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Abstract: In this paper, three equivalent conditions of ρ-harmonic Teichmüller mapping are given
firstly. As an application, we investigate the relationship between a ρ-harmonic Teichmüller mapping
and its associated holomorphic quadratic differential and obtain a relatively simple method to prove
Theorem 2.1 in [1]. Furthermore, the representation theorem of 1/|ω|2-harmonic Teichmüller mappings
is given as a by-product. Our results extend the corresponding researches of harmonic Teichmüller
mappings.
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1. Introduction and preliminaries

Let Ω and Ω′ be two Jordan domains of the complex plane C. ρ(ω)|dω|2 is a conformal metric
of Ω′. A function ω = f (z) from Ω into Ω′ is the so-called harmonic mapping with respect to ρ (or
brieflyρ-harmonic mapping) if f ∈ C2 satisfies the Euler-Lagrange equation

fzz(z) +
(
log ρ

)
ω ◦ f · fz(z) fz(z) = 0, (1.1)

for z ∈ Ω and ω = f (z). Denote the Hopf differential of f by Φ(z)dz2 := ρ( f ) fz fzdz2. Then f is a
ρ-harmonic mapping on Ω if and only if Φ(z)dz2 is a holomorphic quadratic differential on Ω.

The Gaussian curvature of ρ(ω)|dω|2 on Ω′ is given by

K(ρ) = −
1
2

∆ log ρ
ρ

,

where ∆ := ∂2

∂x2 + ∂2

∂y2 is the Laplace operator. Then the solution of partial differential equation K(ρ) = 0
can be induced by a non-vanishing analytic function ϕ, that is, ρ(ω) = |ϕ(ω)|. Thus f is said to be a flat
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harmonic mapping (or briefly ϕ-harmonic mapping) if f is a ρ-harmonic mapping with ρ = |ϕ|, that is,
f is the solution of the equation

ϕ(ω) fzz(z) + 2ϕ′(ω) fz(z) fz(z) = 0, z ∈ Ω. (1.2)

Taking some special values of ρ, we obtain some subclass of ϕ-harmonic mappings. Such as when
ρ = c is a positive constant, then f becomes an Euclidean harmonic mapping (or briefly π-harmonic
mapping) which can be decomposed by the form as f = h + g, where h and g are analytic in Ω; when
ρ(ω) = 1/|ω|2 and 0 < Ω′, then f just corresponds to a non-vanishing logharmonic mapping; when
ρ(ω) = 1/|ω|4 and 0 < Ω′, then 1/ f happens to be an Euclidean harmonic mapping. For further details
on ϕ-harmonic mapping, the reader can refer to the monographs [4, 14] and papers [2, 3, 5, 6, 10, 13].

In 2006, Kalaj and Matejević [6] found that f is a ϕ-harmonic mapping if and only if there exists a
conformal mapping ψ and an Euclidean harmonic mapping f1 such that f = ψ◦ f1, where ϕ =

(
(ψ−1)′

)2
.

Function f is a ρ-harmonic quasiconformal mapping on Ω if f is a ρ-harmonic mapping from Ω

onto Ω′ and is also a quasiconformal mapping. Some basic concepts and properties of quasiconformal
mapping can be found in [11, 12, 15]. Let µ f be the Beltrami coefficient of f , then µ f = fz/ fz with
‖µ f ‖∞ < 1. Particularly, if there exists a constant k ∈ (0, 1) such that |µ f | = k, then we call f is a
ρ-harmonic Teichmüller mapping from Ω onto Ω′. Reich [12] obtained that the Beltrami coefficient of
ρ-harmonic Teichmüller mapping has the expression

µ f (z) = k
φ(z)
|φ(z)|

, z ∈ Ω, (1.3)

where φ(z) := ρ( f ) fz fz. Then the quantity φ(z)dz2 is said to be the associated holomorphic quadratic
differential of f . Notice that the Beltrami coefficient of a Teichmüller mapping f has the same
representation as (1.3) (but the function φ is only holomorphic), thus we still define φ be its associated
holomorphic quadratic differential of Teichmüller mappings. Teichmüller mappings play an important
role in the theories of quasiconfromal mapping, Teichmüller space and so on. It is well known that the
inverse of a Teichmüller mapping is also a Teichmüller mapping, and the detail is as follows.

Theorem A. ( [11, p.116]) If f is a Teichmüller mapping from the unit disk D = {z ∈ C : |z| < 1} onto
itself, then its inverse function F = f −1 is a Teichmüller mapping on D.

Theorem A is also valid for every Teichmüller mapping defined on Ω. Using Theorem A, Chen and
Fang find that ρ-harmonic Teichmüller mapping must be a certain ϕ-harmonic mapping in [1].

Theorem B. ( [1, Theorem 2.1]) If f is a C2 Teichmüller mapping from Ω onto Ω′ and the associated
holomorphic quadratic differential of its inverse function F = f −1 is φ(ω)dω2, then f is a ρ-harmonic
mapping if and only if ρ = c|φ|, where c is a positive constant.

By Theorems A and B, Chen [2] got that its inverse function F is also a ϕ-harmonic Teichmüller
mapping. Meanwhile, applying Theorem B, Chen and Fang [1] assert that there does not exist a
solution to the Schone conjecture in the class of C2 Teichmüller mappings. In addition, they obtain
the representation of π-harmonic Teichmüller mappings in [1]. One can refer to [7–9] for more details
about the study on the Schone conjecture.

In this article, we examine some properties of harmonic Teichmüller mappings and obtain the
explicit representation of 1/|ω|2-harmonic Teichmüller mappings. The structure of the article is
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organized as follows. Firstly, we study on some properties of ϕ-harmonic Teichmüller mapping and
find that ϕ-harmonic Teichmüller mapping is a solution of the partial differential Eq (2.1) in Theorem 1.
Based on Theorem 1, a relatively simple method is given to prove Theorem B again. Last, as an
application of Theorem 1, the representation of 1/|ω|2-harmonic Teichmüller mapping is gained in
Section 3 which is an extension of π-harmonic Teichmüller mappings.

2. Characterizations of ρ-harmonic Teichmüller mappings

In this section, we firstly investigate the decomposition of ρ-harmonic Teichmüller mappings and
find that every ρ-harmonic Teichmüller mapping is the solution of a partial differential equation.
Depending on these characterizations of ρ-harmonic Teichmüller mappings, we can prove Theorem B
very simply.

Theorem 1. Let ω = f (z) ∈ C2 be a sense preserving homeomorphic mapping from Ω onto Ω′ and
ϕ(ω) be an non-vanishing analytic function on Ω′. If φ(ω) = ϕ2(ω), then the following three statements
are equivalent.

(1) f is a ρ-harmonic Teichmüller mapping and φ(ω)dω2 is the associated holomorphic quadratic
differential of F = f −1;

(2) There exists a constant α with |α| = k ∈ (0, 1) such that f is the solution of the following partial
differential equation

fz(z)
fz(z)

= α
ϕ(ω)

ϕ(ω)
(2.1)

for all z ∈ Ω;
(3) f can be decomposed as

f = ψ ◦
(
h + αh

)
,

where ψ is conformal on Ω′ and h is conformal on Ω satisfy

ψ′(ψ−1(ω)) · ϕ(ω) = 1, h′(z) = ϕ(ω) · fz(z),

for all ω ∈ Ω′ , z ∈ Ω and a constant α with |α| = k ∈ (0, 1).

Proof. We first prove that (1) =⇒ (2). Since f is a ρ-harmonic Teichmüller mapping and φ(ω)dω2

is the associated holomorphic quadratic differential of its inverse function, we see from Theorems A
and B that ρ = c|φ| and F is also a Teichmüller mapping, i.e., there exists a constant k ∈ (0, 1) such that
the Beltrami coefficient µF of F satisfies

µF(ω) =
Fω(ω)
Fω(ω)

= k
φ(ω)
|φ(ω)|

= k
ϕ(ω)
ϕ(ω)

. (2.2)

Differentiating the equation F ◦ f (z) = z with respect to z and z respectively, one hasFω fz + Fω fz = 1,

Fω fz + Fω fz = 0.

Then

fz =
Fω

JF
, fz = −

Fω

JF
, (2.3)
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where
JF = |Fω|

2 − |Fω|
2 =

(
1 − k2

)
|Fω|

2 > 0. (2.4)

According to relations (2.2) and (2.3), we see that

fz(z)
fz(z)

= −
Fω(ω)

Fω(ω)
= −k

ϕ(ω)

ϕ(ω)
(2.5)

and thus (2.1) holds true with α = −k.
Now we prove (2) =⇒ (1). Suppose that the homeomorphic mapping f is a solution of the partial

differential Eq (2.1). Then f is a Teichmüller mapping in Ω. Moreover, (2.1) is equivalent to

ϕ(ω) fz(z) = αϕ(ω) fz(z). (2.6)

Differentiating the Eq (2.6) with respect to z, we get

ϕ fzz + ϕ′ fz fz = α
(
ϕ fzz + ϕ′ fz fz

)
, (2.7)

by the fact that ϕ(ω) is analytic in Ω′. Since 0 < |α| = k < 1, we see from (2.7) that for all z ∈ Ω

ϕ fzz + ϕ′ fz fz = 0,

which implies that f is a ρ-harmonic mapping on Ω and ρ = c|ϕ|2 = c|φ| from the relation (1.2). Here
c is a positive constant.

Let F = f −1. Since f is a Teichmüller mapping which satisfies (2.1), we see from the relations (2.1)
and (2.3) that for all ω ∈ Ω

µF(ω) =
Fω(ω)
Fω(ω)

= −
fz(z)

fz(z)
= −

 fz(z)
fz(z)

 = −α
ϕ(ω)
ϕ(ω)

= −α
φ(ω)
|φ(ω)|

,

which implies that φ(ω)dω2 is the associated holomorphic quadratic differential of F. Thus, the
statements (1) and (2) are equivalent.

Next, we show that (1) and (3) are equivalent. We start from (1) =⇒ (3). Since f is a ρ-harmonic
mapping with ρ = c|φ|, where ρ is deduced by a non-vanishing analytic function, one has f = ψ ◦ f ∗,
where ψ is a conformal mapping from f ∗(Ω) onto Ω′ and f ∗(z) is an Euclidean harmonic mapping from
Ω onto f ∗(Ω). Moreover,

ψ′
(
ψ−1(ω)

)
=

1
ϕ(ω)

, ω ∈ Ω′.

Note that f is a Teichmüller mapping on Ω, thus for all z ∈ Ω one has

k = |µ f | =

∣∣∣∣∣ fz

fz

∣∣∣∣∣ =

∣∣∣∣∣∣ f ∗z
f ∗z

∣∣∣∣∣∣ ,
which implies that f ∗ is also a Teichmüller mapping on Ω. Therefore, there exists a conformal mapping
h and a constant α with |α| = k such that f ∗ = h + αh on Ω ( [1, Theorem 4.1]).

Meanwhile, it follows from
fz(z) = ψ′

(
ψ−1(ω)

)
· h′(z)
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that
h′(z) = ϕ(ω) · fz(z), z ∈ Ω.

We now show that (3) =⇒ (1) as follows. If there exist two conformal mappings ψ and h such that
f = ψ ◦ f ∗ on Ω, where f ∗ = h + αh, then the Beltrami coefficient of f satisfies

|µ f | =

∣∣∣∣∣ fz

fz

∣∣∣∣∣ =

∣∣∣∣∣∣ f ∗z
f ∗z

∣∣∣∣∣∣ = |α| = k,

which deduces that f is a Teichmüller mapping on Ω. Moreover,

fz

fz
= α

ψ′(ξ)
ψ′(ξ)

= α
ϕ(ω)

ϕ(ω)
.

Thus f is a c|φ|-harmonic mapping and φ(ω)dω2 = ϕ2(ω)dω2 is the associated holomorphic quadratic
differential of its inverse function F = f −1, according to the proof of the part (2) =⇒ (1). �

By Theorem B, f is a π-harmonic Teichmüller mapping if and only if φ = c1, that is, ϕ = c2, where
c1, c2 are two positive constants. Therefore, from the relation (2.1), we have

fz(z) = α0 fz(z), z ∈ Ω. (2.8)

Since f can be represented as f = h + g, where h and g are analytic on Ω, we see (2.8) that there exists
a conformal mapping h such that f = h + α0h. This is a coincident with [1, Theorem 4.1].

Meanwhile, from the proof of (1)⇐⇒ (2) in Theorem 1, the following theorem(that is Theorem B)
can be directly obtained, which its proof process is relatively simple compared with [1].

Theorem 2. If f is a C2 Teichmuller mapping from Ω onto Ω′ and φ(ω)dω2 is the associated
holomorphic quadratic differential of F = f −1, then f is a ρ-harmonic mapping if and only if
ρ(ω) = c|φ(ω)| for ω ∈ Ω′.

Proof. Since f is a Teichmüller mapping on Ω, then its inverse function F is also a Teichmüller
mapping by Theorem A, that is, there exists a constant k ∈ (0, 1) such that

µF =
Fω

Fω

= k
φ

|φ|
= k

ϕ

ϕ
,

where φ = ϕ2. By the relation (2.2), we yields

fz(z)
fz(z)

= −

(
Fω(ω)
Fω(ω)

)
= −k

ϕ(ω)

ϕ(ω)

which is equivalent to
ϕ(ω) fz(z) = −kϕ(ω) fz(z), (2.9)

where z ∈ Ω and ω = f (z). Differentiating the Eq (2.9) with respect to z, we get

ϕ(ω) fzz(z) + ϕ′(ω) fz(z) fz(z) = 0,
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which implies that f is a ρ-harmonic mapping if and only if ρ = c|ϕ2| = c|φ(ω)| from the relation (1.2),
here c is a positive constant. �

Applying Theorem 1 and Theorem 2, the following conclusion can be drawn naturally.

Corollary 1. Let f be a C2 Teichmüller mapping from Ω onto Ω′ and φ(ω) be an analytic function on
Ω′. Then f is a c|φ|-harmonic mapping if and only if φ(ω)dω2 is the associated holomorphic quadratic
differential of F = f −1.

Proof. The sufficiency is directly obtained by Theorem 2. We only need to prove the necessity. Let
φ = ϕ2. Since f is a c|φ|-harmonic Teichmüller mapping, then there exists an analytic function a(z) on
Ω with |a(z)| < 1 such that

fz(z)
fz(z)

= a(z)
ϕ(ω)

ϕ(ω)
and esssup|a(z)| = k ∈ (0, 1) from the relation (1.2). Thus a(z) is a constant for z ∈ Ω by Liouville’s
theorem. Hence, by the proof of (2) =⇒ (1) in Theorem 1, we get that φ(ω)dω2 is the associated
holomorphic quadratic differential of F = f −1. �

3. 1/|ω|2-harmonic Teichmüller mappings

Applying Theorems 1 and 2, the representation theorem of 1/ω|2-harmonic Teichmüller mapping is
given below.

Theorem 3. If ω = f (z) is a C2 Teichmüller mapping from the unit disk D onto Ω with 0 < Ω, then the
following statements are equivalent:

(1) f is a 1/|ω|2-harmonic mapping;
(2) f has the form as f = hhα, where h is a non-vanishing conformal mapping in D and α is a

constant which satisfies 0 < |α| < 1.

Proof. We first prove (2) =⇒ (1). Since f = hhα and h is non-vanishing conformal mapping, we see
that ω = f (z) , 0 in D and

fz = h′hα, fz = αhh′hα−1.

Therefore,
fz

fz
=
αh′hα−1h

h′hα
= α

ω

ω

for all z ∈ D. Let ϕ(ω) = 1/ω and φ(ω) = ϕ2(ω), then we have

fz(z)
fz(z)

= α
ϕ(ω)

ϕ(ω)
,

which implies that f is a 1/|ω|2-harmonic Teichmüller mapping (ignoring multiplying a positive
constant) and φ(ω)dω2 is the associated holomorphic quadratic differential of F = f −1 by Theorem 1
and Corollary 1 respectively.

Next we prove (1) =⇒ (2). Let ϕ(ω) = 1/ω. If f is a 1/|ω|2-harmonic Teichmüller mapping on D,
then there exists an analytic function a(z) on D with |a(z)| < 1 such that

fz

fz
= a(z)

ϕ

ϕ
= a(z)

ω

ω
(3.1)
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and |a(z)| = k ∈ (0, 1) by Properties 2.1 in [10]. Notice that by Liouville’s theorem a(z) = α is a
constant with |α| = k for all z ∈ D.

It is well known that a non-vanishing logharmonic mapping F has the expression that F = HG
on D, where H and G are analytic on D. Since f is a 1/|ω|2-harmonic mapping if and only if f is a
non-vanishing logharmonic mapping [10], we have f (z) = H(z)G(z) for all z ∈ D. Hence,

fz = H′G =
H′

H
ω, fz = HG′ =

G′

G
ω.

From the relation (3.1), we have
G′

G
= α

H′

H
for all z ∈ D, which yields to

log f = log H + log G = log H + α log H + c,

where c is a constant. Let

log h = log H +
c − αc
1 − |α|2

.

Then log f = log h + αlog h, that is, f = hhα for z ∈ D.

Finally, for any two points z1 and z2 in D, we obtain

log f (z1) − log f (z2) = log h(z1) − log h(z2) + α
(
log h(z1) − log h(z2)

)
.

Since |α| = k < 1, one has log f is univalent if and only if log h is a conformal function if and only if h
is a conformal function in D. Thus we see that (1) implies (2). �

Remark. The representation of 1/|ω|2-harmonic Teichmüller mappings in Theorem 3 is coincident
with that in Theorem 1. In fact, since

f = hhα = elog h+α log h

can be viewed as f = ψ ◦ f1, where

ω = ψ(ξ) = e ξ, f1(z) = log h(z) + α log h(z)

for ξ = f1(z) and z ∈ D. Moreover, f1 is univalent in D by the fact that h is a conformal mapping
in D. It is easy to verify that ψ is just the univalent solution of equation ψ′(ψ−1) ◦ ϕ = 1 and h satisfies(
log h

)′
= ϕ · fz.

On the other hand, for a given non-vanishing conformal mapping h in D, let ψ(ξ) = eξ and ξ =

f1(z) = log h + α log h. Then the composition function

ω = f = ψ ◦ f1 = hhα

is a 1/|ω|2-harmonic mapping.
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