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Abstract: An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic
cycles are produced. The acyclic chromatic index of G, denoted by χ

′

a(G), is the smallest integer k such
that G is acyclically edge k-colorable. In this paper, we consider the planar graphs without 3-cycles
and intersecting 4-cycles, and prove that χ

′

a(G) ≤ ∆(G) + 1 if ∆(G) ≥ 8.
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1. Introduction

All graphs considered in this paper are finite simple graphs. For a graph G, we use V(G), E(G),
F(G), ∆(G) (∆ for short and reserved), and g(G) to denote the vertex set, edge set, face set, maximum
degree and girth, respectively. A graph G is 2-connected if there are two paths between any two distinct
vertices.

Let G be a planar graph. The acyclic edge k-coloring of graph G is a mapping c : E(G) →
{1, 2, . . . , k} such that any two adjacent edges receive different colors, and there are no bichromatic
cycles in G. The acyclic chromatic index of G, denoted by χ

′

a(G), is the smallest integer k such that G
is acyclically edge k-colorable.

Fiamčik posed a famous conjecture for acyclic edge coloring of any graphs.

Conjecture 1.1. [3] For any graph G, χ
′

a(G) ≤ ∆(G) + 2.

The conjecture is still open.
For any graph G, Alon, McDiarmid and Reed [1] proved that χ

′

a(G) ≤ 64∆. Molloy and Reed [8]
improved this bound to 16∆. Later, Fialho et al. [4] showed that χ

′

a(G) ≤ 3.569(∆ − 1), and most
recently to 2∆ − 1 by Kirousis and Livieratos [7].
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There have been numerous investigations about acyclic edge coloring of planar graphs.
For any planar graph G, Basavaraju et al. [2] proved that χ

′

a(G) ≤ ∆ + 12, Wang et al. [9] proved
that χ

′

a(G) ≤ ∆ + 7, Wang and Zhang [10] proved that χ
′

a(G) ≤ ∆ + 6.
Let G be a planar graph with small grith. Shu, Wang and Wang [11] proved that χ

′

a(G) ≤ ∆(G) + 2
if g(G) ≥ 4. For planar graph G with g(G) ≥ 5, Hou et al. [6] proved that χ

′

a(G) ≤ ∆(G) + 1; they also
proved that such graph has χ

′

a(G) = ∆(G) if ∆(G) ≥ 9. For planar graph G without 4-cycles, Wang and
Sheng [13] proved that χ

′

a(G) ≤ ∆(G) + 3. Then Wang, Shu and Wang [14] improved this bound to
∆(G) + 2 when ∆(G) ≥ 5. In 2012, Fiedorowicz [5] proved that the planar graph G without an i-cycle
intersect to a j-cycle has χ

′

a(G) ≤ ∆(G) + 2 for i, j ∈ {3, 4}. Most recently, Shu et al. [12] proved that
the planar graph G without intersecting triangles has χ

′

a(G) ≤ ∆(G) + 2.
In this paper, we consider the planar graph without 3-cycles and intersecting 4-cycles, and prove

the following theorem:

Theorem 1.1. Let G be a planar graph without 3-cycles and intersecting 4-cycles. If ∆(G) ≥ 8, then
χ
′

a(G) ≤ ∆(G) + 1.

2. Notation

Let G be a simple planar graph. For a vertex v ∈ V(G), N(v) denotes the set of vertices adjacent to
v, and d(v) = |N(v)| denotes the degree of v. For f ∈ F(G), we use b( f ) to denote the boundary walk
of f and write f = [u1u2 . . . un] if u1, u2, . . . , un are the vertices on b( f ) enumerated in the clockwise
direction. For f = [u1u2 . . . un], let δ( f ) denote the minimum degree of any vertex on b( f ). That is,
δ( f ) = min{d(ui), i = 1, . . . , n}. The degree of a face f , denoted by d( f ), is the number of edges in its
boundary walk.

For f ∈ F(G), f is called a k-(or k+-, or k−-) face if d( f ) = k (or d( f ) ≥ k, or d( f ) ≤ k). For
v ∈ V(G), v is called a k-(or k+-, or k−-) vertex if d(v) = k (or d(v) ≥ k, or d(v) ≤ k). If u ∈ N(v) and
d(u) = k, then u is called k-neighbor of v. Let Nk(v) = {x ∈ N(v)|d(x) = k}, and nk(v) = |Nk(v)|.

Let c be an edge coloring of G and v be a vertex of G. Then, C(v) = {c(uv) : u ∈ N(v)}, Fc
v(uv) =

C(v) \ {c(uv)}. Let α, β be two colors. An (α, β)-bichromatic path with respect to c is a path consisting
of edges that are colored with α and β alternately. An (α, β)-bichromatic path which starts at the vertex
u via an edge colored α and ends at v via an edge colored α is an (α, β)(u,v)-bichromatic path. We use
“w.l.o.g.” as a shorthand for “without loss of generality”.

3. Proof of Theorem 1.1

We apply a discharging procedure to prove Theorem 1.1. Discharging is a tool in a two-pronged
approach to inductive proofs. It can be viewed as an amortized counting argument used to prove that
a global hypothesis guarantees the existence of some desirable local configurations. In an application
of the resulting structure theorem, one shows that each such local configuration cannot occur in a
minimal counterexample to the desired conclusion. Such local configurations are called reducible
configurations. In this section, we give some reducible configurations.

Let G be a counterexample with minimum |V(G)| + |E(G)| of Theorem 1.1. In other words, G
is a connected simple planar graph without 3-cycles and intersecting 4-cycles, ∆ = ∆(G) ≥ 8, but
χ
′

a(G) ≥ ∆ + 2. Let C be a color set of G, C = {1, 2, . . . ,∆ + 1}. Now, we discuss the structures of G.
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3.1. The properties of minimal counterexample

Lemma 3.1. The graph G is 2-connected.

Proof. By contradiction, suppose that v is a cut vertex of G. Let C1,C2, . . . ,Ct(t ≥ 2) be the connected
components of G \ v. For each 1 ≤ i ≤ t, there is an acyclic (∆ + 1)-edge coloring ci of Gi = Ci ∪ {v}.
We can adjust the colors in each ci such that the colors appearing on the edges incident with v are all
distinct. Now the union of these colorings is an acyclic (∆+1)-edge coloring of G, a contradiction. �

Lemma 3.2. The graph G does not contain a 2-vertex adjacent to a 3−-vertex.

Proof. By contradiction, let d(v) = 2, N(v) = {u,w}, d(u) ≤ 3 (See Figure 1(1)). We prove the case
d(u) = 3, and d(u) = 2 can be proved in a similar way. Let N(u) = {v, u1, u2}, G

′

= G − uv. By the
minimality of G, G

′

admits an acyclic (∆ + 1)-edge coloring c. Suppose that c(uui) = i for i = 1, 2. We
consider the following two cases. �

Figure 1. The configurations of Lemmas 3.2 and 3.4.

Case 3.1. |C(u) ∩C(v)| = 0.
Since |C \ (C(u)∪C(v))| = ∆ + 1− 3 = ∆− 2 > 0, we can color uv with α for α ∈ C \ (C(u)∪C(v)).

Therefore, c can be extended to be an acyclic (∆ + 1)-edge coloring of G, a contradiction.

Case 3.2. |C(u) ∩ C(v)| = 1. W.l.o.g., assume that c(vw) = c(uu1) = 1. If there exists a color
γ ∈ {3, . . . ,∆ + 1} such that G contains no (1, γ)(u,v)-bichromatic path via u1 and w, then we can color
uv with γ. In this way G is acyclically edge (∆ + 1)-colorable, a contradiction. Thus, there must
exist a (1, α)(u,v)-bichromatic path via u1 and w for each α ∈ {3, 4, . . . ,∆ + 1}. So C(u1) = C(w) =

{1, 3, 4, . . . ,∆ + 1}. Now we recolor vw with 2. Similarly, there must exist a (2, α)(u,v)-bichromatic path
via u2 and w for each α ∈ {3, 4, . . . ,∆ + 1}. So C(u2) = {2, 3, 4, . . . ,∆ + 1}. Now we exchange the colors
between uu1 and uu2, color uv with 3, color vw with 1. Therefore, c can be extended to be an acyclic
(∆ + 1)-edge coloring of G, a contradiction.

Next we discuss the degree sum of the neighbors of a particular vertex.

Lemma 3.3. Let d(v) = k ∈ {2, 3} and N(v) = {vi, 1 ≤ i ≤ k}. Then
∑k

i=1 d(vi) ≥ ∆ + k + 1.

Proof. By contradiction, assume that
∑k

i=1 d(vi) ≤ ∆ + k. Let G
′

= G − vv1, by the minimality of G, G
′

admits an acyclic (∆ + 1)-edge coloring c. Since the neighbors of each 2-vertex are both 4+-vertices,
we have 3 ≤ d(vi) ≤ ∆ + k − 6 when 1 ≤ i ≤ 3 and k = 3. Suppose that c(vvi) = i − 1 for i = 2, . . . , k.
We consider the following three cases. �
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Case 3.3. |C(v1) ∩C(v)| = 0.
Since |C \ (C(v1) ∪C(v))| = ∆ + 1 − (d(v1) − 1) − (d(v) − 1) = ∆ + 3 − d(v1) − d(v) ≥ ∆ − d(v1) > 0,

we can color vv1 with α for α ∈ C \ (C(v1) ∪ C(v)). Therefore, c can be extended to be an acyclic
(∆ + 1)-edge coloring of G, a contradiction.

Case 3.4. |C(v1) ∩C(v)| = 1. W.l.o.g., assume that 1 ∈ C(v1).
(i) k = 2.

Since |C\(C(v1)∪C(v2))| ≥ ∆+1−(d(v1)−1)−(d(v2)−1) = ∆+3−(d(v1)+d(v2)) ≥ ∆+3−(∆+2) = 1,
we can color vv1 with β for β ∈ C \(C(v1)∪C(v2)).Therefore, c can be extended to be an acyclic (∆+1)-
edge coloring of G, a contradiction.
(ii) k = 3.

Since |C \ (C(v1)∪C(v)∪C(v2))| ≥ ∆ + 1 − (d(v1) − 1) − 1 − (d(v2) − 1) = ∆ − (d(v1) + d(v2)) + 2 ≥
∆ − ∆ + 2 = 2, we can color vv1 with α for α ∈ C \ (C(v1) ∪C(v) ∪C(v2)), c is an acyclic (∆ + 1)-edge
coloring of G, a contradiction.

Case 3.5. |C(v1) ∩C(v)| = 2. Namely, d(v) = k = 3.
Since |C \ (C(v1) ∪ C(v2) ∪ C(v3))| ≥ ∆ + 1 − (d(v1) − 1) − (d(v2) − 1) − (d(v3) − 1) = ∆ − (d(v1) +

d(v2) + d(v3)) + 4 ≥ 1, we can color vv1 with α for α ∈ C \ (C(v1) ∪ C(v2) ∪ C(v3)), c is an acyclic
(∆ + 1)-edge coloring of G, a contradiction.

For a 2-vertex, the number of 3−-vertex and ∆-vertex of its neighbors is discussed below.

Lemma 3.4. For a 2-vertex v, let N(v) = {x, y}. Then (1) n2(x) ≤ d(x)+d(y)−∆−2; (2) n2(x)+n3(x) ≤
d(x) + d(y) − ∆ − 1; (3) n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 if d(x) < ∆.

Proof. Assume that d(x) = s + 1, d(y) = t + 1, N(x) = {v, x1, x2, . . . , xs}, N(y) = {v, y1, y2, . . . , yt}

(See Figure 1(2)). Let G
′

= G − vy, G
′

admits an acyclic (∆ + 1)-edge coloring c. Let c(yyi) = i
for 1 ≤ i ≤ t, T = C \ Fc

x(vx). It is clear that |T | = ∆ + 1 − s ≥ 2.
If T \ Fc

y(vy) , ∅, then we can recolor vx with α for α ∈ T \ Fc
y(vy), color vy with β for β ∈

{t + 1, . . . ,∆ + 1}(β , α). Now c can be extended to be an acyclic (∆ + 1)-edge coloring of G, a
contradiction. So T ⊆ Fc

y(vy) = {1, 2, . . . , t}.
If there are i0 ∈ T and j0 ∈ {t + 1, . . . ,∆ + 1}, such that G contains no (i0, j0)(v,y)-bichromatic path

through x, then we can color vx with i0, color vy with j0, G is acyclically edge (∆ + 1)-colorable, a
contradiction. So G contains (α0, j)(v,y)-bichromatic path for c(vx) = α0, α0 ∈ T and j ∈ {t+1, . . . ,∆+1}.
This means that {t + 1, . . . ,∆+ 1} ⊆ Fc

x(vx). W.l.o.g., let c(xxi) = t + i for 1 ≤ i ≤ ∆+ 1− t. Now recolor
c(vx) = i for any i ∈ T . Similarly, G contains (i, j)(v,y)-bichromatic path for any j ∈ {t + 1, . . . ,∆ + 1}.
So T ⊆ Fc

xl
(xxl), which means that d(xl) ≥ |T | + 1 for 1 ≤ l ≤ ∆ + 1 − t.

(1) Since d(x) ≤ ∆, |T | = ∆+1− s = ∆+1− (d(x)−1) = ∆−d(x)+2 ≥ 2. This means that d(xi) ≥ 3
for 1 ≤ i ≤ ∆+1− t. Therefore, n2(x) ≤ d(x)− (∆+1− t) = d(x)−∆−1+d(y)−1 = d(x)+d(y)−∆−2.

(2) If there are at least two 3-vertices in {x1, . . . , x∆+1−t}, then assume that d(x1) = d(x2) = 3. Since
T ⊆ Fc

xl
(xxl)(1 ≤ l ≤ ∆ + 1 − t), and d(x1) = d(x2) = 3, we have T = {1, 2}. So Fc

x1
(xx1) = Fc

x2
(xx2) =

{1, 2}. Now we exchange the colors between xx1 and xx2, color vx with 1, color vy with t + 1, G is
acyclically edge (∆ + 1)-colorable, a contradiction. Therefore, n2(x) + n3(x) ≤ d(x) − (∆ + 1 − t) + 1 =

d(x) + d(y) − ∆ − 1.
(3) If d(x) < ∆, then |T | = ∆ + 1 − s = ∆ + 1 − (d(x) − 1) = ∆ − d(x) + 2 ≥ 3. This implies

that d(xl) ≥ |T | + 1 ≥ 4 for 1 ≤ l ≤ ∆ + 1 − t. Therefore, n2(x) + n3(x) ≤ d(x) − (∆ + 1 − t) =

d(x) − ∆ − 1 + d(y) − 1 = d(x) + d(y) − ∆ − 2. �
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Lemma 3.5. For 2-vertex v, let N(v) = {x, y}. If n2(x) = d(x) − 2, then n∆(x) = 2, n2(y) = 1, n3(y) ≤ 1,
d(y) = ∆.

Proof. Let N(x) = {v, x1, x2, . . . , xs},N(y) = {v, y1, y2, . . . , yt}, d(xi) = 2, N(xi) = {x, x
′

i} for 3 ≤ i ≤ s
(See Figure 2(3)). Observe that n2(x) ≤ d(x) + d(y) − ∆ − 2 by Lemma 3.4. If n2(x) = d(x) − 2, then
d(y) = ∆, which means that t = ∆ − 1. Let G

′

= G − xv, G
′

admits an acyclic (∆ + 1)-edge coloring c.
Suppose that c(xxi) = i for 1 ≤ i ≤ s, T = C \ Fc

y(vy). It is clear that |T | = ∆ + 1 − (d(y) − 1) = 2.

Figure 2. The configurations of Lemmas 3.5 and 3.6.

(1) n∆(x) = 2, n2(y) = 1.
We consider the following two cases.

Case 3.6. T \ Fc
x(vx) , ∅.

We can recolor vy with α for α ∈ T \ Fc
x(vx), color vx with β for β ∈ {s + 1, . . . ,∆ + 1}(β , α). Now

c can be extended to be an acyclic (∆ + 1)-edge coloring of G, a contradiction.

Case 3.7. T \ Fc
x(vx) = ∅.

That is, T ⊆ Fc
x(vx) = {1, 2, . . . , s}.

(i) T ∩ {3, . . . , s} , ∅.
Let α ∈ T ∩ {3, . . . , s}. Since |C \ (C(x) ∪ C(xα))| ≥ ∆ + 1 − (d(x) − 1) − 1 = ∆ + 1 − d(x) ≥ 1,

we can color vy with α, color vx with β for β ∈ C \ (C(x) ∪ C(xα)), c can be extended to be an acyclic
(∆ + 1)-edge coloring of G, a contradiction.
(ii) T ∩ {3, . . . , s} = ∅.

That is, T={1, 2} and Fc
y(vy)={3, 4, . . . ,∆+1}. Note that c(vy) ∈ {1, 2}, w.l.o.g., suppose that c(vy)=1.

If there is a color γ ∈ {s + 1, . . . ,∆ + 1} such that G contains no (1, γ)(x,v)-bichromatic path via x1 and
y, then we can color vx with γ. In this way G is acyclically edge (∆ + 1)-colorable, a contradiction.
So there must exist a (1, j)(x,v)-bichromatic path via x1 and y for each j( j ∈ {s + 1, . . . ,∆ + 1}), which
implies that {s + 1, . . . ,∆ + 1} ⊆ C(x1) ∩ C(y). Now we recolor vy with 2, and don’t change the colors
of the other edges, c is still an acyclic (∆ + 1)-edge coloring of G − xv. As the same argument above,
we have that {s + 1, . . . ,∆ + 1} ⊆ C(x2). If there is i ∈ {3, 4, . . . , s}, such that G contains no (1, i)(x,v)-
bichromatic path via x1 and y, then we can color vx with i. Don’t change the colors of the other edges,
and remove the color of xxi, c is still an acyclic (∆ + 1)-edge coloring of G − xxi, now we consider the
color of xxi. W.l.o.g., assume that i = 3.

If c(x3x
′

3) = j ≥ s + 1, then |C(x) ∪ C(x3)| ≤ s + 1 = d(x) ≤ ∆, we can color xx3 with α for
α < (C(x) ∪C(x3)), G is acyclically edge (∆ + 1)-colorable, a contradiction.
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If c(x3x
′

3) = j ∈ {1, 2}, then it can be seen from the above argument that for each α ∈ {s+1, . . . ,∆+1},
there are (i, α)(x,v)-bichromatic paths (i = 1, 2). So G − xx3 contains no (i, α)(x,x3)-bichromatic path
(i = 1, 2) for each α ∈ {s + 1, . . . ,∆ + 1}, we can color xx3 with α, G is acyclically edge (∆ + 1)-
colorable, a contradiction.

If c(x3x
′

3) = j = 3, then we can color xx3 with α for α < (C(x) ∪C(v)) since |C(x) ∪C(v)| ≤ s + 1 =

d(x) < ∆ + 1, G is acyclically edge (∆ + 1)-colorable, a contradiction.
If c(x3x

′

3) = j ∈ {4, . . . , s}, then we can recolor xx3 with α for α < (C(x)∪C(x j)) since |C(x)∪C(x j)| ≤
s+1 = d(x) < ∆+1, G is acyclically edge (∆+1)-colorable, a contradiction. Hence, there are (1, i)(x,v)-
bichromatic paths via x1 and y for each i ∈ {3, 4, . . . , s}, which implies that {1, 3, 4, . . . , s} ⊆ C(x1).

In conclusion, C(x1) = C(y) = {1, 3, 4, . . . ,∆ + 1}. Now recolor vy with 2, and don’t change the
colors of the other edges, c is still an acyclic (∆ + 1)-edge coloring of G − xv. As the same argument
above, we have that C(x2) = {2, 3, 4, . . . ,∆ + 1}. It follows that Fc

x1
(xx1) = Fc

x2
(xx2) = Fc

y(vy) =

{3, 4, . . . ,∆ + 1} and {1, 2} ⊆ Fc
yi

(yyi) for 1 ≤ i ≤ t. Then d(x1) = d(x2) = ∆ + 1 − 2 + 1 = ∆, n2(y) = 1.

(2) n3(y) ≤ 1.
By contradiction, assume that d(y1) = d(y2) = 3. Now exchange the colors between yy1 and yy2,

and don’t change the colors of the other edges, G − xv has a new acyclic (∆ + 1)-edge coloring φ. Let
φ(yy1) = α.

If α ∈ {s + 1, . . . ,∆ + 1}, then let φ(xv) = α. By symmetry, suppose that φ(vy) = 1, G is acyclically
edge (∆ + 1)-colorable, a contradiction.

If α ∈ {3, 4, . . . , s}, assume that α = 3, then let φ(xv) = 3, remove the color of xx3, G − xx3 admits
an acyclic (∆ + 1)-edge coloring φ

′

. Let φ
′

(x3x
′

3) = β. It follows from the above argument that there
is a (1,∆)(x,v)-bichromatic path through x1, so G − xx3 contains no (1,∆)(x,x3)-bichromatic path via x1

and x
′

3. Similarly, G − xx3 contains no (2,∆)(x,x3)-bichromatic path via x2 and x
′

3. If β ∈ {1, 2},
then let φ

′

(xx3) = ∆, G is acyclically edge (∆ + 1)-colorable, a contradiction. If β ∈ {4, . . . , s}, then let
φ
′

(xx3) = γ for γ < (φ
′

(x)∪φ
′

(xβ)), G is acyclically edge (∆+1)-colorable, a contradiction. If β ≥ s+1,
then let φ

′

(xx3) = γ for γ < (φ
′

(x) ∪ φ
′

(x3)), G is acyclically edge (∆ + 1)-colorable, a contradiction.
This implies that n3(y) ≤ 1. �

Lemma 3.6. For 2-vertex v, let N(v) = {x, y}. If d(x) = 4 and n2(x) + n3(x) = 2, then n∆(x) = 2,
n2(y) = 1, n3(y) ≤ 1, d(y) = ∆.

Proof. Note that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 = d(y) − ∆ + 2 by Lemma 3.4. It is clear that
d(y) = ∆ since n2(x)+n3(x) = 2. Let N(x) = {v, x1, x2, x3}, N(y) = {v, y1, y2, . . . , y∆−1} (See Figure 2(4)).
If n2(x) = d(x) − 2 = 2, then n∆(x) = 2, n2(y) = 1 and n3(y) ≤ 1 by Lemma 3.5. We prove the case
n2(x) = 1 and n3(x) = 1. Suppose that d(x3) = 3. Let G

′

= G − xv, by the minimality of G, G
′

admits
an acyclic (∆ + 1)-edge coloring c. Assume that c(xxi) = i for 1 ≤ i ≤ 3, T = C \ Fc

y(vy). Clearly,
|T | = ∆ + 1 − (∆ − 1) = 2.

(1) n∆(x) = 2, n2(y) = 1.
We consider the following two cases.

Case 3.8. T \ Fc
x(vx) , ∅.

We can recolor vy with α for α ∈ T \ Fc
x(vx), color vx with β for β ∈ {4, . . . ,∆ + 1}(β , α), c is an

acyclic (∆ + 1)-edge coloring of G, a contradiction.
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Case 3.9. T \ Fc
x(vx) = ∅.

That is, T ⊆ Fc
x(vx) = {1, 2, 3}. Since |T | = ∆ + 1 − (∆ − 1) = 2, {1, 2, 3} \ T , ∅. As the same

argument of Case 2 in Lemma 3.5, we have n∆(x) = 2, n2(y) = 1 by setting s = 3.

(2) n3(y) ≤ 1.
By contradiction, suppose that d(y1) = d(y2) = 3. It follows from the above argument that Fc

y1
(yy1) =

Fc
y2

(yy2) = {1, 2}. By the symmetry, assume that c(vy) = 1, exchange the colors between yy1 and yy2,
G − xv has a new acyclic (∆ + 1)-edge coloring φ. Let φ(yy1) = α.

If α ∈ {4, . . . ,∆ + 1}, then let φ(vx) = α, G is acyclically edge (∆ + 1)-colorable, a contradiction.
If α = 3, then let φ(xv) = 3, and remove the color of xx3, G − xx3 has an acyclic (∆ + 1)-edge

coloring φ
′

. It follows from the above argument that there are (i, γ)(x,v)-bichromatic paths under c of
G − xv for i = 1, 2 and γ ∈ {4, 5, . . . ,∆ + 1}. So G − xx3 contains no (i, γ)(x,x3)-bichromatic path. If
|φ
′

(x)∩φ
′

(x3)| = 0, then |φ
′

(x)∪φ
′

(x3)| ≤ 3+2 = 5 < ∆+1. Let φ
′

(xx3) = β for β ∈ C \ (φ
′

(x)∪φ
′

(x3)),
φ
′

can be extended to G, a contradiction. If |φ
′

(x)∩φ
′

(x3)| = 1, then suppose 1 ∈ φ
′

(x3). Let φ
′

(xx3) = β

for β ∈ {4, . . . ,∆ + 1} \ φ
′

(x3), φ
′

can be extended to G, a contradiction. If |φ
′

(x) ∩ φ
′

(x3)| = 2, then
φ
′

(x) ∩ φ
′

(x3) = {1, 2}, we can let φ
′

(xx3) = β for β ∈ {4, . . . ,∆ + 1}, φ
′

can be extended to G, a
contradiction. This implies that n3(y) ≤ 1. �

Next we discuss the number of 3−-vertex in the neighbors of ∆-vertex.

Lemma 3.7. For d(v) = ∆, if n2(v) ≥ ∆ − 3, then n2(v) + n3(v) ≤ ∆ − 2.

Proof. Assume that v4 ∈ N(v), N(v4) = {v, v
′

4}. By Lemma 3.4, n2(v) ≤ d(v)+d(v
′

4)−∆−2 = d(v
′

4)−2 ≤
∆ − 2, n2(v) + n3(v) ≤ d(v) + d(v

′

4) − ∆ − 1 = d(v
′

4) − 1 ≤ ∆ − 1; if n2(v) = ∆ − 2, then d(v
′

4) = ∆; if
n2(v) + n3(v) = ∆ − 1, then d(v

′

4) = ∆. Note that n∆(v) = 2 when n2(v) = ∆ − 2 by Lemma 3.5. Namely
n3(v) = 0, n2(v) + n3(v) = ∆ − 2 + 0 = ∆ − 2.

Otherwise n2(v) = ∆ − 3. By contradiction, suppose that n2(v) + n3(v) ≥ ∆ − 1. We have that
n2(v)+n3(v) = ∆−1 since n2(v)+n3(v) ≤ ∆−1. Let N(v) = {v1, v2, . . . , v∆},N(vi) = {v, xi} for 4 ≤ i ≤ ∆.
Assume that d(v2) = d(v3) = 3 (See Figure 3(5)). Let G

′

= G − vv∆, by the minimality of G, G
′

admits
an acyclic (∆ + 1)-edge coloring c. Let c(vvi) = i for 1 ≤ i ≤ ∆ − 1,T = C \ Fc

x∆
(v∆x∆). Since

n2(v) + n3(v) = ∆ − 1, it follows from the above argument that d(x∆) = d(x∆−1) = . . . = d(x4) = ∆,
|T | = ∆ + 1 − (∆ − 1) = 2. �

We consider the following two cases.

Case 3.10. T \C(v) , ∅.
We can recolor v∆x∆ with α for α ∈ T \ C(v), color vv∆ with β for β ∈ {∆,∆ + 1}(β , α), c is an

acyclic (∆ + 1)-edge coloring of G, a contradiction.

Case 3.11. T \C(v) = ∅. That is, T ⊆ C(v) = {1, 2, . . . ,∆ − 1}.
(i) T ∩ {4, 5, . . . ,∆ − 1} , ∅.

We can color v∆x∆ with i for i ∈ T ∩ {4, 5, . . . ,∆ − 1}, color vv∆ with j for j ∈ {∆,∆ + 1} \ {c(vixi)},
G is acyclically edge (∆ + 1)-colorable, a contradiction.
(ii) T ∩ {4, 5, . . . ,∆ − 1} = ∅.

That is, T ⊆ {1, 2, 3}. Note that c(v∆x∆) ∈ T ⊆ {1, 2, 3}. When c(v∆x∆) = 1, if there exists a color
γ ∈ {∆,∆+ 1}, such that G contains no (1, γ)(v,v∆)-bichromatic path via x∆ and v1, then let c(vv∆) = γ, G
is acyclically edge (∆ + 1)-colorable, a contradiction. Hence, G contains (1, i)(v,v∆)-bichromatic paths
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Figure 3. The configurations of Lemmas 3.7 and 3.8.

via x∆ and v1 for each i ∈ {∆,∆ + 1}. This implies that {∆,∆ + 1} ⊆ C(v1)∩C(x∆). If 2 ∈ T, then we can
recolor v∆x∆ with 2, c is still an acyclic (∆ + 1)-edge coloring of G − vv∆, the same argument shows
that C(v2) = {2,∆,∆ + 1}. If 3 ∈ T, then we can recolor v∆x∆ with 3, c is still an acyclic (∆ + 1)-edge
coloring of G − vv∆, the same argument shows that C(v3) = {3,∆,∆ + 1}.
(a) 1 < T. Namely, T = {2, 3}.

It follows from the above argument that Fc
v2

(vv2) = Fc
v3

(vv3) = {∆,∆ + 1}. Now exchange the colors
between vv2 and vv3, we can color v∆x∆ with α for α ∈ T, color vv∆ with ∆, G is acyclically edge
(∆ + 1)-colorable, a contradiction.
(b) 1 ∈ T. Suppose that T = {1, 2}.

It follows from the above argument that {∆,∆ + 1} ⊆ C(v1) and Fc
v2

(vv2) = {∆,∆ + 1}. Now let
c(v∆x∆) = 2, c(vv∆) = 7, remove the color of vv7, c is still an acyclic (∆ + 1)-edge coloring of G − vv7.
Let T

′

= C \ Fc
x7

(v7x7), it is clear that |T
′

| = ∆ + 1 − (∆ − 1) = 2. It follows from the above argument
that T

′

⊆ {1, 2, 3}, and 1 ∈ T
′

. Assume that c(v7x7) = 1. Since there is a (1,∆)(v,v∆)-bichromatic path
through v1, G − vv7 contains no (1,∆)(v,v7)-bichromatic path via v1 and x7, we can color vv7 with ∆, G
is acyclically edge (∆ + 1)-colorable, a contradiction.

The following Lemma shows if a k-vertex(k ∈ {4, 5, 6}) has no 2-neighbor, then n3(v) < k.

Lemma 3.8. Let v be a k-vertex, with k ∈ {4, 5, 6}. If n2(v) = 0, then n3(v) < k.

Proof. By contradiction, suppose that n3(v) = k. Let N(v) = {x, v1, v2, v3, v4, vk−1}, N(x) = {v, x1, x2}

and N(vi) = {v, v
′

i, v
′′

i } (1 ≤ i ≤ k − 1) (See Figure 3(8)). Let G
′

= G − xv, by the minimality of G, G
′

admits an acyclic (∆ + 1)-edge coloring c. Let c(vvi) = i for 1 ≤ i ≤ k − 1. We consider the following
three cases. �

Case 3.12. |C(x) ∩C(v)| = 0.
Note that |C \ (C(x) ∪ C(v))| = ∆ + 1 − 2 − (k − 1) = ∆ − k > 0, we can color xv with α for

α ∈ C \ (C(x) ∪C(v)), c is an acyclic (∆ + 1)-edge coloring of G, a contradiction.

Case 3.13. |C(x) ∩C(v)| = 1.
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W.l.o.g., assume that c(xx1) = c(vv1) = 1, c(xx2) = k. If there exists a color γ ∈ {k + 1, . . . ,∆ + 1}
such that G contains no (1, γ)(x,v)-bichromatic path, then we can color xv with γ. In this way G is
acyclically edge (∆ + 1)-colorable, a contradiction. So there must exist (1, α)(x,v)-bichromatic paths
for each α ∈ {k + 1, . . . ,∆ + 1}, which implies that {k + 1, . . . ,∆ + 1} ⊆ C(x1) ∩ C(v1). Thus, d(v1) ≥
∆ + 1 − k + 1 ≥ ∆ − 4 ≥ 4, a contradiction.

Case 3.14. |C(x) ∩C(v)| = 2.
W.l.o.g., assume that c(xx1) = c(vv1) = 1, c(xx2) = c(vv2) = 2.

(i) ∆ ≥ 9.
Since d(v1) = d(v2) = 3 and ∆ ≥ 9, we have that {k, . . . ,∆ + 1} \ (C(v1) ∪ C(v2)) , ∅. Let

β ∈ {k, . . . ,∆ + 1} \ (C(v1) ∪C(v2)). Note that G contains no (i, β)(x,v)-bichromatic path for i = 1, 2, we
can color xv with β, c is an acyclic (∆ + 1)-edge coloring of G, a contradiction.
(ii) ∆ = 8.
(a) k ∈ {4, 5}.

Since d(v1) = d(v2) = 3 and ∆ ≥ 8, we have that {k, . . . ,∆ + 1} \ (C(v1) ∪ C(v2)) , ∅. Let
β ∈ {k, . . . ,∆ + 1} \ (C(v1) ∪C(v2)). Note that G contains no (i, β)(x,v)-bichromatic path for i = 1, 2, we
can color xv with β. In this way c is an acyclic (∆ + 1)-edge coloring of G, a contradiction.
(b) k = 6.

If there exists a color γ ∈ {6, 7, 8, 9} such that G contains no (i, γ)(x,v)-bichromatic path for i = 1, 2,
then we can color xv with γ. In this way G is acyclically edge (∆ + 1)-colorable, a contradiction. So
{6, 7, 8, 9} ⊆ (C(v1)∪C(v2)). Since d(v1) = d(v2) = 3, we have that C(v1)∪C(v2) = {1, 2, 6, 7, 8, 9} and
c(v1v

′

1) < C(v2), c(v1v
′′

1) < C(v2). We can recolor vv2 with α for α ∈ {c(v1v
′

1), c(v1v
′′

1)}, don’t change the
colors of the other edges, G

′

has a new acyclic (∆ + 1)-edge coloring c
′

, and |C
′

(x)∩C
′

(v)| = 1. By the
similar argument in case 2, we can get an acyclic (∆ + 1)-edge coloring of G , a contradiction.

3.2. Discharging

Note that G is a minimal counterexample to Theorem 1.1, and G is a connected planar graph. By
Euler,s formula |V |+ |F| − |E| = 2 and the relation

∑
v∈V(G)

d(v) =
∑

f∈F(G)
d( f ) = 2|E(G)|, we can derive the

identity

∑
v∈V(G)

(d(v)− 4) +
∑

f∈F(G)
(d( f )− 4) = −8.

We define the initial charge function by ω(v) = d(v) − 4 for v ∈ V(G) and ω( f ) = d( f ) − 4 for
f ∈ F(G). It follows from the identity that

∑
x∈V(G)∪F(G)

ω(x) = −8. According to the structures of G,

we design some discharging rules and redistribute charge such that the total amount of charge has not
changed. Once the discharging is finished, a new charge function ω

′

(x) is produced. Next, we prove
ω
′

(x) ≥ 0 for all x ∈ V(G) ∪ F(G). Therefore, we can get the following contradiction
0 ≤

∑
x∈V(G)∪F(G)

ω
′

(x) =
∑

x∈V(G)∪F(G)
ω(x) = −8.

Hence, we demonstrate that the counterexample can not exist and Theorem 1.1 is proved.
Discharging rules:
(R1) Every 5+-face f sends d( f )−4

d( f ) to each incident vertex.
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(R2) Every 4-vertex v sends 1
5 to each adjacent 3-vertex, and then distributes the remaining extra

charge evenly among all adjacent 2-vertices.
(R3) Every 5-vertex v sends 2

5 to each adjacent 3-vertex, and then distributes the remaining extra
charge evenly among all adjacent 2-vertices.

(R4) Every 6+-vertex v sends 3
5 to each adjacent 3-vertex, and then distributes the remaining extra

charge evenly among all adjacent 2-vertices.
In the following, we will prove that ω′(v) ≥ 0 for each v ∈ V(G). Observe that δ(G) ≥ 2 by

Lemma 3.1.
(1) d(v) = 3, ω(v) = −1.
Let N(v) = {v1, v2, v3}. We have that d(v1) + d(v2) + d(v3) ≥ ∆ + 4 ≥ 12 by Lemma 3.3. Since the

neighbors of 2-vertex are both 4+-vertices, then n2(v) = 0, that is d(vi) ≥ 3 for i = 1, 2, 3, and n3(v) ≤ 2.
If n3(v) = 2, suppose that d(v1) = d(v2) = 3, then d(v3) ≥ 6. This implies thatω

′

(v) ≥ −1+2× 1
5+3

5=0
by R1,R4. If n3(v) = 1, then either n4(v) = 1, n5+(v) = 1 or n4(v) = 0, n5+(v) = 2. By R1,R2,R3, R4,
we have that ω

′

(v) ≥ −1 + 2 × 1
5 + min{15 + 2

5 , 2 ×
2
5 ,

2
5 + 3

5 , 2 ×
3
5 } = 0. If n3(v) = 0, then n4+(v) = 3. By

R1, R4, ω
′

(v) ≥ −1 + 2 × 1
5 + 3 × 1

5 = 0.
(2) d(v) = 4, ω(v) = 0.
If n2(v) , 0, then n2(v) + n3(v) ≤ 2 by Lemma 3.4.

This means that ω
′

(v) ≥ 0+3 × 1
5 −

1
5n3(v) − 0+3× 1

5−
1
5 n3(v)

n2(v) × n2(v) = 0 by R1,R2.
If n2(v) = 0, then n3(v) ≤ 3 by Lemma 3.8, which implies that ω

′

(v) ≥ 0 + 3 × 1
5 − 3 × 1

5 = 0 by
R1,R4.

(3) d(v) = 5, ω(v) = 1.
If n2(v) , 0, then ω

′

(v) ≥ 1 + 4 × 1
5 −

2
5n3(v) − 1+4× 1

5−
2
5 n3(v)

n2(v) × n2(v) = 0 by R1,R3.
If n2(v) = 0, then n3(v) ≤ 4 by Lemma 3.8. This implies that ω

′

(v) ≥ 1 + 4 × 1
5 − 4 × 2

5 = 1
5 > 0 by

R1,R3.
(4) d(v) = 6, ω(v) = 2.
If n2(v) , 0, then ω

′

(v) ≥ 2 + 5 × 1
5 −

3
5n3(v) − 2+5× 1

5−
3
5 n3(v)

n2(v) × n2(v) = 0 by R1,R4.
If n2(v) = 0, then n3(v) ≤ 5 by Lemma 3.8. This implies that ω

′

(v) ≥ 2+5× 1
5 −5× 3

5 = 0 by R1,R4.
(5) d(v) ≥ 7, ω(v) = d(v) − 4.
If n2(v) , 0, then ω

′

(v) ≥ d(v) − 4 + 1
5 × (d(v) − 1) − 3

5n3(v) − d(v)−4+ 1
5×(d(v)−1)− 3

5 n3(v)
n2(v) × n2(v) = 0 by

R1,R4.
If n2(v) = 0, then ω

′

(v) ≥ d(v) − 4 + 1
5 × (d(v) − 1) − 3

5n3(v) ≥ 6
5d(v) − 21

5 −
3
5d(v) = 3

5d(v) − 21
5 ≥ 0

by R1,R4.
(6) d(v) = 2, ω(v) = −2.
For convenience, let τ(u → v) denote the charge transferred out of u into v according to the above

rules, u, v ∈ V(G). Let N(v) = {x, y}, then n2(x) ≤ d(x) − 2, n2(y) ≤ d(y) − 2 by Lemma 3.4.
(6.1) If one of vertices in {x, y}, such as x, has n2(x)=d(x) − 2, then n∆(x)=2, n2(y)=1, n3(y) ≤ 1
and d(y)=∆ by Lemma 3.5. By R1 and R4, we have that τ(y → v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥

d(y)−4+ 1
5 d(y)− 1

5−1× 3
5

1 = 6
5d(y)− 24

5 = 6
5 × (∆− 4) ≥ 24

5 . This implies that ω
′

(v) ≥ −2 + 1
5 + 24

5 = 3 > 0 by R1.
(6.2) n2(x) ≤ d(x) − 3, n2(y) ≤ d(y) − 3. Suppose that d(x) ≤ d(y).
(6.2.1) d(x) ≥ 9.

Observe that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 1 by Lemma 3.4. Note that τ(x → v) ≥
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ω(x)+ 1
5×(d(x)−1)− 3

5 n3(x)
n2(x) ≥

d(x)−4+ 1
5 d(x)− 1

5−
3
5×(d(x)−1−n2(x))

n2(x) =
3
5 d(x)− 18

5 + 3
5 n2(x)

n2(x) = 3
5 × (1+

d(x)−6
n2(x) ) ≥ 3

5 × (1+
d(x)−6
d(x)−3 )=3

5 ×

(2 − 3
d(x)−3 ) by R1,R4.

Similarly, τ(y → v) ≥ 3
5 × (2 − 3

d(x)−3 ). Since d(x) ≥ 9, d(x) ≤ d(y), we have τ(x → v) ≥ 9
10 , τ(y →

v) ≥ 9
10 . This implies that ω

′

(v) ≥ −2 + 1
5 + 2 × 9

10 = 0 by R1.
(6.2.2) d(x) = 8, then n2(x) ≤ d(x) − 3 = 5.
(a) ∆ ≥ 9.

Observe that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 ≤ d(x) − 2 by Lemma 3.4. Note that τ(x → v) ≥
ω(x)+ 1

5×(d(x)−1)− 3
5 n3(x)

n2(x) ≥
d(x)−4+ 1

5×(d(x)−1)− 3
5×(d(x)−2−n2(x))

n2(x) = 3
5×(1+

d(x)−5
n2(x) ) ≥ 3

5×(1+
d(x)−5
d(x)−3 ) = 3

5×(2− 2
d(x)−3 ) = 24

25
by R1,R4.

If d(y) = d(x) < ∆, then we have τ(y → v) ≥ 3
5 × (1 + 3

n2(y) ) ≥
3
5 × (1 + 3

5 ) = 24
25 by the similar

argument above. This implies that ω
′

(v) ≥ −2 + 1
5 + 2 × 24

25 = 3
25 > 0 by R4.

If d(y) ≥ 9, then we have n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 1 ≤ d(y) − 2, n2(y) ≤ d(y) − 3 by
Lemma 3.4. This means that τ(y→ v) ≥ 3

5 × (1 +
d(y)−5
n2(y) ) ≥ 3

5 × (2 − 2
d(y)−3 ) by R1 and R4. τ(y→ v) ≥ 1

since d(y) ≥ 9. So ω
′

(v) ≥ −2 + 1
5 + 24

25 + 1 = 2
25 > 0 by R4.

(b) ∆ = 8.
Now we have d(x) = d(y) = ∆ = 8. Observe that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 1 ≤ d(x) − 1=7

by Lemma 3.4. If n2(x) ≤ 4, then τ(x→ v) ≥ 3
5 × (1 +

2d(x)−14
n2(x) ) ≥ 3

5 × (1 + 2
4 ) = 9

10 by R1, R4. Similarly,
if n2(y) ≤ 4, then τ(y → v) ≥ 9

10 . If n2(x) ≥ 5, then we have n2(x) = 5 due to n2(x) ≤ d(x) − 3 = 5.
Observe that n2(x) + n3(x) ≤ ∆ − 2 = 6 by Lemma 3.7. This implies that τ(x → v) ≥ 3

5 × (1 +
2d(x)−13

n2(x) ) = 3
5 × (1 + 3

5 ) = 24
25 by R1, R4. Similarly, if n2(y) ≤ 5, then τ(y → v) ≥ 24

25 . Hence,
ω
′

(v) ≥ −2 + 1
5 + min{2 × 9

10 , 2 × 24
25 ,

9
10 + 24

25 } = 0 by R1.
(6.2.3) d(x) = 7, then n2(x) ≤ d(x) − 3 = 4.

Observe that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 ≤ 5 by Lemma 3.4. Note that τ(x → v) ≥ 3
5

×(1 +
2d(x)−12

n2(x) ) ≥ 9
10 by R1,R4.

If d(y) = 7, then we have that n2(y)+n3(y) ≤ d(x)+d(y)−∆−2 = 12−∆ ≤ 4, n2(y) ≤ d(y)−3 = 4 by
Lemma 3.4. Note that τ(y→ v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥
d(y)−4+ 1

5×(d(y)−1)− 3
5×(4−n2(y))

n2(y) = 3
5 × (1 +

2d(y)−11
n2(y) ) ≥ 3

5

×(1 + 3
4 ) = 21

20 by R1,R4. We have that ω
′

(v) ≥ −2 + 1
5 + 9

10 + 21
20 = 3

20 > 0 by R1.
If d(y) ≥ 8, then we have that n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 1 ≤ d(y) − 2, n2(y) ≤ d(y) − 3 by

Lemma 3.4.
Note that τ(y→ v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥
d(y)−4+ 1

5×(d(y)−1)− 3
5×(d(y)−2−n2(y))

n2(y) ≥ 3
5 × (1 +

d(y)−5
n2(y) ) ≥ 3

5 × (2 −
2

d(y)−3 ) by R1, R4. Since d(y) ≥ 8, τ(y → v) ≥ 24
25 , we have that ω

′

(v) ≥ −2 + 1
5 + 9

10 + 24
25 = 3

50 > 0 by
R1.
(6.2.4) d(x) = 6, then n2(x) ≤ d(x) − 3 = 3.

By Lemma 3.4, we have that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 ≤ 4. Note that τ(x → v) ≥ 3
5

×(1 +
2d(x)−11

n2(x) ) ≥ 4
5 by R1,R4.

If d(y) = 6, then we have that n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 2 = 10 − ∆ ≤ 2 by Lemma 3.4. So
n2(y) ≤ 2. Note that τ(y → v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥
d(y)−4+ 1

5×(d(y)−1)− 3
5×(2−n2(y))

n2(y) = 3
5 × (1 +

2d(y)−9
n2(y) ) ≥ 3

5

×(1 + 3
2 ) = 3

2 by R1,R4. This means that ω
′

(v) ≥ −2 + 1
5 + 4

5 + 3
2 = 1

2 > 0 by R1.
If d(y) = 7, then we have that n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 2 = 11 − ∆ ≤ 3 by Lemma 3.4. So

n2(y) ≤ 3. Note that τ(y → v) ≥ ω(y)+ 1
5×(d(y)−1)− 3

5 n3(y)
n2(y) ≥

d(y)−4+ 1
5×(d(y)−1)− 3

5×(3−n2(y))
n2(y) = 3

5 × (1 +
2d(y)−10

n2(y) ) ≥ 3
5

×(1 + 4
3 ) = 7

5 by R1,R4. This means that ω
′

(v) ≥ −2 + 1
5 + 4

5 + 7
5 = 2

5 > 0 by R1.
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If d(y) ≥ 8, then we have that n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 1 ≤ d(y) − 3, n2(y) ≤ d(y) − 3 by
Lemma 3.4.

Note that τ(y→ v) ≥ ω(y)+ 1
5×(d(y)−1)− 3

5 n3(y)
n2(y) ≥

d(y)−4+ 1
5×(d(y)−1)− 3

5×(d(y)−3−n2(y))
n2(y) = 3

5 × (1 +
d(y)−4
n2(y) ) ≥ 3

5 × (2 −
1

d(y)−3 ) by R1,R4. Since d(y) ≥ 8, τ(y→ v) ≥ 27
25 , we have that ω

′

(v) ≥ −2 + 1
5 + 4

5 + 27
25 = 2

25 > 0 by R1.
(6.2.5) d(x) = 5, then n2(x) ≤ d(x) − 3 = 2.

By Lemma 3.4, we have that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 ≤ 3. Note that τ(x → v) ≥
ω(x)+ 1

5×(d(x)−1)− 2
5 n3(x)

n2(x) ≥
1+4× 1

5−
2
5×(3−n2(x))

n2(x) = 2
5 + 3

5 ×
1

n2(x) ≥
2
5 + 3

5 ×
1
2 = 7

10 by R1,R3. Observe that
d(x) + d(y) ≥ ∆ + 3 by Lemma 3.3, so d(y) ≥ ∆ + 3 − d(x) ≥ 6.

If d(y) = 6, then we have that n2(y) + n3(y) ≤ d(x) + d(y)−∆− 2 = 9−∆ ≤ 1 by Lemma 3.4, which
means that n2(y) = 1, n3(y) = 0. Note that τ(y → v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) =
2+5× 1

5−0× 3
5

1 = 3 by R1,R4.
So ω

′

(v) ≥ −2 + 1
5 + 7

10 + 3 = 19
10 > 0 by R1.

If d(y) = 7, then we have that n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 2 = 10 − ∆ ≤ 2 by Lemma 3.4. So
n2(y) ≤ 2. Note that τ(y → v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥
d(y)−4+ 1

5×(d(y)−1)− 3
5×(2−n2(y))

n2(y) = 3
5 × (1 + 5

n2(y) ) ≥
3
5

×(1 + 5
2 ) = 21

10 by R1,R4. Hence, ω
′

(v) ≥ −2 + 1
5 + 7

10 + 21
10 = 1 > 0 by R1.

If d(y) ≥ 8, then we have that n2(y)+n3(y) ≤ d(x)+d(y)−∆−1 ≤ d(y)−4 by Lemma 3.4. So n2(y) ≤
d(y) − 4. Note that τ(y→ v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥
d(y)−4+ 1

5×(d(y)−1)− 3
5×(d(y)−4−n2(y))

n2(y) = 3
5 × (1 +

d(y)−3
n2(y) ) ≥ 3

5

×(2+ 1
d(y)−4 ) by R1,R4. Observe that τ(y→ v) > 6

5 since d(y) ≥ 8. Then ω
′

(v) > −2+ 1
5 + 7

10 + 6
5 = 1

10 > 0
by R1.
(6.2.6) d(x) = 4

By Lemma 3.4, we have that n2(x) + n3(x) ≤ d(x) + d(y) − ∆ − 2 ≤ 2.
(a) n2(x) + n3(x) = 2.

By Lemma 3.6, we have that n∆(x) = 2, n2(y) = 1, n3(y) ≤ 1, and d(y) = ∆. Note that τ(y →
v) ≥ ω(y)+ 1

5×(d(y)−1)− 3
5 n3(y)

n2(y) ≥
d(y)−4+ 1

5 d(y)− 1
5−1× 3

5
1 = 6

5d(y) − 24
5 = 6

5 (∆ − 4) ≥ 24
5 by R1,R4. So ω

′

(v) ≥
−2 + 1

5 + 24
5 =3 > 0 by R1.

(b) n2(x) + n3(x) ≤ 1. That is n2(x) = 1, n3(x) = 0.
Note that τ(x→ v) ≥ ω(x)+ 1

5×(d(x)−1)− 1
5 n3(x)

n2(x) ≥
0+3× 1

5−0× 1
5

1 = 3
5 by R1,R2. Observe that d(x)+d(y) ≥ ∆+3

by Lemma 3.3, so d(y) ≥ ∆ + 3 − d(x) ≥ 7.
If d(y) = 7, then we have that n2(y) + n3(y) ≤ d(x) + d(y)−∆− 2 = 9−∆ ≤ 1 by Lemma 3.4, which

means that n2(y) = 1, n3(y) = 0. Note that τ(y → v) ≥ ω(y)+ 1
5×(d(y)−1)− 3

5 n3(y)
n2(y) =

3+6× 1
5−0× 3

5
1 = 21

5 by R1,R4.
So ω

′

(v) ≥ −2 + 1
5 + 3

5 + 21
5 = 3 > 0 by R1.

If d(y) ≥ 8, then we have that n2(y) + n3(y) ≤ d(x) + d(y) − ∆ − 1 ≤ d(y) − 5 by Lemma 3.4. Hence
n2(y) ≤ d(y) − 5.

Note that τ(y→ v) ≥ ω(y)+ 1
5×(d(y)−1)− 3

5 n3(y)
n2(y) ≥

d(y)−4+ 1
5×(d(y)−1)− 3

5×(d(y)−5−n2(y))
n2(y) = 3

5 × (1 +
d(y)−2
n2(y) ) ≥ 3

5 × (2 +
3

d(y)−5 ) by R1,R4. We have that τ(y→ v) > 6
5 since d(y) ≥ 8. Hence, ω

′

(v) > −2 + 1
5 + 3

5 + 6
5 = 0 by R1.

After R1 − R4, we get ω
′

(v) ≥ 0, for all v ∈ V(G). For all f ∈ F(G), if d( f ) = 4, then ω
′

( f ) =

ω( f ) = d( f ) − 4 = 0. If d( f ) ≥ 5, then we have ω
′

( f ) = d( f ) − 4 − d( f )−4
d( f ) × d( f ) = 0 by R4.

In summary, we get the following contradictory formula:

−8 =
∑

x∈V(G)∪F(G)

ω(x) =
∑

x∈V(G)∪F(G)

ω
′

(x) ≥ 0.

The above contradiction indicates that G does not exist, so Theorem 1.1 is true.
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4. Conclusions

In this paper, we consider the acyclic chromatic index of planar graphs without 3-cycles and
intersecting 4-cycles and proved that such graphs have χ

′

a(G) ≤ ∆ + 1 if ∆(G) ≥ 8. A natural problem
in context of our main result is the following:

What is the optimal constant c such that χ
′

a(G) ≤ ∆(G) + 1 for every planar graph G with g(G) ≥ c?
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