
regularization when ξ2 + η2 ≥ k2. Now denote the norm of the regularization error ∥vα − u∥2 associated
with the quasi-boundary regularization as ε1. Denote the norm of the regularization error ∥uα,tik − u∥2

associated with the Tikhonov regularization as ε. Thus, we have

ε1 = ∥vα − u∥2 =
∫
R2

(
αed
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

)2e2(d−z)
√
ξ2+η2−k2

|ĝ(ξ, η)|2dξdη.

ε = ∥uα,tik − u∥2 =
∫
R2

(
αe2d
√
ξ2+η2−k2

1 + αe2d
√
ξ2+η2−k2

)2e2(d−z)
√
ξ2+η2−k2

|ĝ(ξ, η)|2dξdη.

Now, the difference in regularization errors for Tikhonov method and the quasi-boundary method is
given by

d : = ε − ε1

=

∫
R2

[(
αe2d
√
ξ2+η2−k2

1 + αe2d
√
ξ2+η2−k2

)2 − (
αed
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

)2]e2(d−z)
√
ξ2+η2−k2

|ĝ(ξ, η)|2dξdη.

Obviously, the function H(y) := y
1+αy for a fixed α > 0 is an increasing function with respect to y > 0.

Therefore, d > 0.
Then we have the following result.

Conclusion 3.1. In the absence of noise in the data, the quasi-boundary regularization method is more
accurate than Tikhonov method in the sense of L2-error when the same parameter α is used.

Remark 3.1. From the above comparison, we can give a general regularization method with noisy data
based on the quasi-boundary method

ûαγ,δ(ξ, η, z) =
e(d−z)a(ξ,η)

1 + αeγda(ξ,η) ĝδ(ξ, η), with 1 ≤ γ ≤ 2. (3.6)

Obviously, for γ = 1, it is the quasi-boundary method. For γ = 2, it is the Tikhonov method. For
1 < γ < 2, we call it the quasi-boundary-Tikhonov method.

4. Numerical examples

In this section in numerics, we consider the numerical computation in both cases of evanescent
waves and homogeneous waves. In numerical computation, we refer to the following formulas. The
quasi-boundary regularization solution:

ˆ(vαδ )(ξ, η, 0) = ed
√
ξ2+η2−k2

1+αed
√
ξ2+η2−k2 ĝδ(ξ, η), if ξ2 + η2 ≥ k2,

ˆ(vαδ )(ξ, η, 0) = edi
√

k2−ξ2−η2

1+αedi
√

k2−ξ2−η2
ĝδ(ξ, η), if ξ2 + η2 < k2. (4.1)

The classical Tikhonov solution:

ûδα,tik(ξ, η, 0) = ed
√
ξ2+η2−k2

1+αe2d
√
ξ2+η2−k2 ĝδ(ξ, η), if ξ2 + η2 ≥ k2,
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ûδα,tik(ξ, η, 0) = edi
√

k2−ξ2−η2

1+αe2di
√

k2−ξ2−η2
ĝδ(ξ, η), if ξ2 + η2 < k2. (4.2)

In this section, we describe an experiment to illustrate the ability of the quasi-boundary
regularization method for solving the inverse problem. Although the inverse problem is formulated
in an unbounded domain in the (x, y) plane, we are interesting in the domain (x, y) ∈ [0, 1]× [0, 1]. This
is reasonable because the problem can be solved by periodic extension to (x, y) plane.

Define the discrete L2 norm of f (x, y) by

∥ f ∥ =

n−2
n∑

j,k=1

f (x j, yk)2


1
2

, (4.3)

where n is the total number of sampled points. In this section, we take n = 100.
In order to measure the accuracy of numerical results, we define the discrete L2-norm error e f for

the exact solution f between the approximate solution fa as follow:

e f =

n−2
n∑

j,k=1

| f (x j, yk) − fa(x j, yk)|2


1
2

. (4.4)

The noise was added to g(x, y) by setting δ(x j, tk) = σ r jk max{g(x j, yk)}), where σ denotes the noise
level and r jk a random number drawn from a uniform distribution in the range [−1, 1]. In numerical
experiment, we use (4.3) to compute δ = ∥g−gδ∥. In this section, we used the discrete L2-norm E of the
exact solution f (x, y) and the δ to compute the signal-to-noise ratio E/δ. In computation, according to
the theoretical result the regularization parameters of the quasi-boundary method and Tikhonov method
are chosen as α = δ/E and α = δ2/E2 respectively when the noise is added if necessary.

We shall illustrate the reconstruction methods (4.1) and (4.2) with different numerical examples.
The Fourier formulas (4.1) and (4.2) are based on FFT algorithm.
Example 1. We choose the aperture A in the shape of the letter ‘L’ for the test. The characteristic
function as shown in Figure 1a on the the domain A is to be constructed.
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Figure 1. (a) The original A, (b) The data g.
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Convergence of the proposed method in near field pattern: In this experiment where d = 0.1 and
the wave-number k = 2π and E = 0.35, first we investigate the effectiveness of the proposed method,
i.e., the convergence of the quasi-boundary method. Figure 1b displays data g which is a very blurred
picture in the diffraction field. In Figure 2a,b, the σ = 0.01 is changed to σ = 0.0001, we can see the
reconstructed result become better.
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Figure 2. Quasi-boundary method (near field pattern): (a) α = 2 ∗ 10−2, (b) α = 2 ∗ 10−4.

Convergence of the proposed method in far field pattern: In this experiment where d = 0.2 and
the wave-number k = 20π and E = 0.35, we investigate the the convergence of the quasi-boundary
method. In Figure 3a,b, the σ = 0.01 is changed to σ = 0.0001, we can see the reconstructed result
become better, but the rate is very slow.
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Figure 3. Quasi-boundary method (far field pattern): (a) α = 2 ∗ 10−2, (b) α = 2 ∗ 10−4.

From near field pattern to far field pattern: In this experiment the wave-number k = 20π,
λ = 0.1, E = 0.35 and σ = 0.01, we investigate the result when we change the d. In Figure 4a,b,
the d = 0.05 (near field) is changed to d = 0.5 (far field), we can see the reconstructed result become
worse.
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Figure 4. Quasi-boundary method: (a) Near field pattern: α = 2 ∗ 10−2, (b) Far field pattern:
α = 2 ∗ 10−2.

Quasi-boundary regularization method vs Tikhonov method: In this experiment, we take
d = 0.6 and the wave-number k = 1, σ = 0.01. In this case, to illustrate the Conclusion 3.1,
firstly we add no perturbation to the data g(x, y). For the sake of fairness, in the numerical tests, the
regularization parameters α is taken as α = 1 ∗ 10−8 in the methods. Figure 5 corresponds to the results
by the Tikhonov method and quasi-boundary method. From Figure 5, obviously the quasi-boundary
regularization method shows better approximation than Tikhonov method. A lot of experiments show
the same result. Here, we don’t list the plots.
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Figure 5. (a) Tikhonov regularization with α = 1 ∗ 10−8, (b) Quasi-boundary method with
α = 1 ∗ 10−8.

Example 2. The aperture A consists of two independent squares. The characteristic function to be
constructed and the data g is displayed in Figure 6. In this example, 1% relative error is added to the
data g(x, y) at the sampled points in the simulation as the Example 1.
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Figure 6. (a) The original A, (b) The data g.

According to [1], the Fourier truncated method is formulated as the following:

ˆ(wαδ )(ξ, η, 0) =
ed
√
ξ2+η2−k2

1 + αed
√
ξ2+η2−k2

ĝδ(ξ, η), if k ≤
√
ξ2 + η2 ≤ ke f f ,

ˆ(wαδ )(ξ, η, 0) = 0, if
√
ξ2 + η2 > ke f f , (4.5)

where ke f f = k[1 + 1
(kd)2 ln2(E/δ)].

From this formula, we can see that the truncated Fourier regularized solution is a bandlimited
function in the frequency, and the solution in the time field is analytic function.

Figure 7 corresponds to the results by the truncated Fourier method and quasi-boundary method,
where the distance from receiving plane to the screen is d = 0.1 with the wave-number k = 5.5.

In this numerical test, according to the theoretical result the regularization parameters of the quasi-
boundary method and truncated Fourier method are chosen as α = δ/E and ke f f . From Figure 7, the
truncated Fourier method shows its instability.
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Figure 7. (a) Fourier regularization with ke f f = 389, (b) Quasi-boundary method with α =
5 ∗ 10−2.
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5. Conclusions

In this paper, we gave a linear regularization method for solving the the reconstruction problem
of aperture in the plane from their diffraction patterns. In theory, we proved the convergence of
quasi-boundary regularization method. Relative to the classical Tikhonov method, for non-smooth
reconstructing object, the quasi-boundary regularization show better numerical results (it can recover
the “corner” of the object better) because it has less smoothing effect.
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