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1. Introduction

Black and Scholes [1] proved that option price satisfies a partial differential equation (PDE) under
the strict assumptions and proposed the corresponding option pricing formula. However, the growing
option market contradicts the assumptions in Black-Scholes model such as the logarithmic return
distribution of underlying assets which usually shows the self similarity and long-term dependence
in the real market [2–7]. A common method is to introduce another random term, such as stochastic
interest rate or stochastic volatility, into the model of underlying price. Vasicek [8] derived a general
form for the term structure of interest rates and gave the bond pricing formula in the form of a stochastic
integral representation. Heston [28] assumed that the volatility follows a Cox-Ingersoll-Ross (CIR)
process and deduced a closed-form pricing formula of European options. He and Chen [34] modified
the Heston model with a stochastic mean-reversion level and gave a closed-form pricing formula based
on the dimensional reduction technique. And there are many other researches under different stochastic
volatility models [31–33].

Moreover, fractional Brownian motion (FBM) can describe the dynamics of underlying assets
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which has long-term dependence. Mehrdoust and Najaf [9] obtained the explicit solution of fractional
Black-Scholes model with weak payoff function. But Rogers [10] proved that it allows arbitrage
opportunities. In order to solve this problem and consider the characteristics of long memory, Duncan
et al. [11], Hu and Øksendal [12] developed a fractional white noise calculus and applied it to the
market, which is modeled by Wick-Itô type of stochastic differential equations driven by fractional
Brownian motion BH(t)(1/2 < H < 1). The corresponding Itô fractional Black-Scholes market has no
arbitrage, and it is complete in contrast to the situation using the pathwise integration. Then Necula [13]
obtained a fractional Black-Scholes formula for option price at t ∈ [0,T ] and a risk-neutral valuation
theorem for the underlying which is driven by a fractional Brownian motion. Merton [14] gave the
pricing formula of zero coupon bonds under the assumption that the corporate liabilities process obeys
geometric Brownian motion and the interest rate changes randomly. Huang et al. [15] considered a
model for complete and continuous market, and assumed that the process of asset price follows the
geometric fractional Brownian motion and the interest rate process follows fractional Vasicek Interest
rate model. The pricing formulas of European call option and put option were derived by using quasi
martingale and partial differential equation method, and the parity formula was further obtained.

Volatility is a crucial parameter that affects option pricing, it is used to describe the price change
of the underlying assets, and investors can use it to avoid some risks of assets price fluctuation
in the future spot market. But it can not be directly observed in the market like the stock price.
It is a considerable issue in finance to estimate volatility from the market price. Lagnado and
Osher [18] put forward a technique for calibrating derivative security pricing models with respect
to observed market prices, and estimated volatility from price observations by solving the inverse
problem associated with the parabolic partial differential equation governing arbitrage-free derivative
security prices. Chiarella et al. [19] suggested an improvement on the basis of Lagnado and Osher,
avoiding the possibility of negative volatility, and gave the numerical algorithm of Euler-Lagrange
equation. Jiang and Tao [20] applied an optimal control framework to determine implied volatility
and made a rigorous mathematical analysis of this inverse problem. Ngnepieba [21] employed the
unconstrained minimization algorithm of the quasi-Newton limited memory type to find the optimal
volatility function, and computed the gradient via the adjoint method. He and Zhu [30] developed a
two-step approach to calibrate the local volatility under the regime-switching models. Georgiev and
Vulkov [22] presented a robust and fast numerical algorithm to reconstruct the implied volatility as
a piecewise linear function of time. In this paper, we try to calibrate the time-dependent volatility
of European options from a set of market observations under the fractional Vasicek model, using the
Euler-Lagrange iterative method [16] and alternating direction method of multiplier (ADMM) [25],
and give an empirical analysis of China’s option market. Moreover, the proposed schemes also apply
to the stochastic volatility models with mean reversion such as Heston model [28].

This paper is organized as follows: In Section 2, we present the the Vasicek fractional model
for European option pricing and the corresponding inverse problem. In Section 3, we introduce
the Tikhonov L2 and L1/2 regularization and analyse the stability of regularization model and the
convergence of ADMM. The numerical verification is demonstrated in Section 4 with synthetic and
real market data. Finally, some conclusions are stated in Section 5.

AIMS Mathematics Volume 7, Issue 6, 11053–11069.



11055

2. The mathematical formulation

In this section, we discuss the Vasicek fractional model for the European option. The dynamics of
the model can be described as

dS = rS dt + σ(t)S dB1
H,

dr = a(b − r)dt + τdB2
H,

(2.1)

where S is the underlying asset price, σ(t) is the volatility, and r is the stochastic interest rate. a, b, τ are
constants. H is the Hurst parameter, B j

H = {B j
H(t), t ≥ 0, j = 1, 2} are two correlated fractional Brown

motion such that Cov(dB1
H, dB2

H) = ρ(dt)2t, (|ρ| < 1). Let V(S , r, t) denote European option value under
the model of (2.1), then V(S , r, t) satisfies the following PDE [15]

∂V
∂t

+ Hσ2S 2t2H−1∂
2V
∂S 2 + 2HρστS t2H−1 ∂

2V
∂S ∂r

+ Hτ2t2H−1∂
2V
∂r2 + rS

∂V
∂S

+a
(
b̃ − r

) ∂V
∂r
− rV = 0, (2.2)

where b̃ = b − λ
aτ and λ is the market price of risk.

Lemma 1. (European call option pricing formula) Suppose that the underlying asset price S and
interest rate r follow Vasicek fractional model (2.1), then the price of a European call option with
strike price K and maturity T can be expressed as

V(S , r, t) = S N(d̂1) − KP(r, t; T )N(d̂2), (2.3)

where P (r, t; T ) is the zero coupon bond

P(r, t; T ) = e−rB(t,T )−A(t,T ), B(t,T ) =
1
a

(1 − e−a(T−t)),

A(t,T ) = b̃(T − t) − b̃B(T − t) − H
∫ T

t
(σ2(s)s2H−1B2(s, t))ds,

d̂1 =
ln S

K − ln P(r, t; T ) + H
∫ T

t
σ̂2(s)s2H−1ds√

2H
∫ T

t
σ̂2(s)s2H−1ds

,

d̂2 = d̂1 −

√
2H

∫ T

t
σ̂2(s)s2H−1ds,

σ̂2 = σ2 + 2ρστB(t,T ) + τ2B2(t,T ),

(2.4)

and N(·) denotes the standard normal cumulative distribution function.

In this paper, we only consider the European call option, the put option can be obtained by the put-
call parity [15]. If the volatility σ(t) is specified, the option price V(S 0, r0, 0,K,T, σ) can be uniquely
determined by Lemma 1. Assume that the option prices {Vi j, i = 1, 2, ...,N, j = 1, 2, ...,Mi} with
maturities {Ti} and the corresponding strike prices {Ki j} are known, the inverse problem requires us to
find a volatility function which makes the calibrated option value satisfy the following market quotes

Vb
i j ≤ V(S 0, r0, 0,Ki j,Ti, σ(t)) ≤ Vb

i j, (2.5)
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where Vb
i j and Va

i j represent the bid and ask price in market respectively.
LetH denote the measurable function space defined in [0,Tmax], where Tmax is the longest maturity.

To satisfy (2.5), we use the available data to solve the following nonlinear problem.
Calibration problem: Given a series of market option prices {Vi j, i = 1, 2, ...,N, j = 1, 2, ...,Mi},

find a suitable volatility function σ(t) ∈ H to minimize the following error function

Π(σ) =

N∑
i=1

Mi∑
j=1

[V(S 0, r0, 0,Ki j,Ti, σ(t)) − Vi j]2, (2.6)

where Vi j = (Va
i j + Vb

i j)/2, and the theoretical option value V(S 0, r0, 0,Ki j,Ti, σ(t)) is obtained by
Lemma 1.

However, there are not sufficient market observations to confirm the volatility σ(t) uniquely, and
the value of Π(σ) is discontinuously dependent on the market data. Thus the calibration problem is
ill-posed. In general, regularization is a practical technique to solve ill-posedness.

3. The regularization schemes for calibration problem

We employ two regularization schemes due to the ill-posedness of the volatility function minimizer.
One is the Tikhonov L2 regularization term ‖σ‖22 + ‖∇σ‖22, the other is L1/2 regularization term ‖σ‖1/2

1/2 +

‖∇σ‖1/2
1/2.

3.1. The Tikhonov L2 regularization strategy

The Tikhonov L2 regularization term we add is based on [16],

Fα(σ) = α

N∑
i=1

Mi∑
j=1

[V(S 0, r0, 0,Ki j,Ti, σ) − Vi j]2 + ‖σ‖2∗, (3.1)

where ‖σ‖∗ := (‖σ‖22 + ‖∇σ‖22)
1
2 , Vi j is a set of option prices in market and α is the regularization

parameter. So we have

Fα(σ) = α

N∑
i=1

Mi∑
j=1

[V(S 0, r0, 0,Ki j,Ti, σ) − Vi j]2 + ‖σ‖22 + ‖∇σ‖22. (3.2)

Now, rewrite the right hand side of (3.2) as an integral

Fα(σ) =

∫ ∞

0

{
α

N∑
i=1

Mi∑
j=1

[V(t; S 0, r0,Ki j,Ti, σ) − Vi j]2δ(t) + σ2(t) + (σ′(t))2
}
dt, (3.3)

where δ(t) is the Dirac delta function.
Suppose that

L(t, σ, σ′) = σ2(t) + (σ′(t))2 + α

N∑
i=1

Mi∑
j=1

[V(t; S 0, r0,Ki j,Ti, σ) − Vi j]2δ(t). (3.4)
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We apply the Euler-Lagrange equations to L(t, σ, σ′) and obtain

σ′′ − σ − α

N∑
i=1

Mi∑
j=1

δV
δσ

(S 0, r0, 0,Ki j,Ti, σ)[V(t; S 0, r0,Ki j,Ti, σ) − Vi j] = 0, (3.5)

with δVi j

δσ
= ∂

∂σ
V(S 0, r0, 0,Ki j,Ti, σ)δ(t).

However, the above strategy calibrates volatility function at the fixed time t0 = 0. Thus, the function
σ(t) derived from this method does not necessarily apply to future time. We can calibrate the volatility
from the historical data [16], that is

H(σ) =

N∑
i=1

Mi∑
j=1

∫ Tcur

0
[V(t; S 0, r0,Ki j,Ti, σ) − Vi j]2dt, (3.6)

where Tcur is the current time.
Then apply L2 regularization to minimize the following function

Jα(σ) = αH(σ) + ‖σ‖22 + ‖σ′‖22. (3.7)

Now let us rewrite Jα(σ) as the integral form

Jα(σ) =

∫ Tcur

0

{
α

N∑
i=1

Mi∑
j=1

[V(t; S 0, r0,Ki j,Ti, σ) − Vi j]2 + σ2(t) + (σ′(t))2
}
dt. (3.8)

Similarly, the Euler-Lagrange equation for (3.8) is

σ′′ − σ − α

N∑
i=1

Mi∑
j=1

∂V
∂σ

(t; S 0, r0,Ki j,Ti, σ)[V(t; S 0, r0,Ki j,Ti, σ) − Vi j] = 0, (3.9)

with initial conditions σ(t = 0) which can be determined from market data.
To solve Eq (3.9), we need to evaluate the term ∂V(t; S 0, r0,Ki j,Ti, σ)/∂σ. This variational

derivative is defined for general arguments by

∂V
∂σ

(t; S 0, r0,Ki j,Ti, σ) = [
d
dε

V(t; S 0, r0,Ki j,Ti, σ + εδ)]ε=0, (3.10)

where the perturbation δ(t) is a Dirac delta function [18].
Such variational derivative can be calculated by solving a PDE (2.2) with an additional source term.

Now consider the following partial differential operator

Pσ =
∂

∂t
+ Hσ2(t)S 2t2H−1 ∂

2

∂S 2 + 2Hρσ(t)τS t2H−1 ∂2

∂S ∂r
+ Hτ2t2H−1 ∂

2

∂r2 + rS
∂

∂S

+a(b̃ − r)
∂

∂r
− rI, (3.11)

where I denotes the identity operator.
The pricing function with a perturbed volatility satisfies a PDE similar to (2.2) of the form
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Pσ+εδV(t; S 0, r0,Ki j,Ti, σ + εδ) = 0. (3.12)

Then differentiate (3.12) with respect to ε and evaluate the value when ε = 0, we have

Pσ

∂V
∂σ

(t; S 0, r0,Ki j,Ti, σ) = −2HS 2σ(t)t2H−1∂
2V
∂S 2 (t; S 0, r0,Ki j,Ti, σ)

−2HρτS t2H−1∂
2V
∂S 2 (t; S 0, r0,Ki j,Ti, σ). (3.13)

The variational derivative satisfies homogeneous boundary and initial conditions [18], we can
solve (3.13) for ∂V/∂σ numerically.

3.2. The L1/2 regularization strategy

In this subsection, the L1/2 regularization is considered, i.e., we calibrate volatility function by
minimizing the following function

Jξ,η(σ) =
1
2
‖V(σ) − V̂‖2 + ξ‖σ‖1/.21/.2 + η‖σ′‖1/.21/.2, (3.14)

where ‖V(σ) − V̂‖2 =
N∑

i=1

Mi∑
j=1

[V(S 0, r0, 0,Ki j,Ti, σ) − Vi j]2, ‖σ‖1/2
1/2 =

N∑
i=1
|σi|

1/2, σ ∈ RN and ξ, η are

regularization parameters.

3.2.1. Numerical algorithm for L1/2

To calibrate the time-dependent volatility σ (t) from market data by L1/2 regularization, we employ
ADMM algorithm to obtain the convergent solution.

The augmented Lagrangian for the nonconvex optimization problem in (3.1) is

min
σ,y,z

lµ(σ, y, z) :=
1
2
‖V(σ) − V̂‖2 + ξ‖y‖1/.21/.2 + η‖z‖1/.21/.2 +

µ

2
‖σ − y‖2 +

µ

2
‖∇σ − z‖2, (3.15)

where µ > 0 is a regularization parameter.
Then we solve the augmented Lagrangian (3.15). Concretely, the procedure is as follows

σk+1 = arg min
σ

lµk(σ, yk, zk),

yk+1 = arg min
y

lµk(σk+1, y, zk),

zk+1 = arg min
z

lµk(σk+1, yk+1, z),

µk+1 = min{ωµk, µ}.

(3.16)

However, the algorithm (3.16) can not guarantee sufficient reduction for yk+1 and zk+1. Based
on [25], we have 

yk+1 = arg min
y

{
lµk(σk+1, y, zk) +

δρk

2 ‖y − yk‖
2}
,

zk+1 = arg min
z

{
lµk(σk+1, yk+1, z) +

δρk

2 ‖z − zk‖
2}
.

(3.17)
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For the σ sub-problems,

σk+1 = arg min
σ

{1
2
‖V(σk) − V̂‖

2
+
µk

2
‖σ − yk‖

2
+
µk

2
‖∇σ − zk‖

2}
. (3.18)

The corresponding Euler-Lagrange equation for (3.18) is

σ′′ − σ =
1
µk

N∑
i=1

Mi∑
j=1

[V(S 0, r0, 0,Ki j,Ti, σ
k) − Vi j]

∂V
∂σ

(S 0, r0, 0,Ki j,Ti, σ
k) − yk + z′k. (3.19)

Since the sub-problems for y and z are nonconvex, nonsmooth and discontinuous, Xu et al. [24]
proposed a reweighted iterative algorithm to solve this problem, which transforms L1/.2 regularization
into L1 term

yk+1 = arg min
y

{δρk + µk

2ξ
||y −

ykδρk + σkµk

δρk + µk ||2 +

N∑
i=1

|yi|√
|yk

i | + ε

}
, (3.20)

where ε is a sufficient small constant to avoid the case
√
|yk

i | = 0.

Then the following threshold iterative Algorithm 1 gives the local minimizer of y by applying
accelerated approximate gradient method [27], where L denotes the Lipschitz constant.

Algorithm 1 Threshold iterative algorithm for fast solving L1/2 problem

Require: y−1 = y0 = 0 ∈ RN , t−1 = t0 = 1, k = 0, ε > 0.

Ensure: the optimization of (3.20)

1: while
∥∥∥yk+1 − yk

∥∥∥
2
< ε and k < Maxiter do

2: βk+1 := yk + tk+1
tk

(yk − yk−1),

3: gk+1 := βk+1 −
∇ f (βk+1)

L = βk+1 + 2
L ( ykδρk+σkµk

δρk+µk − βk+1)

4: if
∣∣∣gk+1

i

∣∣∣ > 3√54
4 ( λ

2L )
2
3 then

5: yk+1
i = 2

3gk+1
i (1 + cos(2π

3 −
2
3 arccos( λ

4L ( |g
k+1
i |
3 )

− 2
3
)))

6: else

7: yk+1
i = 0

8: end if
9: end while

10: return result

As for the sub-problem of z,

zk+1 = arg min
z

{
||z||1/2

1/2 +
δρk + µk

2η
||z −

zkδρk + µk∇σk

δρk + µk ||2
}
. (3.21)

Similarly, the minimizer of z can be obtained by the analogical process as Algorithm 1.
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3.2.2. Convergence analysis

Now we discuss the convergence of the above algorithm [25,26].

Theorem 3.1. Let {(σk, yk, zk)} be the sequence generated by ADMM algorithm, then

1) {(σk, yk, zk)} is a minimization sequence, and lµ(σk, yk, zk) converges to lµ(σ∗, y∗, z∗), where

(σ∗, y∗, z∗) is a limit point of minimization sequence {(σk, yk, zk)};
2) {(σk, yk, zk)} is asymptotically regular, i.e., lim

n→∞
‖σk+1 − σk‖ = lim

n→∞
‖yk+1 − yk‖ = lim

n→∞
‖zk+1 − zk‖ =

0;
3) {(σk, yk, zk)} converges to the stationary point of lµ(σ, y, z).

Proof. 1) Let k > ln µ

µ0

/
lnω + 1, then µk = µ. Since lµ(σ, yk, zk) is strongly convergent for σ, and

σk+1 ∈ arg min
σ

lµ(σ, yk, zk), then

lµ(σk, yk, zk) − lµ(σk+1, yk, zk) ≥
µ

2
‖σk+1 − σk‖2. (3.22)

Similarly, the following inequalities hold

lµ(σk+1, yk, zk) ≥ lµ(σk+1, yk+1, zk) +
δµ

2
‖yk+1 − yk‖2, (3.23)

lµ(σk+1, yk+1, zk) ≥ lµ(σk+1, yk+1, zk+1) +
δµ

2
‖zk+1 − zk‖2. (3.24)

Combine (3.22)–(3.24), we can obtain

lµ(σk, yk, zk) − lµ(σk+1, yk+1, zk+1) ≥
µ

2
‖σk+1 − σk‖2 +

δµ

2
‖yk+1 − yk‖2

+
δµ

2
‖zk+1 − zk‖2. (3.25)

That is, {(σk, yk, zk)} is a minimization sequence of lµ(σ, y, z), and lµ(σk, yk, zk) is monotonically
decreasing to a fixed value l∗.

Since (σk, yk, zk) ∈ B = {(σ, y, z) : lµ(σ, y, z) ≤ lµ(σ0, y0, z0)}, which is bounded, {(σk, yk, zk)} is
bounded and has a limit point (σ∗, y∗, z∗). By continuity of lµ̄(σ, y, z) and monotonicity of lµ(σk, yk, zk),
we have l∗ = lµ(σ∗, y∗, z∗).

2) Note that lµ(σ, y, z) ≥ 0, and there is a sufficiently large K such that

k∑
j=K

{µ
2
‖σ j+1 − σ j‖

2
+
δµ

2
‖y j+1 − y j‖

2
+
δµ

2
‖z j+1 − z j‖

2}
≤ lµ(σK , yK , zK) − lµ(σk+1, yk+1, zk+1) < ∞.

(3.26)

Let k → ∞, we can conclude that

lim
k→∞
‖σk+1 − σk‖ = lim

k→∞
‖yk+1 − yk‖ = lim

k→∞
‖zk+1 − zk‖ = 0. (3.27)
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3) By 1) and 2), the sequence {(σk, yk, zk)} is asymptotically regular and lim
k→∞

lµ(σk, yk, zk) =

lµ(σ∗, y∗, z∗). We further show that (σ∗, y∗, z∗) is a stationary point of lµ(σk, yk, zk).
Since σk+1 is the minimizer of lµ(σ, yk, zk), it implies ∂σlµ(σk+1, yk, zk) = 0. Similarly,

∂ylµ(σk+1, yk+1, zk) + δµ(yk+1 − yk) = 0,

∂zlµ(σk+1, yk+1, zk+1) + δµ(zk+1 − zk) = 0.
(3.28)

Let k → ∞, this yields
∂σlµ(σ∗, y∗, z∗) = 0,

∂ylµ(σ∗, y∗, z∗) = 0,

∂zlµ(σ∗, y∗, z∗) = 0.

(3.29)

That is, (σ∗, y∗, z∗) is the stationary point of lµ(σ, y, z). �

4. Computational experiments

In this section, we use numerical simulation and empirical analysis to verify the effectiveness of the
proposed methods.

4.1. Numerical simulation

Here we consider the following synthetic volatility function

σ (t) = 0.2 − 0.1 ln (1.5 + 3t) . (4.1)

Let K = {64, 68, 72, 76, 80} ,T = {0.5, 1}, then S max = 2Kmax = 160, and rmax = 0.25, the initial
value S 0 = 62, r0 = 0.025, σ0 = 0.15, the parameters values involved in the interest rate model are
a = 0.2, b = 0.05, τ = 0.3, ρ = 0.4, λ = 0.2. According to the calibration results and [25], we get the
parameters in L2 and L1/2 regularization in Table 1.

Table 2 compares the reconstructed and real volatility when the Hurst index H = 0.5, 0.6, 0.7, 0.8,
0.9 under L2 and L1/2 regularization. A common measure RMS E is used to evaluate the accuracy of
reconstructed volatility σ(t) compared with exact volatility σ̂(t), and it is defined as

RMS E =

√√
1
n

n∑
i=1

|σi − σ̂i|
2.

The European call option prices generated by Lemma 1 and volatility function (4.1) are represented
in Table 3. Figure 1 and Figure 2 show the calibration results. We can see that both schemes can
satisfactorily recover the exact volatility function, and L1/2 regularization is slightly more accurate than
L2 regularization. The results indicate that there is a long-term correlation from the volatility itself long
term correlation when Hurst index is higher than 0.5, and it is consistent with the existing research on
the recurrence interval in finance [8].
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Table 1. Parameters of L2 and L1/2 regularization.

L2 Regularization L1/2 Regularization

α = 0.004 ξ = 0.2, η = 0.1, µ = 1, ω = 3, µ̄ = 108, L = 3.5

Table 2. The numerical results of different Hurst index.

H
L2 Regularization L1/2 Regularization

RMS E max |σ − σ̂| RMS E max |σ − σ̂|
0.5 7.5784e-4 1.0734e-3 6.2822e-4 9.5349e-4
0.6 6.8186e-4 1.1832e-3 2.5348e-4 9.5349e-4
0.7 6.7642e-4 1.3055e-3 2.5377e-4 9.5349e-4
0.8 7.2259e-4 1.4207e-3 4.9045e-4 9.5349e-4
0.9 7.9211e-4 1.5240e-3 7.1061e-4 1.0423e-3

Table 3. The numerical results of different Hurst index.

K 62 66 70 74 78
T1 = 180/360 2.2468 1.0648 0.4491 0.1701 0.0585
T2 = 360/360 4.9177 3.5529 2.5226 1.7638 1.2167

(a) H = 0.5 (b) H = 0.6 (c) H = 0.7

(d) H = 0.8 (e) H = 0.9

Figure 1. The calibration results by L2 regularization.
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(a) H = 0.5 (b) H = 0.6 (c) H = 0.7

(d) H = 0.8 (e) H = 0.9

Figure 2. The calibration results by L1/2 regularization.

4.2. Stability test

To emphasize the stability of both methods, we introduce a random variable x which follows the
standard normal distribution [29,30], and the volatility function with noise is

σ(t) = [0.2 − 0.1 ln(1.5 + 3t)](1 + 0.2x).

Using the noised volatility, we can obtain the corresponding noised option prices in market, which
will be employed to reconstruct volatility function with the proposed algorithms. The iteration stop
criterion is max |σd (t) − σd−1 (t)| < 10−7 and the maximum number of iterations is 200, where σd(t) is
the volatility function reconstructed in the dth iteration. Figure 3 compares the reconstructed and real
volatility under L2 and L1/2 schemes when Hurst parameter is H = 0.7. Table 4 gives the comparison
of stability results between L2 and L1/2 schemes. We can conclude that the performance of Hurst index
H in the range of 0.6 to 0.8 is better than that of standard Brownian motion with H = 0.5, and L1/2

regularization has slightly smaller deviation than L2 scheme. And both methods are stable since the
recovered time-dependent volatility resembles the exact function though adding a little disturbance.

Table 4. The numerical results of stability test.

Scheme L2 L1/2

max |σ − σ̂| 8.3669e-3 7.3734e-3
RMS E 4.4719e-3 3.5987e-3
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Figure 3. The calibration results by noised data.

4.3. Empirical analysis

Now we calibrate the volatility from the price of Shanghai Stock Exchange(SSE) 50ETF on 9th
September, 2021, which are shown in Table 5. The data set is provided by Wind Info, Inc. The current
value of the SSE 50ETF was S 0 = 3.204. The SSE 50 ETF options have four types of expiration
months: The current month, the next month, and the first month of the following two consecutive
quarters, so the days to expiration are T1 = 13,T2 = 48,T3 = 104,T4 = 195. We choose Shanghai
Inter Bank Offered Rate (SHIBOR) 1M at 9th September as initial interest rate r0 = 2.323% and
historical volatility as σ0 = 0.2161.

In order to measure the quality of the calibrated volatility by different Hurst parameters, we use
root mean squared error (RMSE) between the recalculated option price by model and market price.
The accuracy of calibrated volatility has reported in Table 6 and Figures 4–6. The results indicate that
H = 0.6 has a much smaller RMSE than H = 0.5 and performs better for far-month options.

It is clear that the fractional model such as H = 0.6 performs better than the general geometric
Brownian model where H = 0.5 due to the long-term dependence of fractional Brownian motion. In
China’s stock market dominated by individual investors, the high-frequency and short-term trading
behavior is relatively common, which results in the short-term and medium-term factors occupying the
dominant position in the market [35]. Thus the predicted price corresponding to the longest maturity
T = T4 significantly differ from the actual market price, and we can see that the predicted price of
far-month option is higher than the actual price for European call option. In addition, for short-term
contracts of the current month T = T1, the pricing error of out-of-the-money option is higher than the
in-the-money, which is mainly caused by extrapolation and fitting [36].

AIMS Mathematics Volume 7, Issue 6, 11053–11069.
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Figure 4. Left: market price; middle: L2 scheme; right: L1/2 scheme.

(a) T1 = 13/365 (b) T2 = 48/365

(c) T3 = 104/365 (d) T4 = 195/365

Figure 5. Comparison of SSE 50ETF price with numerical prices with H = 0.6 by L2

scheme.
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(a) T1 = 13/365 (b) T2 = 48/365

(c) T3 = 104/365 (d) T4 = 195/365

Figure 6. Comparison of SSE 50ETF price with numerical prices with H = 0.6 by L1/2

scheme.

Table 5. The SSE 50ETF option price at 9th September, 2021.

Strike Price K V (K,T1) V (K,T2) V (K,T3) V (K,T4)
2.85 0.3928 0.4013 0.4179 0.4401
2.90 0.3434 0.3548 0.3758 0.4019
2.95 0.2966 0.3082 0.3347 0.3659
3.00 0.2470 0.2647 0.2984 0.3334
3.10 0.1523 0.1837 0.2269 0.2695
3.20 0.0726 0.1192 0.1671 0.2167
3.30 0.0275 0.0707 0.1210 0.1727
3.40 0.0084 0.0393 0.0860 0.1343
3.50 0.0030 0.0207 0.0590 0.1038
3.60 0.0014 0.0107 0.0422 0.0787
3.70 0.0008 0.0059 0.0290 0.0591
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Table 6. The numerical results of different Hurst index.

Hurst Index H 0.5 0.6 0.7 0.8 0.9

L2

iterations 4 4 5 4 4
max |σd − σd−1| 3.0631e-10 7.6086e-9 6.3632e-11 2.8506e-09 5.7676e-09
V RMS E 0.0309 0.0258 0.0269 0.0313 0.0364
max

∣∣∣V − V̂
∣∣∣ 0.0589 0.0431 0.0451 0.0541 0.0668

L1/2

iterations 29 29 29 29 29
max |σd − σd−1| 7.4981e-5 7.4868e-5 7.4798e-5 7.4755e-5 7.4738e-5
V RMS E 0.0248 0.0239 0.0270 0.0314 0.0359
max

∣∣∣V − V̂
∣∣∣ 0.0428 0.0434 0.0459 0.0543 0.0652

5. Conclusions

In this paper, we consider the Tikhonov L2 and L1/2 regularization for the construction of a time-
dependent volatility function from a finite set of market observations by the fractional Vasicek model.
A fully implicit finite difference method is applied to solve the direct problem numerically. Several
examples are given to demonstrate the accuracy and robustness of our proposed algorithms. The
calibration results indicate that the Hurst index H ranging from 0.6 to 0.8 performs better than H = 0.5,
and L1/2 regularization has slightly smaller deviation but longer running time than L2 scheme.
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