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Abstract: In this paper, we consider the solutions of the boundary blow-up problem
∆u = 1

uγ + f (u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω,

where γ > 0, Ω is a bounded convex smooth domain and symmetric w.r.t. a direction. f is a locally
Lipschitz continuous and non-decreasing function. We prove symmetry and monotonicity of solutions
of the problem above by the moving planes method. A maximum principle in narrow domains plays
an important role in proof of the main result.
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1. Introduction

In this paper, we investigate symmetry and monotonicity of solutions to the problem
∆u = 1

uγ + f (u) in Ω,

u > 0 in Ω,

lim
|x|→∂Ω

u = +∞,

(1.1)
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where γ > 0,Ω is a bounded smooth domain, The boundary condition means that u(x) → +∞, as
x→ ∂Ω, u ∈ C2(Ω), and we give the assumption

(H) f is locally Lipschitz continuous, non-decreasing, f (s) > 0 for s > 0, and f (0) ≥ 0.

Our interest in this paper is motivated by symmetry of solutions of nonlinear elliptic equations with
singular nonlinearities in [1], and symmetry of large solutions for nonlinear elliptic equations in a
ball [2, 3]. In [1], the author studied the symmetry and monotonicity properties of positive solutions
for the semilinear equation −∆u = 1

uγ + f (u) in Ω,

u = 0 on Ω,
(1.2)

where γ > 0, Ω is a convex bounded smooth domain and symmetric w.r.t. a direction, f is a locally
Lipschitz continuous and non-decreasing function. As the singularities of the problem (1.2), some
difficulties should be overcome. After introducing the new techniques based on decomposition in (1.2),
providing some weak and strong maximum principles, the author proved the results in [1]. In our
problem, the singularities of solutions near ∂Ω bring difficulties to use the moving plane method,
which is a very useful tool to get the most of symmetry results ( [4–7]).

It is well-known that the problem (1.1) admits a solution, which is usually called “a large solution”,
if and only if f satisfies the Kellar-Osserman condition( [8–10]), that is, 1

tγ + f (t) ≥ h(t), t ∈ [a,+∞)
for some a > 0, where h(s) is nondecreasing and satisfies∫ ∞

a

dt
√

H(t)
< ∞, where H(s) =

∫ s

a
h(t)dt. (1.3)

Now, we give our result as follows:

Theorem 1.1. Let u ∈ C2(Ω) be a solution of (1.1), f satisfies (H) and Kellar-Osserman condition.
Assume that the bounded domain Ω is strictly convex w.r.t. the e-direction (e ∈ S N−1) and symmetric
w.r.t. T e

0 , where
T e

0 = {x ∈ RN |x · e = 0}.

Then, u is symmetric w.r.t. T e
0 and non-increasing w.r.t. the e-direction in Ωe

0, where

Ωe
0 = {x ∈ Ω|x · e < 0}.

Moreover, if Ω is a ball or an annulus, the following condition holds

lim
|x|→R

∂u
∂r

(x) = ∞ and |∇τu(x)| = o(
∂u
∂r

(x)) as |x| → R, (1.4)

where, ∂ru and ∇τu are the radial derivative and tangential gradient of u, respectively. Then, u is
radially symmetric and radially increasing.

Up to now, at the best of our knowledge, only partial results about symmetry and monotonicity of
large solutions of nonlinear elliptic equations were known. In [11], the author conjectured that any
solution of −∆u + g(u) = 0 in a ball is radially symmetry. This conjecture was proved in [3], where
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it was verified under assumptions of asymptotic convexity upon on g. In [2], for the large solutions
of −∆u + f (u) = 0 in a ball, the restriction is considered: f (t) + Ktp is non-decreasing for large t,
where p > 1,K > 0. In this paper, we consider the symmetry of large solutions of (1.1) corresponding
to the semilinear equations in [1], and the symmetric convex domain Ω, which is more general than
a ball. In [7, 12, 13], solutions have been proved to be radially symmetry and increasing under some
restrictions at infinity. There is also some interest in such qualitative properties of large solutions raised
from different problems ( [14–18]).

The structure of the paper is arranged as follows. In Section 2, we give some notations in order to
use the moving plane method. In Section 3, we give the proof of main result by three steps. Thank you
for your cooperation.

2. Preliminaries of notations

To prove our results, we need some notations related to the moving plane method.
For a number λ ∈ R, we denote

T e
λ = {x ∈ Ω|x · e = λ}, and Ωe

λ = {x ∈ Ω|x · e < λ}.

Next, we use the xe
λ to denote the reflection of x through the hyperplane T e

λ as follows

xe
λ = Re

λ(x) = x + 2(λ − x · e)e.

Then, we naturally set
(Ωe

λ)
′ = Re

λ(Ω
e
λ),

which is the reflection Ωe
λ w.r.t. T e

λ. (Note that (Ωe
λ)
′ may be not contained in Ω, for an example, if

λ > 0, (Ωe
λ)
′ is not contained in Ω.) In addition, we denote

a1(e) := inf
x∈Ω

x · e.

For λ > a1(e), it’s obvious that Ωe
λ is nonempty. So we set

Λ1(e) = {λ|(Ωe
t )
′ ⊂ Ω, for t ∈ (a1(e), λ]}, and λ1(e) = sup Λ1(e).

At last, for u ∈ C2(Ω), we also set

ue
λ(x) = u(xe

λ), and we
λ(x) = u(x) − ue

λ(x), x ∈ Ωe
λ, λ ∈ (a1(e), λ1].

Remark 2.1. By Theorem 1.1 , u is nondecreasing w.r.t. e-direction in (Ωe
0)′ = Re

0(Ωe
0).

3. Proof of the main result

In this section, we give the proof of Theorem 1.1, which is based on the moving planes method.
Proof of Theorem 1.1. To give a clear proof, we will divide it into three steps.

Step 1. We will prove that u ≥ ue
λ in Ωe

λ, if λ is enough close to a1(e).
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Indeed, for a1(e) < λ ≤ λ1(e), it’s obvious that Ωe
λ ⊂ Ωe

0. We consider the domain

Dε = {x ∈ Ω|ε < dist(x, ∂Ω)} ∩Ωe
λ. (3.1)

It’s obvious that we
λ(x) = u(x) − u(xe

λ) ≥ 0, on ∂Dε . In fact, for x ∈ T e
λ ∩ ∂Dε , u(x) − u(xe

λ) = 0, and for
x ∈ (∂Dε \ T e

λ), u(x) − u(xe
λ) > 0, since u approaches to positive infinity at boundary and is finite in the

interior for enough small ε.
So we have 

∆we
λ(x) = 1

uγ −
1

(ue
λ)γ +

f (u)− f (ue
λ)

u−ue
λ

(u − ue
λ)

= (−γξ(x)−γ−1 + c(x, λ))we
λ x ∈ Dε ,

we
λ ≥ 0 x ∈ ∂Dε ,

where min{u(x), ue
λ(x)} ≤ ξ(x) ≤ max{u(x), ue

λ(x)}, c(x, λ) =
f (ue

λ)− f (u)
ue
λ−u , for x ∈ Dε , λ ∈ (a(e), λ1(e)].

Since Dε is in the interior of Ω, −γξ(x)−γ−1 + c(x, λ) is a bounded function in Dε . So, by the strong
maximum principle in narrow domains, as λ(> a1(e)) is enough close to a1(e), we have

we
λ(x) = u(x) − u(xe

λ) ≥ 0, for x ∈ (Dε ∩Ωe
λ). (3.2)

Furthermore, since ε can be chosen arbitrary small, by (3.1) and (3.2), we get

we
λ(x) = u(x) − u(xe

λ) ≥ 0, x ∈ Ωe
λ.

So we obtain the start point λ in order to use the method of moving planes.
Step 2. We set

λ = sup{λ|u(x) ≥ u(xe
λ), ∀ x ∈ Ωe

s for s ∈ (a1(e), λ)}.

Then, we will obtain λ = λ1(e) = sup Λ1(e) by a contradiction. Now, we give the proof of this
statement below.

We assume that λ < λ1(e). Notice that, by continuity and the definition λ̄, we get u ≥ ue
λ

in Ωe
λ
. So

we can write 
∆(u − ue

λ̄
) = 1

uγ −
1

(ue
λ̄
)γ +

f (u)− f (ue
λ̄
)

u−ue
λ̄

(u − ue
λ̄
)

= (−γξ(x)−γ−1 + a(x))(u − uλ̄) in Ωe
λ
,

u − ue
λ̄
≥ 0 in Ωe

λ
,

(3.3)

where ξ(x) ∈ (min{u(x), ue
λ̄
(x)},max{u(x), ue

λ̄
(x)}), a(x) =

f (u(x))− f (ue
λ̄
(x))

u(x)−ue
λ̄
(x) . Since f is locally Lipschitz

continuous, we know −γξ(x)−γ−1 + a(x) is locally bounded in Ωe
λ̄
. Then by the strong maximum

principle, we deduce that
u ≡ uλ̄, or u > uλ̄ in Ωe

λ̄
.

In fact, while u tends to infinity at the boundary and ue
λ̄

is finite in the interior of Ω, we have u . ue
λ̄
, in

Ωe
λ̄
. Therefore, we conclude that

u > ue
λ̄

in Ωe
λ̄
, (3.4)

AIMS Mathematics Volume 7, Issue 6, 10860–10866.



10864

and it follows from Hopf’s lemma that

∂we
λ̄

∂e
=
∂u − ue

λ̄

∂e
< 0 on T e

λ̄
. (3.5)

Next, by definition of λ, there exists a decreasing sequence λn converging to λ and points {xn} ∈ Ωe
λn

such that u(xn) ≤ uλn(xn). Without loss of generality, up to subsequences, still denoted by {xn}, will
converge to a point x0 ∈ Ωe

λ̄
. Then three cases will be considered as follows

(1) For x0 ∈ Ωe
λ̄
, by the continuity and the limitation of u, we get u(x0) ≤ ue

λ̄
(x0), while u > ue

λ̄
in Ωe

λ̄

by (3.4). It is a contradiction.
(2) For x̄0 ∈ (∂{Ωe

λ̄
} \ T e

λ̄
), it is obvious that u(xn) − ue

λn
(xn) would approach to infinity since u

approaches to infinity and it is locally bounded in the interior, which is a contradiction to the choice of
xn.

(3) For x̄0 ∈ T e
λ̄
∩ Ω, we will get a contradiction again. Assuming that ηn is the projection of xn

on T e
λn

, so ηn =
xn+(xn)e

λn
2 = xn + (λn − xn · e)e. By u(xn) ≤ ue

λn
(xn) and u(ηn) = ue

λn
(ηn), there is a point

ξn = [xn + θ(ηn− xn)], θ ∈ [0, 1](It’s obvious that ξ is in the segment [xn, ηn] and lim
n→∞

ξn = x0), such that

0 ≥ [u(xn) − ue
λn

(xn)] − [u(ηn) − ue
λn

(ηn)]

=
∂[u(ξn) − ue

λn
(ξn)]

∂e
((xn − ηn) · e)

=
∂[u(ξn) − ue

λn
(ξn)]

∂e
[(xn − (xn + (λn − xn · e)e)) · e]

=
∂[u(ξn) − ue

λn
(ξn)]

∂e
[(−(λn − xn · e)e) · e] (3.6)

=
∂[u(ξn) − ue

λn
(ξn)]

∂e
(xn · e − λn).

By the definition of λn and xn, we have xn ·e−λn < 0. So, at once, we have
∂[u(ξn)−ue

λn
(ξn)]

∂e ≥ 0. Therefore,
we deduce

∂we
λ̄
(x0)

∂e
=
∂[u(x0) − ue

λ̄
(x0)]

∂e

= lim
n→∞

∂[u(ξn) − ue
λn

(ξn)]

∂e
≥ 0,

which is a contradiction to (3.5).
Step 3. Completing proof here. From the discussion above, we get λ̄ ≥ λ1(e). From the

other direction, using the method of moving planes again, we can also get λ̄ ≤ λ1(e). Hence
λ̄ = λ1(e).Observing the assumption λ1(e) = 0, we directly get

u(x) = ue
0(x), for x ∈ Ωe

0,

which means that u is symmetric w.r.t. the direction e ∈ S N−1. By the processing of using the method
of moving planes, we know u non-decreases along the directions e in (Ωe

0)′, and −e in Ωe
0, respectively.

So the u is non-increasing w.r.t. the e-direction in Ωe
0. Furthermore, if Ω is a ball or an annulus, (1.4)

holds, by the similar method in Theorem 2.1 in [3], we can easily prove that u is radially symmetric
and radially increasing. The proof is complete. �
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4. Conclusions

In this paper, we study symmetry and monotonicity of solutions to the boundary blow-up problem of
nonlinear elliptic equations in a bounded smooth domain which is strictly convex w.r.t. a direction. We
are inspired by some results about symmetry of large solutions for nonlinear elliptic equations in a ball
and symmetry of solutions of some elliptic equations with singular nonlinearities. Corresponding to the
equation in [6] with singular nonlinearities in a bounded Ω, where the solution u = 0, for x ∈ ∂Ω, we
get symmetry and monotonicity of large solutions of nonlinear elliptic equations in a general bounded
convex domain under the condition that u→ +∞, as x→ ∂Ω.
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