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Abstract: Divergence as a degree of the difference between two data is widely used in the
classification problems. In this paper, f -divergence, Hellinger divergence and variation divergence
of the monotone set-valued measures are defined and discussed. It proves that Hellinger divergence
and variation divergence satisfy the triangle inequality and symmetry by means of the set operations
and partial ordering relations. Meanwhile, the necessary and sufficient conditions of Radon-Nikodym
derivatives of the monotone set-valued measures are investigated. Next, we define the conjugate
measure of the monotone set-valued measure and use it to define and discuss a new version f -
divergence, and we prove that the new version f -divergence is nonnegative. In addition, we define the
generalized f -divergence by using the generalized Radon-Nikodym derivatives of two monotone set-
valued measures and examples are given. Finally, some examples are given to illustrate the rationality
of the definitions and the operability of the applications of the results.
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1. Introduction

As a mathematical model to measure the degree of difference between two types of information,
Pearson [27] first described the mathematical model between two random distributions in 1900. Ernst
Hellinger [21] introduced a distance to evaluate to which extent two probability distributions are similar
in 1909. The definition is based on the Radon-Nikodym derivatives of the two probabilities with respect
to a third probability measure and has been widely used in data privacy and data mining etc. (refer
to [9,29]). Later, as a generalization of distance, Kullback and Leibler [24] introduced another function
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to evaluate the divergence between probability distributions and was named as Kullback-Leibler
divergence. However, it is not a distance function since the function does not satisfy the symmetry
of the distance function. In 1952, Chornoff [7] generalized the Kullback-Leibler divergence to produce
a new divergence function, named α-divergence, and used this divergence function to measure error
calculations in classification problems. Amari proves that the α-divergence constitute a unique class
belonging to both classes when the space of positive measures or positive arrays is considered. They
are the canonical divergences derived from the dually flat geometrical structure of the space of positive
measures [3]. The development of α-divergence has formed a very famous theory: Entropy theory.
Like non-additive measure and Choquet integral, entropy theory is also an important tool for dealing
with uncertain problems, which has been widely used in machine learning [37], data fusion [41],
intuitive fuzzy sets [33], biological mathematics [26] and many other fields [2,23]. Csiszar introduced
f -divergence in references [10,11]. The Csiszar f -divergence is a unique class of divergences having
information monotonicity, from which the dual alpha geometrical structure with the Fisher metric
is derived. Friedrich Liese and Igor Vajda deal with the f-divergences of Csiszr generalizing the
discrimination information of Kullback, the total variation distance, the Hellinger divergence, and
the Pearson divergence in reference [25]. In fact, divergence was originally used to evaluate two
probability distribution difference degrees, is widely used in classification problems [5,6,12,22,28,34].
However, most of the divergence used in these problems is concentrated in discrete cases. For
continuous cases, Torra et al. [35] first defined two f -divergence of non-additive measures and used
the Choquet integral as an alternative to the Lebesgue integral to consider the definition of the f -
divergence for non-additive measures in 2016. Later, use the same theory, they consider the definition
of the f -divergence for discrete non-additive measures [36]. However, in 2019, Hamzeh Agahi found
that the f -divergence for non-additive measures of Torra is not always non-negative, so he defined a
new version of f -divergence which is always non-negative [1].

It is well known that the probability measure is a mathematical index that describes the measurement
problems of the error free condition, but in practical problems, the conditions of countable additivity
are so strong that it is difficult to operate. Especially, the characteristics of the measurement problems
are not additive when measurement errors are unavoidable, involving subjective judgments or non-
repetitive experiments. Therefore, in 1954, French mathematician Choquet put forward a theory called
capacity [8]. Choquet capacity refers to a monotone set function whose domain is the power set of the
given space, and its value is in the set of real numbers and is continuous. In 1974, Sugeno [31] put
forward the concept of fuzzy measure, which refers to a set functions that replace column additivity
with weak monotonicity and continuity. Therefore, the fuzzy measure and Choquet integral theory
based on the fuzzy measure have attracted the attention of many scholars. However, since Choquet
integral has a wide range of applications in information fusion, machine learning, pattern recognition,
decision analysis and other fields, the study of Choquet integral mainly focuses on discrete cases. The
monotone measure means a monotone set function which maps to zero on the empty set. The capacities
and fuzzy measure are special cases of monotone measures. Since 2004, Gavrilut [13–17], Gavrilut and
Croitoru [18] extended the concepts of the monotone measure to the set-valued case and established
various results concerning non-atomicity, fuzziness, regularity, integrability and many other problems
in monotone set-valued measures framework.

As an important part of nonlinear analysis, set-valued and the integrals of set-valued functions
are widely used in cybernetics and decision theory. The integrals of set-valued functions based
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on Lebesgue integrals were introduced by Aumann in 1965, which are usually called Aumann
integrals [4]. Moreover, several kinds of other set-valued integrals have been suggested, such as
set-valued fuzzy integrals [39,40], set-valued pseudo-integrals [20], Riemann integral on monotone
set-valued measure space [38]. It is well known that a lot of information is highly uncertain in nature.
For such highly uncertain systems, set-valued are more accurate than real-valued. Therefore, set-
valued probabilities and monotone set-valued measures are good tools for dealing with such highly
uncertain systems [30]. However, for monotone set-valued measures, there is still no method to
express the degree of difference between two monotone set-valued measures. Because divergence can
well represent the degree of difference between two information, one method is to use divergence to
describe the degree of difference between two monotone set-value measures. Therefore, in this paper,
f -divergence, Hellinger divergence and variation divergence of the monotone set-valued measures are
defined and discussed. It proves that Hellinger divergence and variation divergence satisfies the triangle
inequality and symmetry by means of the set operations and partial ordering relations. Meanwhile,
the necessary and sufficient conditions of Radon-Nikodym derivatives of the monotone set-valued
measures are investigated. The conjugate measure of monotone set-valued measure and the new f -
divergence are defined. We prove that the new f -divergence is nonnegative. Finally, we define the
generalized f -divergence by using the generalized Radon-Nikdoym derivatives of two monotone set-
valued measures.

The structure of the paper is as follows: In Section 2, we review some definitions that we need
for the rest of our work. They are mainly results on measures, Choquet integral and divergence. In
Section 3, we state the main results of this paper. Meanwhile, some examples are given to illustrate the
effectiveness of the definitions and results proposed. The paper finishes with some conclusions.

2. Preliminaries

In this section, we review some definitions that we need for the rest of our work. They are mainly
results on measures, Choquet integral and f -divergence for non-additive measures.

2.1. Measure

In this paper, Ω is always a nonempty set, A is a σ-algebra over Ω. The binary (Ω,A) is called a
measurable space. Let P0(R+) denote the class of all non-empty subsets of R+, Pkc(R+) denote the class
of all non-empty compact convex subsets of R+. Let A, B ∈ P0(R+), the partial order relation of P0(R+)
denoted by A ≲ B, or B ≳ A, if the following conditions hold:
(1) ∀ x0 ∈ A, ∃ y0 ∈ B such that x0 ≤ y0;
(2) ∀ y1 ∈ B, ∃ x1 ∈ A such that x1 ≤ y1.

For any A, B ∈ P0(R+), we denote

A + B = {a + b |a ∈ A, b ∈ B};

A · B = {a · b |a ∈ A, b ∈ B};

max{A, B} =


A, i f A ≳ B;
B, i f B ≳ A;
{ϕ}, otherwise.
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Let f : [0,∞] → R be a real convex function with the conventions 0 f ( 0
0 ) = 0 and 0 f ( c

0 ) =
c limt→∞

f (t)
t , c > 0 (see [10]). In this paper, all convex functions satisfy these conventions.

Definition 2.1. Let (Ω,A) be a measurable space. A set function µ defined on A is called a non-
additive measure if and only if
(1) 0 ≤ µ(A) ≤ ∞ for any A ∈ A;
(2) µ(ϕ) = 0;
(3) If A ⊂ B, then µ(A) ≤ µ(B).
The triple (Ω,A, µ) is called a non-additive measure space.

Definition 2.2. We say µ̄ is the conjugate of a non-additive measure µ, if

µ̄(A) = µ(Ω) − µ(Ω/A), A ∈ A.

Definition 2.3. (see [35]) Let µ be a non-additive measure.
(1) µ is said to be supermodular if µ(A ∪ B) + µ(A ∩ B) ≥ µ(A) + µ(B).
(2) µ is said to be submodular if µ(A ∪ B) + µ(A ∩ B) ≤ µ(A) + µ(B).

Definition 2.4. (see [38]) Let (Ω,A) be a measurable space. A set-valued function π : A → Pkc(R+)
is called a monotone set-valued measure if and only if
(1) π(∅) = {0};
(2) ∀A, B ∈ A, if A ⊆ B, then π(A) ≲ π(B).
The triple (Ω,A, π) is called a montone set-valued measure space.

Let π be monotone set-valued measure, µ be non-additive measure. we said that µ is a choice for π,
if µ(A) ∈ π(A) for all A ∈ A. Let I(R+) denote the closed interval on R+, F : R → I(R+) be closed
interval value function. F ◦G : R→ 2R: F ◦G(x) =

⋃
y∈G(x) F(y) for any x ∈ R. F = sup F, F = inf F.

Obviously, if F and G are both closed interval valued functions, then F ◦G is a closed interval valued
function.

In this paper, without special instructions, (c)
∫

denotes the Choquet integral of real-valued function
with respect to non-additive set-valued measure, (C)

∫
denotes the Choquet integral of real-valued

function with respect to non-additive set-valued measure, and (C̄)
∫

denotes the Choquet integral of
set-valued function with respect to non-additive set-valued measure.

2.2. On the f -divergence for non-additive measures

In this section, we review the definition of the Choquet integral and the f -divergence for non-
additive measures.

Definition 2.5. (see [8]) Let (Ω,A, µ) be a non-additive measure space, µ be a non-additive measure,
g be a real measurable function. The Choquet integral of g with respect to µ is defined by

(c)
∫

A
gdµ =

∫ 0

−∞

[µ({x|g(x) ≥ α} ∩ A) − µ(A)]dα +
∫ ∞

0
µ({x|g(x) ≥ α} ∩ A)dα.

Let g be a non-negative measurable function. The Choquet integral of g with respect to µ is
defined by

(c)
∫

A
gdµ =

∫ ∞

0
µ({x|g(x) ≥ α} ∩ A)dα.
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Proposition 2.1. (see [1,19]) Let µ, ν be two non-additive measure, f , f1, f2 be real value function, we
have the following results.
(1) If µ(A) = 0, A ∈ A, then (c)

∫
A

f dµ = 0.
(2) If µ1 ≤ µ2, then (c)

∫
A

f dµ1 ≤ (c)
∫

A
f dµ2, where µ1 ≤ µ2 if and only if µ1(A) ≤ µ2(A) for ∀A ∈ A.

(3) If f1 ≤ f2, then (c)
∫

A
f1dµ ≤ (c)

∫
A

f2dµ.
(4) If A ⊂ B, then (c)

∫
A

f dµ ≤ (c)
∫

B
f dµ.

(5) (c)
∫

A
f d(aµ1+bµ2) = a·(c)

∫
A

f dµ1+b·(c)
∫

A
f dµ2 for a, b > 0 and A ∈ A, where (a·µ1+b·µ2)(B) =

a · µ1(B) + b · µ2(B).
(6) (c)

∫
A
− f dµ = −(c)

∫
A

f dµ̄.
(7) (c)

∫
A

f + αdµ = (c)
∫

A
f dµ + αµ(A) for any real α.

(8) µn ↑ (↓)µ ⇔ for any f we have (c)
∫

f dµn ↑ (↓)(c)
∫

f dµ, where µn ↑ (↓)µ if and only if µn(A) ↑ (↓
)µ(A) for all A ∈ A.

Definition 2.6. (see [35]) Let (Ω,A) be a measurable space, µ and ν be two non-additive measures.
We say that ν is a Choquet integral of µ if there exists a measurable function g : Ω→ R+ with

ν(A) = (c)
∫

A
gdµ

for all A ∈ A.

Definition 2.7. (see [35]) Let µ and ν be two non-additive measures. If ν is a Choquet integral of µ,
and g is a real function such that Definition 2.6 is satisfied. Then we write g = dν/dµ, and we say that
g is a Radon-Nikdoym derivative of ν with respect to µ.

Definition 2.8. (see [35]) Let µ1 and µ2 be two non-additive measures that are Choquet integrals of µ.
Let f be a convex function with f (1) = 0. The f -divergence between µ1 and µ2 is defined as

D f ,µ(µ1, µ2) = (c)
∫

dµ2

dµ
f (

dµ1/dµ
dµ2/dµ

)dµ.

Here, dµ1/dµ and dµ2/dµ are the derivatives of µ1 and µ2 with respect to µ according to Definition 2.7.

Definition 2.9. (see [12]) Let P = (p1, ..., pk) and Q = (q1, ..., qk) be two probability distributions. Let
f be a convex function with f (1) = 0. Then the discrete f -divergence is defined by

D f (P,Q) =
k∑

i=1

qi f (
pi

qi
).

According to the discrete f -divergence. We review some of these expressions below [7].
(1) The Hellinger distances is defined by

H(P,Q) =

√√
1
2

k∑
i=1

(
√

pi −
√

qi)2.

It corresponds to the case of f (x) = (1 −
√

x)2, and formally, H(P,Q) =
√

(1/2)D f (P,Q).

AIMS Mathematics Volume 7, Issue 6, 10892–10916.



10897

(2) The Kullback-Leibler distance corresponds to the f -divergence with f (x) = x log x, and its
expression is

KL(P,Q) =
k∑

i=1

pi log(
pi

qi
).

(3) The variation distance is defined by

δ(P,Q) =
1
2

k∑
i=1

|pi − qi|.

If f (x) = |x − 1|, then δ(P,Q) = 1
2 D f (P,Q).

(4) The α distance is defined by

Dα(P,Q) = (
1
α − 1

) log(
k∑

i=1

pαi q1−α
i ).

When f (x) = xα for α > 0 and α , 1, we have that Dα(P,Q) = (1/(α−1)) log D f (P,Q). The α distance
generalizes the Kullback-Leibler distance because limα→1 Dα(P,Q) = KL(P,Q).

(5) The χ2 distance corresponds to the function f (x) = (x − 1)2, and its expression is

Dχ2(P,Q) =
k∑

i=1

(pi − qi)2

qi
.

In general, f -divergence neither satisfies the triangular inequality nor the symmetry. Therefore, f -
divergence is not a distance. For example, χ2 distance is not symmetric, Kullback-Leibler distance does
not satisfy the triangle inequality. Obviously, the Hellinger distance and variation distance satisfies
symmetry and the triangular inequality.

Theorem 2.1. (see [1]) Let µ1 and µ2 be two non-additive measures that are Choquet integrals of µ. If
f : [0,∞)→ R is a convex function, then

max{D f ,µ(µ1, µ2),D f ,µ̄(µ1, µ2)} ≥ µ(Ω) f (
1
µ(Ω)

(c)
∫

dµ1

dµ
dµ).

(1) If f is an increasing convex function, then

D f ,µ(µ1, µ2) ≥ µ(Ω) f (
1
µ(Ω)

(c)
∫

dµ1

dµ
dµ).

(2) If f is an decreasing convex function, then

D f ,µ̄(µ1, µ2) ≥ µ(Ω) f (
1
µ(Ω)

(c)
∫

dµ1

dµ
dµ).
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3. Main result

3.1. f -divergence of monotone set-valued measure with respect to a convex function

The f -divergence was defined for pairs of monotone set-valued measure. It is defined in terms of the
Radon-Nikodym derivative. In this part, let µ1(A) = inf π(A), µ2(A) = sup π(A). µ1 and µ2 respectively
are said to be the minimum choice and maximum choice of π. Obviously, µ1 ∈ π, µ2 ∈ π.

Definition 3.1. Let (Ω,A, π) be monotone set-valued measurable space, f be a measurable function,
A ∈ A. The Choquet integral of f with respect to π is defined by

(C)
∫

A
f dπ = {(c)

∫
A

f dµ, µ ∈ π}.

Definition 3.2. Let (Ω,A, π) be monotone set-valued measurable space, f be a measurable function,
A ∈ A, we say the Choquet integral of f with respect to π is bounded if −∞ < (c)

∫
A

f dµ < ∞ for any
µ ∈ π.

Definition 3.3. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure. If there exists a nonnegative measurable function g : Ω → R such that π1(A) =
(C)
∫

A
gdπ2, A ∈ A, then the function g is called the Radon-Nikodym derivative of π1 with respect to

π2, denoted g = dπ1/dπ2 or g = dπ1
dπ2

.

Definition 3.4. Let (Ω,A, π) be a monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure and exists Radon-Nikodym derivatives with respect to π3, f be a convex function
with f (1) = 0. Then the f -divergence between π1 and π2 is defined as

D f ,π3(π1, π2) = (C)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dπ3.

Remark 3.1. Specially, according to Definition 3.4, we can deduce the following conclusions.
(1) The Hellinger divergence between π1 and π2 is defined as

Hπ3(π1, π2) =

√√√
1
2

(C)
∫

(

√
dπ1

dπ3
−

√
dπ2

dπ3
)2dπ3.

Obviously, if f (x) = (1 −
√

x)2, then Hπ3(π1, π2) =
√

1
2 D f ,π3(π1, π2).

(2) The variation divergence between π1 and π2 is defined as

δπ3(π1, π2) =
1
2

(C)
∫
|
dπ1

dπ3
−

dπ2

dπ3
|dπ3.

If f (x) = |x − 1|, then δπ3(π1, π2) = 1
2 D f ,π3(π1, π2).

(3) The Kullback-Leibler divergence corresponds to the f -divergence with f (x) = x log x, and its
expression is

KLπ3(π1, π2) = (C)
∫

dπ1

dπ3
log(

dπ1/dπ3

dπ2/dπ3
)dπ3.
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(4) The Kullback-Leibler divergence is not symmetric. The symmetric version of KLπ3(π1, π2) is
given by

Jπ3(π1, π2) := KLπ3(π1, π2) + KLπ3(π2, π1),

which is called J-divergence.
(5) The α divergence is defined by

Dα(π1, π2) = {(
1
α − 1

) log(
∫

(
dπ1

dπ3
)α(

dπ2

dπ3
)1−αdm) : m ∈ π3}.

(6) The χ2 divergence corresponds to the function f (x) = (x − 1)2, and its expression is

Dχ2,π3(π1, π2) =
∫

(dπ1/dπ3 − dπ2/dπ3)2

dπ2/dπ3
dπ3.

Remark 3.2. If monotone set-valued measure in Definition 3.4 degenerate into the non-additive
measure. Then f -divergence, Hellinger divergence and variation divergence of monotone set-valued
measure degenerated into f -divergence, Hellinger distance and variation distance of non-additive
measure respectively [35].

The Definition 3.3 is not always well defined. First note that, in general, a pair of arbitrary monotone
set-valued measures do not always have a Radon-Nikodym derivative. In case that derivatives exists,
it is well defined when for π1, π2 and π3 there is only one derivative g such that g = dπ1/dπ3 and there
is only one function f such that f = dπ2/dπ3. We have the following theorem for Radon-Nikdoym
derivative of the monotone set-valued measure.

Theorem 3.1. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure, µS

i , µ
I
i be the maximum choice and the minimum choice of πi (i = 1, 2) respectively,

let dµS
1

dµS
2
= f , dµI

1
dµI

2
= g. There exists a measurable function h that is the Radon-Nikdoym derivative of π1

with respect to π2 if and only if f is almost everywhere equal to g.

Proof. Suppose π1(A) = (C)
∫

A
hdπ2. Then there exists a µ ∈ π1 such that µ(A) = (c)

∫
A

hdµI
2 for

µI
2 ∈ π2. Here, µ is obviously the minimum choice of π1. That is, dµI

1
dµI

2
= h. Similarly, we have dµS

1
dµS

2
= h.

Therefore, f is almost everywhere equal to g.
We just need to prove that

π1(A) = (C)
∫

A
f dπ2.

First, since π2 is a compact convex set-valued mapping, we have that (C)
∫

A
f dπ2 is a compact

convex set. For any x ∈ π1(A), we may assume that

α =
µS

1 (A) − x

µS
1 (A) − µI

1(A)
,

then we have
x = αµI

1(A) + (1 − α)µS
1 (A).

Let
µS

1 (A) = (c)
∫

A
f dµS

2 , µ
I
1(A) = (c)

∫
A

f dµI
2.
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Since π2 is a compact convex set-valued mapping, then there exist µ ∈ π2 and µ = αµI
2 + (1 − α)µS

2
such that x = (c)

∫
A

f dµ. Therefore,

x ∈ (C)
∫

A
hdπ2,

so we have
π1(A) ⊂ (C)

∫
A

f dπ2.

Second, for any y ∈ (C)
∫

A
f dπ2, there exists µ ∈ π2 such that y = (c)

∫
A

f dµ. Obviously,

(c)
∫

A
f dµI

2 ⩽ y ⩽ (c)
∫

A
f dµS

2 .

Let

α =
(c)
∫

A
f dµS

2 − y

(c)
∫

A
f dµS

2 − (c)
∫

A
f dµI

2

,

we have
y = α(c)

∫
A

f dµI
2 + (1 − α)(c)

∫
A

f dµS
2 .

Since π1(A) is a compact convex set, and

(c)
∫

A
f dµI

2 ∈ π1(A), (c)
∫

A
f dµS

2 ∈ π1(A).

So we have y ∈ π1(A). That is,

π1(A) ⊃ (C)
∫

A
hdπ2.

Therefore,

π1(A) = (C)
∫

A
hdπ2.

3.2. Properties and examples

We consider some additional properties below. They apply when the f -divergence is well defined.

Proposition 3.1. D f ,π3(π1, π2) = {0} if π1 = π2.

Proposition 3.2. The Hellinger divergence and variation divergence satisfy symmetry.

Proposition 3.3. If the maximum choice and the minimum choice of π4 are submodular and continuous
from below, then we have

Hπ4(π1, π2) + Hπ4(π2, π3) ≳ Hπ4(π1, π3).

Proposition 3.4. If the maximum choice and the minimum choice of π4 are submodular, then we have

δπ4(π1, π2) + δπ4(π2, π3) ≳ δπ4(π1, π3).

To prove the above four properties, we give the following two lemmas.
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Lemma 3.1. (see [35]) Let (Ω,A, µ) be non-additive measurable space, f and g be two non-negative
measurable functions.
(1) If µ is submodular, then (c)

∫
A
( f + g)dµ ≤ (c)

∫
A

f dµ + (c)
∫

A
gdµ;

(2) If µ is supermodular, then (c)
∫

A
( f + g)dµ ≥ (c)

∫
A

f dµ + (c)
∫

A
gdµ.

Lemma 3.2. (see [35]) Let (Ω,A, µ) be non-additive measurable space, f and g be non-negative
measurable functions. If µ is a submodular and continuous from blew, then

[(c)
∫

( f + g)2dµ]
1
2 ≤ ((c)

∫
f 2dµ)

1
2 + ((c)

∫
g2dµ)

1
2 .

Proof. Propositions 3.1 and 3.2 are obvious, we just need to prove Propositions 3.3 and 3.4.
Proof of Proposition 3.3: Let µ1 be the minimum choice of π4, µ2 be the maximum choice of π4.

Suppose a ∈ Hπ4(π1, π2) + Hπ4(π2, π3), then there exists µ3, µ4 ∈ π4 such that

a =

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ2

dπ4
)2dµ3 +

√
1
2

(c)
∫

(

√
dπ2

dπ4
−

√
dπ3

dπ4
)2dµ4.

Applying Lemma 3.2, we have

a =

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ2

dπ4
)2dµ3 +

√
1
2

(c)
∫

(

√
dπ2

dπ4
−

√
dπ3

dπ4
)2dµ4

≥

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ2

dπ4
)2dµ1 +

√
1
2

(c)
∫

(

√
dπ2

dπ4
−

√
dπ3

dπ4
)2dµ1

≥

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ3

dπ4
)2dµ1

∈ Hπ4(π1, π3).

Suppose b ∈ Hπ4(π1, π3), then there exists µ5 ∈ π4 such that

b =

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ3

dπ4
)2dµ5

≤

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ3

dπ4
)2dµ2

≤

√
1
2

(c)
∫

(

√
dπ1

dπ4
−

√
dπ2

dπ4
)2dµ2 +

√
1
2

(c)
∫

(

√
dπ2

dπ4
−

√
dπ3

dπ4
)2dµ2

∈ Hπ4(π1, π2) + Hπ4(π2, π3).

Therefore, Hπ4(π1, π2) + Hπ4(π2, π3) ≳ Hπ4(π1, π3).
Proof of Proposition 3.4: Let µ1 be the minimum choice of π4, µ2 be the maximum choice of π4.

Suppose a ∈ δπ4(π1, π2) + δπ4(π2, π3), there are µ3, µ4 ∈ π4 such that

a =
1
2

(c)
∫
|
dπ1

dπ4
−

dπ2

dπ4
|dµ3 +

1
2

(c)
∫
|
dπ2

dπ4
−

dπ3

dπ4
|dµ4.
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Applying Lemma 3.1, we have

a =
1
2

(c)
∫
|
dπ1

dπ4
−

dπ2

dπ4
|dµ3 +

1
2

(c)
∫
|
dπ2

dπ4
−

dπ3

dπ4
|dµ4

≥
1
2

(c)
∫
|
dπ1

dπ4
−

dπ2

dπ4
|dµ1 +

1
2

(c)
∫
|
dπ2

dπ4
−

dπ3

dπ4
|dµ1

≥
1
2

(c)
∫

(|
dπ1

dπ4
−

dπ2

dπ4
| + |

dπ2

dπ4
−

dµ3

dπ4
|)dµ1

≥
1
2

(c)
∫
|
dπ1

dπ4
−

dπ3

dπ4
|dµ1

∈ δπ4(π1, π3).

Suppose b ∈ δπ4(π1, π3), then there exists µ5 ∈ π4 such that

b =
1
2

(c)
∫
|
dπ1

dπ4
−

dπ3

dπ4
|dµ5

≤
1
2

(c)
∫
|
dπ1

dπ4
−

dπ3

dπ4
|dµ2

≤
1
2

(c)
∫
|
dπ1

dπ4
−

dπ2

dπ4
|dµ2 +

1
2

(c)
∫
|
dπ2

dπ4
−

dπ3

dπ4
|dµ2

∈ δπ4(π1, π2) + δπ4(π2, π3).

Therefore, δπ4(π1, π2) + δπ4(π2, π3) ≳ δπ4(π1, π3).

Remark 3.3. In Propositions 3.3 and 3.4, the inequality is false when the maximum choice and the
minimum choice are supermodular. For example:

(1) Let h1 =
dπ1
dπ4
−

dπ2
dπ4

, h2 =
dπ2
dπ4
−

dπ3
dπ4

, h3 =
dπ1
dπ4
−

dπ3
dπ4

; µ2 be the maximum choice of π4;
h1, h2, h3 be non-negative. If µ2 is supermodular. According to Lemma 3.1, we have (c)

∫
A

h1 + h2dµ2 ≥

(c)
∫

A
h1dµ2 + (c)

∫
A

h2dµ2. Then δπ4(π1, π2) + δπ4(π2, π3) ≳ δπ4(π1, π3) is false.
(2) Let h1 = 1, h2 = −1, h3 = 0. Since (c)

∫
A

h3dµ2 ≤ (c)
∫

A
|h1|dµ2 + (c)

∫
A
|h2|dµ2. Therefore,

δπ4(π1, π3) ≳ δπ4(π1, π2) + δπ4(π2, π3) is false.

Theorem 3.2. If D f ,π3(π1, π2) is bounded, then D f ,π3(π1, π2) is a compact convex set.

Proof. It follows from Definition 3.4,

D f ,π3(π1, π2) = (C)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dπ3.

First, suppose x, y ∈ D f ,π3(π1, π2), then there exists µ1, µ2 ∈ π3 such that x = (c)
∫

dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dµ1,
y = (c)

∫
dπ2
dπ3

f (dπ1/dπ3
dπ2/dπ3

)dµ2. For ∀ α ∈ (0, 1), we have

αx + (1 − α)y = (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dαµ1 + (c)

∫
dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)d(1 − α)µ2.

Applying Proposition 2.1, we have

αx + (1 − α)y = (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)d[αµ1 + (1 − α)µ2].
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Since π3 is a compact convex set-valued mapping, so there exists µ3 ∈ π3 such that µ3 = αµ1+(1−α)µ2.
Therefore,

αx + (1 − α)y = (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ3.

That is, αx + (1 − α)y ∈ D f ,π3(π1, π2).
Second, let {xn} ∈ D f ,π3(π1, π2), n = 1, 2, 3, · · · , there is {µn} ∈ π3 such that xn =

(c)
∫

dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dµn, n = 1, 2, 3, · · · . Obviously, {µn} are bounded and limitless. Since π3 is a
compact convex set-valued function, therefore, there exists convergence sub columns {µnk} ⊆ {µn},
we could assume that increase converges to γ, then, there exists {xnk} ⊂ xn such that {xnk =

(c)
∫

dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dµnk}. Applying Proposition 2.1, we have

lim
k→∞

xnk = (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dγ.

Therefore, D f ,π3(π1, π2) is a compact set. That is, D f ,π3(π1, π2) is a compact convex set.

Theorem 3.3. Let µ1 be the minimum choice for π3 and µ2 be the maximum choice,

a = min{(c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ1, (c)

∫
dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ2},

b = max{(c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ1, (c)

∫
dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ2}.

If a < ∞, then
D f ,π3(π1, π2) ⊆ [a, b].

If b < ∞, then
D f ,π3(π1, π2) = [a, b].

Proof. If a < ∞, then D f ,π3(π1, π2) non-empty. Suppose c ∈ D f ,π3(π1, π2), then there exists µ3 ∈ π3 such
that c = (c)

∫
dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dµ3. Applying Proposition 2.1, we have

a ≤ (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ3 ≤ b.

Therefore, c ∈ [a, b]. That is,
D f ,π3(π1, π2) ⊆ [a, b].

If b < ∞, then b ∈ D f ,π3(π1, π2), therefore

D f ,π3(π1, π2) = [a, b].

It is difficult to directly calculate the r-n derivatives of monotone set-valued measures, but
Theorem 3.3 provides a method for calculating monotone set-valued measures that conform to the
conditions of Theorem 3.3. Thus, it provides a basis for the calculation of f -divergence of monotone
set-valued measure.

AIMS Mathematics Volume 7, Issue 6, 10892–10916.



10904

Example 3.1. (see [32]) Let m : R+ → R+ be a continuous and increasing function such that m(0) = 0.
Let λ be the Lebesgue measure. Let µm be the set function defined by

µm(A) = m(λ(A)),

for all A. µm is said to be a distorted Lebesgue measure. Obviously, µm is a non-additive measure.

Lemma 3.3. (see [32]) Let f (t) be a continuous and increasing function with f (0) = 0, µm be a
distorted Lebesgue measure. Then there exists an increasing function g so that f (t) = (c)

∫
[0,t]

gdµm,

and the following holds:
G(s) = F(s)/sM(s);

g(t) = L−1(F(s)/sM(s)).

Here, F(s) is the Laplace transformation of f , G(s) is the Laplace transformation of g, M(s) is the
Laplace transformation of m.

Example 3.2. Let µ be non-additive measure on [a, b], a > 0, A be Borel-σ algebra on [a, b], π3 :
A → [0, µ(A)], π1 : A → [0, (c)

∫
A

tdµ], π2 : A → [0, (c)
∫

A
(t + 1)dµ], A ∈ A. By the definition of

the Choquet integral, we have π1, π2, π3 are monotone set-valued measure and dπ1
dπ3
= t, dπ2

dπ3
= t + 1 .

Applying Theorem 3.3, we have
(1) If (c)

∫ b

a
(t + 1) f ( t

t+1 )dµ ≥ 0, then

D f ,π3(π1, π2) = (C)
∫ b

a
(t + 1) f (

t
t + 1

)dπ = [0, (c)
∫ b

a
(t + 1) f (

t
t + 1

)dµ].

If (c)
∫ b

a
(t + 1) f ( t

t+1 )dµ ≤ 0, then

D f ,π3(π1, π2) = (C)
∫ b

a
(t + 1) f (

t
t + 1

)dπ = [(c)
∫ b

a
(t + 1) f (

t
t + 1

)dµ, 0].

(2) δπ3(π1, π2) = [0, 1
2 (c)
∫
|
dπ1
dπ3
−

dπ2
dπ3
|dµ] = [0, 1

2µ([a, b])].

(3) Hπ3(π1, π2) =
[
0,

√
1
2 (c)
∫

(
√

dπ1
dπ3
−

√
dπ2
dπ3

)2dµ
]
=

[
0,
√

1
2 (c)
∫

(
√

t −
√

t + 1)2dµ
]
.

Example 3.3. Let π1 = [µm1 , µn1], π2 = [µm2 , µn2], π3 = [µm3 , µn3]. Let µmi , µni respectively be distorted
Lebesgue measure with mi(t), ni(t), i = 1, 2, 3. m1(t) = t, n1(t) = 3

2 t, m2(t) = 2t2, n2(t) = 3t2,
m3(t) = t, n3(t) = 3

2 t. Obviously, dµm1
dµm3

= 1, dµn1
dµn3
= 1. Let dµm2

dµm3
= g1(t), dµn2

dµn3
= g2(t). Applying

Lemma 3.3, we have

g1(t) = L−1( M2(s)
sM3(s)

)
= 4t,

g2(t) = L−1( N2(s)
sN3(s)

)
= 4t.

Here, M2(s), M3(s), N2(s), N3(s) respectively are Laplace transformation of m2, m3, n2, n3. Applying
Theorem 3.1, we have dπ1

dπ3
= 1, dπ2

dπ3
= 4t. Therefore,

(1) D f ,π3(π1, π2) = (C)
∫

4t f (1/4t)dπ3.
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(2) Hπ3(π1, π2) =
√

1
2 (C)
∫

(1 −
√

4t)2dπ3.

(3) δπ3(π1, π2) = 1
2 (C)
∫
|1 − 4t|dπ3.

Example 3.4. Let π1 = [µm1 , µn1], π2 = [µm2 , µn2], π3 = [µm3 , µn3]. Let µmi , µni respectively be distorted
Lebesgue measure with mi(t), ni(t), i = 1, 2, 3. m1(t) = t, n1(t) = 3

2 t, m2(t) = 1
2 t2, n2(t) = 3

4 t2, m3(t) = t,
n3(t) = 3

2 t. Obviously, dµm1
dµm3
= 1, dµn1

dµn3
= 1. Let dµm2

dµm3
= g1(t), dµn2

dµn3
= g2(t). Applying Lemma 3.3, we have

g1(t) = L−1( M2(s)
sM3(s)

)
= t,

g2(t) = L−1( N2(s)
sN3(s)

)
= t.

Here, M2(s), M3(s), N2(s), N3(s) respectively are Laplace transformation of m2, m3, n2, n3. Applying
Theorem 3.1, we have dπ1

dπ3
= 1, dπ2

dπ3
= t. Let f (x) = x log2 x, then

KLπ3(π1, π2) = (C)
∫

dπ1

dπ3
log(

dπ1/dπ3

dπ2/dπ3
)dπ3.

Let a = (c)
∫

dπ1
dπ3

log( dπ1/dπ3
dπ2/dπ3

)dµm3
, b = (c)

∫
dπ1
dπ3

log(dπ1/dπ3
dπ2/dπ3

)dµn3
.

According to Proposition 2.1 and Choquet integral, we have

a = (c)
∫

dπ1

dπ3
log(

dπ1/dπ3

dπ2/dπ3
)dµm3

= (c)
∫
− log2 tdµm3

=

∫ +∞

0
µm3

({− log2 t > α})dα

=

∫ +∞

0
µm3

({t < 2−α})dα =
∫ +∞

0
λ([0, 2−α])dα

=

∫ +∞

0
2−αdα =

1
ln 2
.

Similarly, we have

b =
3

2 ln 2
.

Applying Theorem 3.3, we have

KLπ3(π1, π2) = [
1

ln 2
,

3
2 ln 2

].

3.3. A new version f -divergence of the monotone set-valued measures

Hamzeh Agahi found that the f -divergence for non-additive measures of Torra is not always non-
negative. He solved this problem by replacing Torra’s f -divergence with the maximum value of the
f -divergence of the non-additive measure and its conjugate measure in reference [2]. There is also such
a problem in the f -divergence of monotone set-valued measure. In the solution, since the conjugate
measure of monotone set-valued measure has not been proposed. Therefore, the conjugate measure of
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monotone set-valued measure is defined by conjugate selection of monotone set-valued measure, and
it is proved that the conjugate measure of monotone set-valued measure is also a monotone set-valued
measure and has similar properties to non-additive measure. Finally, the f -divergence in Definition 3.4
is replaced by the maximum value of f -divergence of monotone set-valued measure and its conjugate
measure.

The following Example 3.5 shows that f -divergence of in Definition 3.4 is not always non-negative.
Example 3.5. Let Ω = [0, 1]. Let π1 = [µm1 , µn1], π2 = [µm2 , µn2], π3 = [µm3 , µn3]. Let µmi and
µni respectively be distorted Lebesgue measure with mi(t), ni(t), i = 1, 2, 3. m1(t) = t, n1(t) = 3

2 t,
m2(t) = 2t2, n2(t) = 3t2, m3(t) = t, n3(t) = 3

2 t. Applying Example 3.3, we have dπ1
dπ3
= 1, dπ2

dπ3
= 4t.

KLπ3(π1, π2) = (C)
∫

dπ1

dπ3
log(

dπ1/dπ3

dπ2/dπ3
)dπ3.

Let a = (c)
∫

dπ1
dπ3

log( dπ1/dπ3
dπ2/dπ3

)dµm3
, b = (c)

∫
dπ1
dπ3

log(dπ1/dπ3
dπ2/dπ3

)dµn3
.

According to Proposition 2.1 and Choquet integral, we have

a = (c)
∫
− log2 4tdµm3

= (c)
∫

(−2 − log2 t)dµm3

= −2µm3
([0, 1]) + (c)

∫
− log2 tdµm3

= −2 + (c)
∫
− log2 tdµm3

= −2 +
∫ +∞

0
µm3

({− log2 t > α})dα

= −2 +
∫ +∞

0
µm3

({t < 2−α})dα = −2 +
∫ +∞

0
λ([0, 2−α])dα

= −2 +
∫ +∞

0
2−αdα = −2 +

1
ln 2
.

Similarly, we have

b =
3
2

(−2 +
1

ln 2
).

According to Theorem 3.3, we have

KLπ3(π1, π2) = [
3
2

(−2 +
1

ln 2
),−2 +

1
ln 2

].

On the light of this example, we pose the question: Can we define a modified version of f -
divergence for monotone set-valued measures which is always non-negative? In this section, we answer
this question. First, we define the conjugate measure of the monotone set-valued measure and prove
that the conjugate measure of the monotone set-valued measure is also a monotone set-valued measure.

Definition 3.5. Let A be a set-valued, A is said to be non-negative, if A ≳ {0}.

Definition 3.6. Let (Ω,A, π) be monotone set-valued measurable space. We say π̄ is the conjugate of
a monotone set-valued measure π, if

π̄(A) = {µ̄(A) : µ̄(A) = µ(Ω) − µ(Ω/A), µ ∈ π}.
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Theorem 3.4. π̄ is a monotone set-valued measure.

Proof. We only need to prove the following three points.
(1) π̄(ϕ) = {µ̄(ϕ) : µ̄(ϕ) = µ(Ω) − µ(Ω − ϕ) = 0, µ ∈ π} = {0}.
(2) Let A, B ∈ A, π̄(A) = {µ̄(A) : µ̄(A) = µ(Ω) − µ(Ω/A), µ ∈ π}, π̄(B) = {µ̄(B) : µ̄(B) = µ(Ω) −

µ(Ω/B), µ ∈ π}. If A ⊆ B, suppose x ∈ π̄(A), then there exists a µ ∈ π such that x = µ̄(A), we just have
to take y = µ̄(B), then y ≥ x. Similarly, for any y1 ∈ π̄(B), there exist a µ1 ∈ π such that y1 = µ̄1(B), we
just have to take x1 = µ̄1(A), then y1 ≥ x1. Therefore, µ̄(A) ≲ µ̄(B).

(3) We need to proof that π̄ is a compact convex set-value mapping. We just need to prove that π̄(A)
is a compact convex set for all A ∈ A.

Suppose x, y ∈ π̄(A), then there exists µ1, µ2 ∈ π such that x = µ̄1(A), y = µ̄2(A). Let α ∈ [0, 1],
we have

αx + (1 − α)y = αµ̄1(A) + (1 − α)µ̄2(A)
= αµ1(Ω) + (1 − α)µ2(Ω) − (αµ1(Ω/A) + (1 − α)µ2(Ω/A))
= αµ1(Ω) + (1 − α)µ2(Ω) − [(αµ1(Ω/A) − (1 − α)µ2(Ω/A))].

Since π is a compact convex set-value mapping. Therefore, there exist µ3 ∈ π such that

αµ1(Ω) + (1 − α)µ2(Ω) − [αµ1(Ω/A) + (1 − α)µ2(Ω/A)] = µ3(Ω) − µ3(Ω/A).

Let µ̄3(A) = µ3(Ω) − µ3(Ω/A), then µ̄3(A) ∈ π̄(A). Therefore, π̄(A) is a convex set.
Let {xn} ∈ π̄(A), (n = 1, 2, 3, ...), there is {µn} ∈ π such that xn = µn(Ω) − µn(Ω/A), n = 1, 2, 3, · · · .

Obviously, {µn} are bounded and limitless. Since π is a compact convex set-valued mapping. Therefore,
there exists convergence sub columns {µnk} ⊆ {µn}, we could assume that increase converges to µ, then

lim
k→∞

xnk = lim
k→∞

(µnk(Ω) − µnk(Ω/A)) = µ(Ω) − µ(Ω/A).

Since µ ∈ π, therefore µ(Ω) − µ(Ω/A) ∈ π̄(A). That is, π̄(A) is a compact convex set. Therefore, π̄ is a
monotone set-valued measure.

Theorem 3.5. π̄(Ω) = π(Ω) and ¯̄π(A) = π(A).

Proof. (1) π̄(Ω) = {µ̄(Ω) : µ̄(Ω) = µ(Ω) − µ(Ω −Ω) = µ(Ω), µ ∈ π} = π(Ω).
(2) ¯̄π(A) = { ¯̄µ(A) : ¯̄µ(A) = µ̄(Ω) − µ̄(Ω/A) = µ(A), µ̄ ∈ π̄} = π(A).

Definition 3.7. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure and π1 exists Radon-Nikodym derivatives with respect to π2, f be a convex function
with f (1) = 0.

(1) If f is a non-negative convex function, then the f -divergence between π1 and π2 is defined as

D+f (π1, π2) = (C)
∫

dπ2

dπ1
f (

dπ1

dπ2
)dπ1.

(2) If f is a real convex function, then the f -divergence between π1 and π2 is defined as

D+f (π1, π2) = max{(C)
∫

dπ2

dπ1
f (

dπ1

dπ2
)dπ1, (C)

∫
dπ2

dπ1
f (

dπ1

dπ2
)dπ̄1}.
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Theorem 3.6. Let (Ω,A, π) be monotone set-valued measurable space.
(1) If there exists a µ ∈ π such that (c)

∫
dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dµ ≥ 0, then (C)
∫

dπ2
dπ3

f (dπ1/dπ3
dπ2/dπ3

)dπ3 ≳ {0}.
(2) If there exists a µ ∈ π such that (c)

∫
dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dµ ≤ 0, then (C)
∫

dπ2
dπ3

f (dπ1/dπ3
dπ2/dπ3

)dπ3 ≲ {0}.

Proof. Let µ1 be the minimum choice and µ2 be the maximum choice for π3. Suppose there exists
µ ∈ π3 such that (c)

∫
dπ2
dπ3

f (dπ1/dπ3
dπ2/dπ3

)dµ ≥ 0. Let’s suppose that µ
′

= {0}. We have

0 = (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ

′

≤ (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ.

Since µ
′

≤ µ1 ≤ µ. According to Proposition 2.1, we have

0 ≤ (c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ1 ≤ (c)

∫
dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ.

Therefore,

(c)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dµ1 ≥ 0.

That is,

(C)
∫

dπ2

dπ3
f (

dπ1/dπ3

dπ2/dπ3
)dπ3 ≳ {0}.

Similarly, if there exists a µ ∈ π such that (c)
∫

dπ2
dπ3

f (dπ1/dπ3
dπ2/dπ3

)dµ ≤ 0, then (C)
∫

dπ2
dπ3

f ( dπ1/dπ3
dπ2/dπ3

)dπ3 ≲ {0}.

Theorem 3.7. D+f (π1, π2) ≳ {0}.

Proof. (1) If f is a non-negative convex function, we obviously have D+f (π1, π2) ≳ {0}.
(2) If f is a real convex function. According to Theorem 3.6, we just have to prove that there exists

a µ ∈ π such that

max{(c)
∫

dπ2

dπ1
f (

dπ1

dπ2
)dµ, (c)

∫
dπ2

dπ1
f (

dπ1

dπ2
)dµ̄} ≥ 0.

Let µ = µ1 be the maximum choice of π1, µ2 be the maximum choice of π2. Applying Theorem 3.1,
we have dπ2

dπ1
=

dµ2
dµ1
. Therefore,

max{(c)
∫

dπ2

dπ1
f (

dπ1

dπ2
)dµ, (c)

∫
dπ2

dπ1
f (

dπ1

dπ2
)dµ̄} = max{(c)

∫
dµ2

dµ1
f (

dµ1

dµ2
)dµ1, (c)

∫
dµ2

dµ1
f (

dµ1

dµ2
)dµ̄1}.

Applying Theorem 2.1,

max{(c)
∫

dµ2

dµ1
f (

dµ1

dµ2
)dµ1, (c)

∫
dµ2

dµ1
f (

dµ1

dµ2
)dµ̄1}

≥ µ1(Ω) f (
1
µ1(Ω)

(c)
∫

dµ1

dµ1
dµ1)

= µ1(Ω) f (
1
µ1(Ω)

(µ1(Ω)) = µ1(Ω) f (1) = 0.

Therefore, max{(C)
∫

dπ2
dπ1

f ( dπ1
dπ2

)dπ1, (C)
∫

dπ2
dπ1

f (dπ1
dπ2

)dπ̄1} ≳ {0}. That is, D+f (π1, π2) ≳ {0}.
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3.4. A generalized f -divergence of the monotone set-valued measures

In the above problems, the monotone set-valued measures of Radon-Nikodym derivative is defined
as a real value function. Although it can solve many problems, it seems too strict. Because under
such a condition, many monotone set-valued measure of Radon-Nikodym derivative does not exist.
Therefore, the Radon-Nikodym derivative defined above is extended to a set-valued function, and the
set-valued function is used instead of the real valued function to express the Radon-Nikdoym derivative
of two monotone set-valued measures.

Definition 3.8. Let (Ω,A, π) be monotone set-valued measurable space, F be a set-valued function,
A ∈ A, then, the Choquet integral of F with respect to π is defined by

(C̄)
∫

A
Fdπ = {(C)

∫
A

f dπ, f ∈ F}.

Definition 3.9. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure. If there exists a closed interval value function F : Ω → I(R+) such that π1(A) =
(C̄)
∫

A
Fdπ2, A ∈ A, then, the interval function F is called the generalized Radon-Nikodym derivative

of π1 with respect to π2, denoted F = dπ1/dπ2 or F = dπ1
dπ2

.

Here, the generalized Randon Nikodym-derivative is not unique, for example: Let π1 = [0, µ1],
π2 = [0, µ2]. There exists a non-negative measurable function h such that h = dµ1

dµ2
. Let Fg = [g, h],

here, g is a non-negative measure function and g ≤ h. According to Definition 3.9, we have Fg is π1

generalized Radon-Nikodym derivatives with respect to π2. Since g is not the only one, so Fg too.

Definition 3.10. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure and π1 exists generalized Radon-Nikodym derivatives with respect to π2, f be a
convex function with f (1) = 0. Then the generalized f -divergence between π1 and π2 is defined as

D f (π1, π2) = (C̄)
∫

f ◦
dπ1

dπ2
dπ1.

Example 3.6. Let π1 = [0, µ1], π2 = [0, µ2]. There exists a non-negative measurable function h such
that h = dµ1

dµ2
. Fg = [g, h] is π1 generalized Radon-Nikodym derivatives with respect to π2. Then the

generalized f -divergence between π1 and π2 is defined as

D f (π1, π2) = (C̄)
∫

f (
dπ1

dπ2
)dπ1 =

⋃
hi∈F

(C)
∫

f (hi)dπ1 =
⋃
hi∈F

[0, (C)
∫

f (hi)dµ1] = [0, (C)
∫

f (h)dµ1].

Obviously, Fg is not the only one, but the f -divergence between π1 and π2 is only one.

Theorem 3.8. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure, µS

i , µ
I
i be the maximum choice and the minimum choice of πi(i = 1, 2), respectively.

If dµS
1

dµS
2
= f , dµI

1
dµI

2
= g and g ≤ f . Then, there is a set-valued function F : A → [g, f ] is the generalized

Radon-Nikdoym derivative of π1 with respect to π2.

Proof. We just need to prove π1(A) = (C̄)
∫

A
Fdπ2 for ∀A ∈ A.
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First, let x ∈ (C̄)
∫

A
Fdπ2. Since π1(A) is a convex set and (c)

∫
A

gdµI
2 ≤ x ≤ (c)

∫
A

f dµs
2. Therefore,

x ∈ π1(A), that is

π1(A) ⊃ (C̄)
∫

A
Fdπ2.

Second, we need to prove π1(A) ⊂ (C)
∫

A
Fdπ2.

If (c)
∫

A
gdµS

2 ≥ (c)
∫

A
f dµI

2, since (c)
∫

A
gdµI

2 = µ
I
1(A), (c)

∫
A

f dµS
2 = µ

S
1 (A) and (C)

∫
A

f dπ2 and
(C)
∫

A
gdπ2 are convex set. Therefore,

π1(A) = (C)
∫

A
f dπ2

⋃
(C)
∫

A
gdπ2.

That is,

π1(A) ⊂ (C)
∫

A
Fdπ2.

Otherwise, there is h1 ∈ [g, f ] such that

(c)
∫

A
gdµS

2 ≥ (c)
∫

A
h1dµI

2.

If (c)
∫

A
h1dµS

2 ≥ (c)
∫

A
f dµI

2. Then

π1(A) = (C)
∫

A
f dπ2

⋃
(C)
∫

A
h1dπ2

⋃
(C)
∫

A
gdπ2.

Otherwise, there is h2 ∈ [h1, f ] such that

(c)
∫

A
h1dµS

2 ≥ (c)
∫

A
h2dµI

2.

If (c)
∫

A
h1dµS

2 ≥ (c)
∫

A
h1dµI

2. Then

π1(A) = (C)
∫

A
f dπ2

⋃
(C)
∫

A
h1dπ2

⋃
(C)
∫

A
gdπ2.

Otherwise, there is h3 ∈ [h2, f ]. Repeating the above procedure, we can obtain a column of functions
{hk}, k = 1, 2, ... such that

π1(A) =
⋃
hk

(C)
∫

A
hkdπ2

⋃
(C)
∫

A
f dπ2

⋃
(C)
∫

A
gdπ2.

That is,

π1(A) ⊂ (C̄)
∫

A
Fdπ2.

Therefore, F = [g, f ] is the generalized Radon-Nikdoym derivative of π1 with respect to π2.
Example 3.7. Let π1 = [µm1 , µn1], π2 = [µm2 , µn2], µmi , µni respectively be distorted Lebesgue measure

with mi(t), ni(t), i = 1, 2. m1(t) = 1
2 t2, n1(t) = 3

4 t2, m2(t) = t, n2(t) = 3t. Let dµm2
dµm3
= g1(t), dµn2

dµn3
= g2(t).

According to Lemma 3.3, we have

g1(t) = L−1( M1(s)
sM2(s)

)
= t,
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g2(t) = L−1( N1(s)
sN2(s)

)
= 2t.

Here, M1(s), M2(s), N1(s), N2(s) respectively are Laplace transformation of m1, m2, n1, n2.
According to Theorem 3.8, we have dπ2

dπ3
= [t, 2t].

Theorem 3.9. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone set-
valued measure and exists a closed interval value function F : A → I(R+) such that F = dπ1

dπ2
, µ1 and µ2

be the minimum choice and the maximum choice of π2 respectively. If (c)
∫

f ◦ Fdµ1 ≤ (c)
∫

f ◦ Fdµ2,

then

D f ,π3(π1, π2) = [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

Proof. According to Definition 3.10, we have D f (π1, π2) = (C̄)
∫

f ( dπ1
dπ2

)dπ1, we just need to prove
(C̄)
∫

f ( dπ1
dπ2

)dπ1 = [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].
Suppose m ∈ D f (π1, π2), there exists hm ∈ F, µm ∈ π1 such that m = (c)

∫
f ◦ hmdµm. According to

Proposition 2.1, we have

(c)
∫

f ◦ Fdµ1 ≤ m ≤ (c)
∫

f ◦ Fdµ2.

That is,

D f (π1, π2) ⊂ [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

We just need to prove

D f (π1, π2) ⊃ [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

If (c)
∫

f ◦ Fdµ2 ≥ (c)
∫

f ◦ Fdµ1, then

D f (π1, π2) ⊃ [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

Otherwise, there is h1 ∈ [ f ◦ F, f ◦ F] such that

(c)
∫

A
f ◦ Fdµ2 ≥ (c)

∫
A

h1dµ1.

If (c)
∫

A
h1dµ2 ≥ (c)

∫
A

f ◦ Fdµ1. Then

[(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2] = (C)
∫

A
f ◦ Fdπ2

⋃
(C)
∫

A
h1dπ2

⋃
(C)
∫

A
f ◦ Fdπ2.

Otherwise, there is h2 ∈ [h1, f ◦ F] such that

(c)
∫

A
h2dµ2 ≥ (c)

∫
A

h1dµ1.
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If (c)
∫

A
h1dµ2 ≥ (c)

∫
A

h1dµ1. Then

[(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2]

=(C)
∫

A
f ◦ Fdπ2

⋃
(C)
∫

A
h1dπ2

⋃
(C)
∫

A
h2dπ2

⋃
(C)
∫

A
f ◦ Fdπ2.

Otherwise, there is h3 ∈ [h2, f ◦ F]. Repeating the above procedure, we can obtain a column of
functions {hk}, (k = 1, 2, · · · ) such that

[(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2] = (C)
∫

A
f ◦ Fdπ2

⋃
hk∈[ f◦F, f◦F]

(C)
∫

A
hkdπ2

⋃
(C)
∫

A
f ◦ Fdπ2.

Therefore,

D f (π1, π2) ⊃ [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

That is,

D f (π1, π2) = [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

According to Theorem 3.9, we can obtain the following Theorem 3.10.

Theorem 3.10. Let (Ω,A, π) be monotone set-valued measurable space, π1 and π2 be two monotone
set-valued measure and exists a closed interval value function F : A → I(R+) such that F = dπ1

dπ2
, µ1

and µ2 be the minimum choice and the maximum choice of π2 respectively.
If f is monotone increasing on Ω, then

D f (π1, π2) = [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

If f is monotone decreasing on Ω, then

D f (π1, π2) = [(c)
∫

f ◦ Fdµ1, (c)
∫

f ◦ Fdµ2].

Example 3.8. Let m be Lebesgue measure on [0, 1],A be Borel-σ algebra on [0, 1]. m1 : A→
∫

A
tdm,

m2 : A →
∫

A
(t + 1)dm, A ∈ A. According to the property of Lebesgue integral, m1,m2 are additive

measure. Let π2(A) = {m(A)}, π1(A) = [m1(A),m2(A)]. It is not difficult to verify that π1, π2 are
monotone set-valued measures. Since dm1

dm = t, dm2
dm = t + 1 and t + 1 > t on [0, t]. Therefore, the

generalized Radon-Nikodym derivative of π1 with respect to π2 is F(t) = [t, t + 1]. Then, the f -
divergence of π1 between and π2 is

D f (π1, π2) = [
∫ 1

0
f ◦ Fdm,

∫ 1

0
f ◦ Fdm].
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Let f (x) = (1 −
√

x)2. Since f (x) is monotone decrease on [0, 1]. Applying Theorem 3.10, we have

H(π1, π2) = [
∫ 1

0
f ◦ Fdm ,

∫ 1

0
f ◦ Fdm]

=

[ ∫ 1

0
(1 −

√
t + 1)2dm ,

∫ 1

0
(1 −

√
t)2dm

]
=

[ ∫ 1

0
(1 −

√
t + 1)2dt ,

∫ 1

0
(1 −

√
t)2dt
]

= [
23
6
−

8
√

2
3
,

7
6

].

Let f (x) = |x − 1|. Since f (x) is monotone decrease on [0, 1]. Applying Theorem 3.10, we have

δ(π1, π2) = [
∫ 1

0
tdm ,

∫ 1

0
(1 − t)dm] = {0.5}.

Let f (x) = x log2 x. Since f (x) is monotone increasing on [0, 1]. Applying Theorem 3.10, we have

KL(π1, π2) = [(c)
∫ 1

0
t log2 tdm, (c)

∫ 1

0
(t + 1) log2(t + 1)dm].

In this section, compared with the generalized f -divergence defined in Definition 3.10 and that in
Definitions 3.4 and 3.7, the range of Radon-Nikdoym derivative of two monotone set-valued measures
is extended, thus the range of adaptation of f -divergence is extended.

4. Conclusions

In this paper, we have defined and discussed the f -divergence for monotone set-valued measure.
Some basic properties of this divergence have been studied. Meanwhile, some examples have been
given to illustrate the effectiveness of the definitions and results proposed. We have discussed the
non-negativity of f -divergence for monotone set-valued. We have also proposed an example which
shows that the f -divergence is not always non-negative in general. Then the modified versions of f -
divergence have been introduced and we have proved it is always non-negatives. Finally, we define
the generalized f -divergence by using the generalized Radon-Nikdoym derivatives of two monotone
set-valued measures.
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