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1. Introduction

The quantum (or g-) calculus is an important area of study in the field of traditional mathematical
analysis. Quantum calculus is a fascinating area of mathematical science with historical background,
as well as a revived focus in the modern era. Quantum calculus is the modern name for the investigation
of calculus without notation of limit. The quantum calculus or g-calculus began with Jackson in the
early twentieth century, but this type of calculus had already been investigated by Euler and Jacobi.
Recently g-calculus attract researchers for its wide applications in mathematics and related areas, such
as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other
sciences. In recent years, the topic of g-calculus has attracted the attention of several researchers, and
a variety of new results can be found in the papers [1-4] and the references cited therein.

A function g is analytic at a point & if g'(£) exists at & as well as in some neighborhood of
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&. A function g(¢) is analytic in D if g(£) is analytic at each point of D. In most of the cases
it is much harder to use a random domain, so Riemann mapping theorem allows us to replace
it with open unit disk defined as:

U={eC:|f<1}.

An analytic function g is univalent in U, if g(&;) = g(&;) then & = &,. A function g(¢) is said to be the
class A if it has a Taylor series of the form

gO =+ at, £cU. (1.1)
t=2

A collection of functions of the form (1.1), which are analytic and univalent in U are placed in the
class G. An analytic function p (£¢) having positive real part i.e., R {p (£)} > 0 and p (0) = 1 is placed
in class B. Or equivalently

peR:p@=1+) af = Rip@)>0, £cl. (1.2)

=1

The class of normalized convex functions is given by

’

(g—"g(f))]w er}.

C={2:2€CR
{g i 2@

Similarly, the class of normalized starlike functions with respect to origin is defined as:

S*:{§:§e6;%(w)>0, er},
)
for details, see [5]. A function g(¢) € QC, the class of quasi-convex function if and only if there

exists h(&) € C such that R (%) > 0. In 1952, Kaplan [6] introduced the class KC of close-to-

convex function. A function is of the form (1.2) is in KC if and only if there exists l%(g—“) € S* such that

R (fi(—g)) > 0. Let g(¢) is of the form (1.1) and fz(f) is of the form

he) =&+ ) b, €. (1.3)
=2

Then the Hadamard product(convolution) of g and I is defined as:

(o)

(2xh)© =&+ > abe = (h+2) . (1.4)

=2
The g-derivative of a function g belonging to A defined as:

8@d) ~ 8&)

PO g

for & # 0, (1.5)
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for details, see [7], where ¢ € (0, 1) and & € U. For £ = 0, (1.5) can be written as g (0) provided that
the derivative exist. By using (1.1) and (1.5) the Maclaurin’s series representation of D,g is given by

D&€) =1+ ) [tqlag™, te. (1.6)
t=0
It can be noted from (1.5) that
8g6) -8\ _ -4
1 —| = , wh t,q] = .
im (D,3(9) = H_( ) 8O where [ngl = —
For any non negative integer ¢, the g-number shift factorial is given by
1, t=0
[t.q]! = (1.7)
[1.4]2.4]---[t.q], t€N

see [8]. For y > 0, the g-genralized Pochammar symbol is defined as:
bl =1 =0 (1.8)
94l = .
"o haly+ gl y+i-1.g], 1€N

For u > —1, we defined a function &;11 W(f) such that

Tl * 1, (6) = EDR(E), (1.9)
where

q
Froul@) = &+ Z (—q]"lg , foréeU. (1.10)
The study of operators plays an important role in the geometric function theory. Many differential and
integral operators can be written in terms of convolution of certain analytic functions. In [8] g-analogue
of Noor integral operator I : A — A is define as:

TH2(8) = 8(&) * Ty, &) = £+ Zm_lafﬁ (1.11)
where (r.ql!
Y = m (1.12)
From (1.11) we can easily obtain the following identity
[1+12,q] 342() = [, q] 347 2(&) + 46Dy (T4 2©)) (1.13)

from (1.11). It can be seen that Sog(f) = ¢£D,8(8), 3| ,&(&) = 8(6) and

(9]

|

lim (975(0) = £ + Z(HITa,g’. (1.14)
=2 =
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From (1.14), we can observe that by applying limit ¢ — 1, the operator defined in (1.11) reduces to
well known Noor integral operator see ( [9—12]).
In [13, 14], Kanas and Waniowska introduced the concept of a conic domain =, for [ > 0 as:

EI:{U+iV:U>l\/V2+(U—1)2}. (1.15)

This domain merely represent the right half plane for / = 0, a hyperbola for 0 < / < 1, parabola for
[ =1 and ellipse for [ > 1. The extremal functions @; for this conic region Z, is given by

1+£ —
1_:5 i =0,
2 VE+] —
1+{ﬁ(1°g1_—@)} =1
@1(§) = 1+ 1_%2 sinh? [(% arccos l) (arctanh \/E)] 0<l<1, (1.16)
U@
|z Vi 1 1
1 + 5 sin 2R(n)j(; (mm)dx]+m [>1,

where U (¢) = f__\/\/ﬁ’;, forall§ €e U,0 <l < 1and! = cosh [’;’;((n"))] where R (n) is Legendre’s complete

elliptic integral of first kind and R’ (n) is complementary integral of R (n) for more details, see [13—16].
If we take @; (&) = 1 + 5 (D E+ 6, (1) &> + -+ -, then

8(arccos )2
n2(1-2) 0<i<l,
5() = 3 I=1, (1.17)
”2
4n(P=1)(1+n)R*(n) [>1.
Leto; () =6, (D)6 (]), where
2+(727 arccos 1)2
BB S— 0<i<l,
(=1 3 I=1, (1.18)
4R (n)(1+n2+6n)—n I>1
24(1+1) VR (n) > L

Definition 1. [17] Let p be a analytic function with p(0) = 1. Then p € B(A, M) if and only if

AE+1

p(§)<M§+1,

where -1 <M <A< 1. (1.19)

In [17] it was shown that p € (A, M) if and only if there exists a function p € % such that

I+ Dp&-(A=1) _ A+1
T+ Mp@-M-1)  Mé+1

Definition 2. [18] A function g € Wis in the class k — ST,(N, O) if and only if

GE|_,|1G@
%[H@)] “HMae

1', (1.20)
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where
D (s
G(f) = (0L1 - Lz) (M) - (NLI - Lz),
86
D (s
H(E&) = (OL, +L,) (M) —(NL, + L,),
8(6)

and k>0,-1<O<N<1,Li =q+1and L, =3 —q. Forq — 1, k- ST,N, O) was discussed
in[21].

2. Set of lemmas

Lemma 1. [22] Supposed (&) = 1+ Y2, ¢ < 1+3 72, C& =H (&) . IfH(U) is convex and H (¢) € U,
then
ICi| = |eil, forl <. 2.1)

Lemma 2. [18] Suppose 1 + 3.2, ¢, =d (&) € k—ST,(N,O), then

Lia-M)

) o) =16, AM)=lc, (2.2)
where 6 (1) is given by (1.17).

Lemma 3. [18]Ifd (&) =&+ 32, bé €k—STy(N,O) for £ € Uandk >0, then

=2 |(N_0)5(Z)L1 -40 [P’CI”
ol < ’ 2.3
| |<ﬂ 4[p+1,q)q -

p=0

where 6 (1) is given by (1.17).
Lemma 4. Ifd € S*,G € Sand g € C then

8O *d@GE)
§(&)*d (&)

Where co (G (U)) is the closed convex hull G (U) .

co(G(U)), foralléeU. 2.4)

Lemma S. [18] A function g € W will be in the class k — ST (N, O), if

Z 2(k + DLyq [t = 1,q] + [(OLy + Ly) [1.q] = (NLy + Lo)|}la,| < Ly |0 = NJ.

t=2

Motivated by the work of Mahmood et al. [18], Noor and Malik [21] and Arif et al. [8], we define a
new subclasses of Janowski type g-starlike functions associated with g-conic domains as:

Definition 3. A function §(¢) € U is apparently in the function class k — ST,(u, N, O) if and only if

A(f)] i [A0

-1
B(£) B(&)

)

*|
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where
A = (OL —L)‘M—(NL - L)
- 1 2 3Z§(§) 1 2) >
B = (OL +Ly) £0, (%)) ~(NL, + L)
- 1 2 3Z§(§) 1 2) >

and k>0,-1<O<N<l,u>-1,Li=1+qgand L, =3 —q.

It is noted that, for u = 1, the function class k — ST,(u, N, O) reduces to well known class k —
ST,(N,0).Also0-ST,(1,N, O) = S*(N, O) introduced by Srivastava et al. [19,23], further forg — 1,
k—S8T,1-(N,0) = k- ST(N, O) this class was studied by Noor and Malik [21] also see [20, 26].

3. Main results

Theorem 1. A function (&) € W and of the form (1.1) is in the class k — ST, (u, N, O), if it fulfill the
following restriction

D Adal < Lil0- NI,

=2

where A, = {2(k + )Lyq[t = 1, q] +|(OLy + Ly) [t.q] = (NLy + Ly)|} .

Proof. Assume that (1.20) hold, then it is suffices to prove that

(OL, - L) (é%é;@)) (NL, — L,) (OL-L )['{D"S(,,Sq(:f))) (NLi-Lp)
k (OL; + L) (D) - (VL + 1) TR onf® qs("_‘ifa)] oty | <1
We consider,
(OL, - L,) (fD‘g(f igf))) (NL, — L) ©L- Lz)(fnqiff é)(f))]—(NLl—Lz)
' (OLy + Lo) (P48 - (N1, + L) TR e qff(“_‘?«ffa)) .

(OL, - )(‘f DCLHE) "éf))) (NL; - Ly)

- (OLy + L) (P48 - (N1, + L) o

= 2L k+ 1) F526) - €D, (%58)

(OLy + L) (6D, (343(6))) — (NLy + Ly) 342(6)

2L, (k+ D) 32, (1= [t q]) Y |l
Li10 = NI - 52, |{(OLy + Ly) [t.q] = (NLy + L)} i ladd

IA
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The last inequalities is bounded above by 1 if
2Ly (1+4) )" |(1 = [t,q]) 1] lad
t=2

< Lil0=NlI= ) [(OL + L) [t.q] = (NLy + L)} 1| la],

=2
which reduces to

> Adal<Lil0=NI.

t=2

This complete the proof. O
For i = 1, we have the following corollary.

Corollary 1. [18] A function (&) € W and of the type (1.1) is considered to be in the function class
k—ST,(1,N,O), if it fulfill the following criterion

D {20+ Lygr = 1,q]1 +[(OLy + Lo) [t,g] = (NLy + L)} lad < Li 10 = NI.
=2
If ¢ — 17, then corollary (3.2) reduces to:
Corollary 2. [21] A function g(&) € W of the form (1.1) is considered to be in the class k—ST(1, N, O),
if it fulfill the following criterion
2{2(1 +k)(t-1D+t(0O+1)=(N+ Dl}|a;] <O —-N].
=2
Further if we take N = 1, O = —1 then we have k — ST(1, —-1).

Corollary 3. [14] A function g(¢) € N of the form (1.1) is considered to be in the function class
k—ST(1,1,-1), if it fulfill the following criterion

Z{t+k(t— DYla,| < 1.
=2

3.1. Coefficient bound for the class k — ST,(u, N, O)
Theorem 2. Let a function g € k —ST,(u, N, O) is of the form (1.1). Then

2|v-o0 16 J.q] q0y;
ms]—[( ><q+ o1~ 41i.alq0u | (eI, A
Jj=0

4[j+ 1,9 qpjn

This result is sharp.
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Proof. Since § € k —ST,(u, N, O), so let

£, (3380) -
T ORe T
where
0 (&) < WA+ + L)@@~ (g+ DN+ L)
O@+ D+ L)) - (g+1)0+ L)
If
@ () = 1+6,E) + (61 + @G € +---,
then

((g+ DN+ L)@ (§) - (g + DN + L)
g+ DO+ L)@ (§) - (1 +9) O+ L)

= 1+}1(q+1)(N—0)6,

1 1 I 1 1
+- [(——Nq——N+—0q+—0) O+ 1)1 +g)+2-29)|67 +---.

4\ 4 4 4 4
Letp (&) =1+ 32, ¢;&, then by Lemma 2.1 and relation (3.3), we get

1
CtSZ(N—O)(1+q)|5z|-

Now from (3.2), we have

£D, (342©)) = 9 (&) 3°3(¢),

i ([t’ CI] - 1)‘/’t—latfl = [i '»l’z—latft] (i tht) .

t=1

which implies that

By comparing coefficient of &, we obtain

t—1
(t.q] - Dra, = Z |at—j| |lﬂj— (a1 =1),
=1
which yields
|at|— 1 ‘I]W ZMJ 1||az ]||CJ|

By using (3.4), above inequalities can be written as:

(N =0)(1+ )61l [v-1| &
4q(t—1,q) ¢ Z"'

la;| <
j=1

Next we need to show that

2 (N - 0)(1+q)6lw, 1~ 490[), qlv|]

= =0 4[j+ 1 qlqpin

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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To derive (3.6), we will utilize the principle of mathematical induction.
For ¢t = 2, (3.5) become

(N =0)(g+ D)6l |[wj-1]
4(1,q] qu

lay| <

Which shows that (3.1) is true for ¢ = 2.
For t = 3, (3.5) give us

(N —0)(g+ 1) 6/ [¢-1]

jas| - < ad, (1 + laa))
@+ DN =05l (. N=0)1+q)|w,|l61
492,49l 4q 1, q] ¥

This shows that (3.1) is true for # = 3. Now suppose that (3.6), for ¢ = m that is

(N - ma+me4§l
|-

ml < 3.7
anl = Alm=1.9)q¥m G-D
On the other hand from (3.1), we have
w2 |(N = 0) (1 +q) 61 — 440 [j.q] 0]
ml < , N\ {1}).
fan <1:0[ 4q[j+1,q]¢ (m €D
Using induction hypothesis on (3.6), we have
(q+ 1N~ ommwjd "2 (N - 0) (g + D)1 — 4901, q )|
. 3.8
Am1qm—1,4] ]Z‘l < U Wjngli+1.4] Go
As
TTW—QW+WWM+MOUQ
o 4lj+Lqlyng
N ((N—O)(q+l)|61|:,bj_1+4[m—l,q] ) (g+ DN - O)ij 1||61|Z| |
N 4 iq[m, q] 4qm [m—1,4] “
N0 A+l [(@+ DN - O) ol .
B 4y;lm.qlq [ i [m—1.q]q ;' ’|+Z|a’|)
- N-0) A+ q)lol
- 4q[m, q)y; Z' 1
Thus
(N=-0)A+q)6]¥j1 & |a.|<’"l—||(N 0)(1+q) o1 —4q ). g v
4[m, q) qp; R 4q[j+ L gl ’

which shows that inequality (3.8), is true for = m + 1 and hence we obtained the required result. O
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For i = 1, we have the following corollary.
Corollary 4. [18] Consider a function g € k — ST (N, O) is of the form (1.1), then

A0+ (N -0)6,-4901), 4]
al <[ | L aTg , (teN\{1)).

J=0

If k = 0, then corollary (3.6) reduces to:
Corollary 5. [23] Consider a function § € ST (N, O) is of the type (1.1), then

, (1eN\{1}).

Hu+@w 0) 2401}, 4||
|at|$1:0[ 2[j+ 1 qlq

Further if we take g — 17 then we have ST (N, O).
Corollary 6. [21] Consider a function g€ ST(N,O)is of the type (1.1), then

N

(N -0)6,-20]

, (1eN\{1}.

=0
If we take N = 1 and O = —1 then we have k — ST, (N, O).
Corollary 7. [14] Consider a function g € ST is of the type (1.1), then

|m_fh’f' NA (1)),

Further if wetake N =1 —-2a, O = -1,k =0and 0 < a < 1 then we have S* (a) .
Corollary 8. [24] Let the function g € S* () be of the form (1.1), then

A_f[ nv (te N\{1]),

Next we show that the class k — Pq(,u, N, O) is closed under convolution with convex function.

Theorem 3. [f g € k — P,(u, N, 0) and y € C, then § * x € k — P,(u, N, O).
Proof. We want to prove that
fD@@)Sﬂm
(x © = T42()

- P,(u, N, O).

It can be easily seen that

0 (358
D, [r @+ Tpe] i x @ ()

@ =gize] T2+ x €)
X (@)= TEOY ()
x@=g&
where, £0,(938) =Y () € k- Py(u,N,O). By using Lemma 4, we obtain the required result.

9586

O
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For i = 1, we have the following corollary.
Corollary 9. [25]1fg € k— P,(N,O) and x € C, then g x y €k — P,(N, O).
Theorem 4. Ifg € k— ST, (u,N,0) and ® € C, then g » ® € k— ST ,(u, N, O).

Proof. We want to prove that

D, (@ (©) = T43(6))
(342&) * @ &)

€ k- P,u,N,O).

It can be easily seen that

eD,(0© + Tp@)  Ta©=x© (452

(0@ The©) T3(&) * D ()
D (§) * J8OY )
D ()= T8
where, % =¥ (&) € k- Pyu,N,O), by applying Lemma 4, we obtain the required result.

For i = 1, we have the following corollary.

Corollary 10. [25]If§ € k—ST,(N,O) and ® € C, then § x ® € k — STy(N, O).

3.2. Linear combination

Linear combination for our defined classes are defined as following.

Theorem 3. Let §; € k — ST,(u, N, O) and have the form

G =6+ ak', fori=123n.

=1

Then

n

F € k= ST,(u, N, O), where F (£) = Z ¢i8i (&) with Z ¢i=1.
i=1

i=1

Proof. By using (1.20), one can write

[ee)

2,

1=

{20k + DLyq [t = 1.q] +|(OLy + L) [t.q] = (NLy + Ly)|} - 1
LI0=N| |a,,,'| < 1.

Therefore

F) = anci[f"'iat,i'ft) =f+i[ici~az,i]§’,

i=2 =2 t=2 \i=2

O
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however

Z L]0 - N

{20k + DLyg[1 = 1,q] + [(OLy + Ly) [t,.q] = (NLy + L2)|}wt_1] ]
a; il <1

*{2(]( + DLg[t—-1,q9] + |(0L] + L) [t,q) - (NL, + L2)|} Wi ] (Z": }
Cidy, i

i=2

N

= \1=2 L]0 - N
O
3.3. Weighted means
Theorem 6. If § and h belongs to k — S T,(u, N, O) where,
(1=W)g & + (1 +W)h(
Proof. As
A=W)g© + 1 +W)h(®) (1 =-W)a, + 32, (1 +W)b
hw(f)z{ 852 f} _I_Z{ 1 2t2 fé:_-t.
=2
To prove that hy (£) € k — ST,(u, N, O), we need to show
o [ 12+ D Lag[-1.q]+|(OL +Lo)[t.q]| (VL1 +Lo)| Yo “W)a, :
Zt:2 [{ + 2q[t q]+| Lllg_:/l[tq] 1+L2 |} 1] {(1 W) ;(1+W)b } <1.

For this, consider

(1- W) e ({2 + DLg[r - 1.4] + |(OL; + Lo) [t.q] = (NL; + L)}

Z L |0 =N Y10,
(1+ﬂg {2(k + DL,g[t = 1.q] + |(OLy + L) [t. q] = (NL; + Ly)|} ,
Z Ll |0 _ Nl ‘//z—l t
- 1
(1 W)(1)+( +W)(1)_1
2
|

Corollary 11. If we take u = 1, if ¢ and h belongs to k — ST,(1,N,0) = k — ST (N, O), then their
weighted mean hy is also in k — ST,(N, O).
Further for ¢ — 17, then their weighted mean hy is also in k — ST (N, O). Where,

1-W)2 1+W)h
hm&=¥ >ma;(+> @}

AIMS Mathematics Volume 7, Issue 6, 10842—10859.
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3.4. Arithmetic means

Theorem 7. Let g8; € k — ST, (u,N, O) wherei = 1,2,--- ,v then the arithmetic mean

1 4
An@© == 2.
i=1

also belongs to the class k — ST,(u, N, O).
Proof. As Ay (€)= 1 7, 8:/(©) and 8, (©) = £ + £, a, &' then we have
1 4 oo oo 1 4
Av@==) [é > l-ff] =&+ )] (; >a, ,-] £. (3.9)
i=1 =2 =2 =1
Since §; € k — ST, (u,N, O) forevery i = 1,2,---,v, so by using (1.20) and (3.9), we get

o) 1 4
Z Vi {2(k + DLyg [t = 1,q] + |[(OL; + L) [t.q] - (NLy + L2)|} (; Z at,i)

=2 i=1

IA

1 v
- L|O—-N|) =L{|0-N]|,
V;m =L |

1.e.
[e) 1 4
D i {2k + Daglr = 1,9] + [(OLy + L) [1,q] - (NLy + L)} (; >a, i) < Li|0-NI.
=2 i=1
This complete the proof. O

Corollary 12. If we take 1 = 1, 8; € k = ST, (N,O) withi = 1,2,--- ,v then the arithmetic mean
Av® =13 2
M - y L 8i

this belongs to the class k — ST (N, O).
Further, foru=1,8€ k=ST,1(1,N,0) =k—-ST(N,O) wherei =1,2,---,v then the arithmetic
mean Ay (€) also belongs to the class k — ST(N, O).

3.5. Radii of starlikeness

Theorem 8. Let g € k —ST,(u, N, O), then g will belongs to the family S* (@) called starlike functions
of order a (0 < a < 1) for |€] < vy, where

[A-@{20 + 0 Lg[r - 1.q] + [OL + L) [1.q] = (VL + L)} [1,4]! ()

T =
! Li|O-N|(t-a)|u+1.q],,

AIMS Mathematics Volume 7, Issue 6, 10842—10859.
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Proof. Let g € k—ST,(u,N, O). To prove § € §* (), we need to show

g ©rO-1 |_
& ©/8©+1-2

Using values of g (¢) along with some staightforward calculations, we have

S (=L < 1. (3.10)

=2

Since § € k — ST, (u, N, O), so from (1.20), we can easily obtain

Z"’: (gl ({20+ DLyl = 1,91+ |(OL + Ly) [t,q] = (NLy + L))} al<1
Lilu+ 4], L, 10 —N] an st

The inequality (3.10), holds if the following relation are true

{2k + DLyg[1 ~ 1.q] + |(OL + L) [1.4] - (NL: + L)}
Li0=-NI o

which implies that

¢ (1 =) {2k + DLyq [t = 1,q] + [(OLy + Ly) [t.q] = (NLy + Ly)|} [1.q]! (=)
< .
¢ Li|O-N|t-a)|[u+1,4q],_,

Which completes the proof. O
Corollary 13. If we take u =1, if § € k — ST (N, O), then || < 15, where

B (1-a) {2(1 +k)Lrg[t—1,q] + |(0L1 + L) [t,q] - (NL, + L2)|} [, q]! (=)
2= LIO-NG-a) :

Further, 8 € k —ST,1(1,N,0) = k- ST(N,O), g then |¢| < v3, where

-2+ E-1)+0+1i- N+ D)
B 0-N(-a) |

3.6. Growth and distortion theorems

Theorem 9. If g € k — ST, (u, N, O) has the form (1.1), then

r(d =<1l <sr@+1),

where LIO-N
1 - .
= with =r<l.
C = R0+ Diyg +OL + L) (L + @ —(NLy + L, " ¥
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10856

Proof. Consider

gOI= 6+ > a|=r+ ) lalr,
=2 =2
This implies
GOI<r+r ) lal= r(l * Zm).
=2 =2
Similarly,

HGE r(l —Zm].

=2
It can be easily observed that

(&9

{2k + DLyg[1, 4] + |(OL: + L) [2.q] = (NLy + L)} ) a,
=2

(o)

< > {2+ DLygt = 1,q] + |(OL + L) [1,q] = (NLy + L)} i1l

1=2

By using (1.20), we obtain

{2k + DLyq[1,q] + [(OLy + Ly) [2,q] = (NL; + L)[} 1 > la) < Li10 = NI,

t=2

which gives

IA

i al L 10— N|
= {20+ DLyg[1,q] + [(OL + L) [2, 9] = (NLy + L)} g
Li|0-N
(2(k + DLyg + (OLy + L) (1 +q) = (NL + La)l} "

now using this relation in (3.11) and (3.12), we get

r(d = <@l <sr@+1).

As required.
Corollary 14. If we take u = 1, and § € k — ST (N, O), has the form (1.1), then
r(l=4) <1g@I<rd+4),

where
L]0 — N|

= Bk Dl + 0L + L) (1 + @) = (NI + LI}
Further, 8 € k = ST,1(1,N,0) = k- ST(N, O), has the form ( 1.1), then

r(d=0)<18@I<r(+4),

where,
|O — N|

&= REk+D+RO+D-N+D)

(3.11)

(3.12)
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Corollary 15. If g € k — ST (N, O), has the form (1.1), then
(1= riey) < [§ @) < (A +rixy),

where,
L|0 - N|
{2k + 1)Ly,g + |(OL, + L) (1 + g) — (NL, + Ly)|}’

Further, g € k= ST,.1(1,N,0) = k- ST(N, O), has the form (1.1), then

n =

(1 —rtny) < |§’ (§)| < (1 +rtny),

where,
|O — NI

Rk+DH+RO+1) =N+ 1}

Hy) =
4. Conclusions

By using g-analogue of Noor integral operator, we studied various properties such as necessary and
sufficient conditions, coefficient bounds, convolution properties, linear combinations, weighted means,
arithmetic means, distortion and covering theorems and radii of starlikenss, for a newly define class of
analytic functions in conic regions. We also pointed out many special cases in the form of corollaries
by specializing the parameters.
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