

AIMS Mathematics, 7(6): 10828–10841. DOI:10.3934/math.2022605 Received: 08 December 2021 Revised: 04 March 2022 Accepted: 07 March 2022 Published: 31 March 2022

http://www.aimspress.com/journal/Math

Research article

Acyclic edge coloring of planar graphs

Yuehua Bu¹, Qi Jia², Hongguo Zhu^{2,*} and Junlei Zhu³

- ¹ Xingzhi college of Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- ² Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- ³ College of Data Science, Jiaxing University, Jiaxing, Zhejiang, 314000, China

* Correspondence: Email: zhuhongguo@zjnu.edu.cn.

Abstract: An acyclic edge coloring of a graph *G* is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index of *G*, denoted by $\chi'_a(G)$, is the smallest integer *k* such that *G* is acyclically edge *k*-colorable. In this paper, we consider the planar graphs without 3-cycles and intersecting 4-cycles, and prove that $\chi'_a(G) \leq \Delta(G) + 1$ if $\Delta(G) \geq 8$.

Keywords: acyclic edge coloring; planar graph; cycle; girth; maximum degree **Mathematics Subject Classification:** 05C10, 05C15

1. Introduction

All graphs considered in this paper are finite simple graphs. For a graph *G*, we use V(G), E(G), F(G), $\Delta(G)$ (Δ for short and reserved), and g(G) to denote the vertex set, edge set, face set, maximum degree and girth, respectively. A graph *G* is 2-connected if there are two paths between any two distinct vertices.

Let G be a planar graph. The acyclic edge k-coloring of graph G is a mapping $c : E(G) \rightarrow \{1, 2, ..., k\}$ such that any two adjacent edges receive different colors, and there are no bichromatic cycles in G. The acyclic chromatic index of G, denoted by $\chi'_a(G)$, is the smallest integer k such that G is acyclically edge k-colorable.

Fiamčik posed a famous conjecture for acyclic edge coloring of any graphs.

Conjecture 1.1. [3] For any graph G, $\chi'_{a}(G) \leq \Delta(G) + 2$.

The conjecture is still open.

For any graph G, Alon, McDiarmid and Reed [1] proved that $\chi'_a(G) \leq 64\Delta$. Molloy and Reed [8] improved this bound to 16 Δ . Later, Fialho et al. [4] showed that $\chi'_a(G) \leq 3.569(\Delta - 1)$, and most recently to $2\Delta - 1$ by Kirousis and Livieratos [7].

There have been numerous investigations about acyclic edge coloring of planar graphs.

For any planar graph G, Basavaraju et al. [2] proved that $\chi'_a(G) \leq \Delta + 12$, Wang et al. [9] proved that $\chi'_a(G) \leq \Delta + 7$, Wang and Zhang [10] proved that $\chi'_a(G) \leq \Delta + 6$.

Let *G* be a planar graph with small grith. Shu, Wang and Wang [11] proved that $\chi'_a(G) \leq \Delta(G) + 2$ if $g(G) \geq 4$. For planar graph *G* with $g(G) \geq 5$, Hou et al. [6] proved that $\chi'_a(G) \leq \Delta(G) + 1$; they also proved that such graph has $\chi'_a(G) = \Delta(G)$ if $\Delta(G) \geq 9$. For planar graph *G* without 4-cycles, Wang and Sheng [13] proved that $\chi'_a(G) \leq \Delta(G) + 3$. Then Wang, Shu and Wang [14] improved this bound to $\Delta(G) + 2$ when $\Delta(G) \geq 5$. In 2012, Fiedorowicz [5] proved that the planar graph *G* without an *i*-cycle intersect to a *j*-cycle has $\chi'_a(G) \leq \Delta(G) + 2$ for *i*, $j \in \{3, 4\}$. Most recently, Shu et al. [12] proved that the planar graph *G* without intersecting triangles has $\chi'_a(G) \leq \Delta(G) + 2$.

In this paper, we consider the planar graph without 3-cycles and intersecting 4-cycles, and prove the following theorem:

Theorem 1.1. Let G be a planar graph without 3-cycles and intersecting 4-cycles. If $\Delta(G) \ge 8$, then $\chi'_a(G) \le \Delta(G) + 1$.

2. Notation

Let *G* be a simple planar graph. For a vertex $v \in V(G)$, N(v) denotes the set of vertices adjacent to v, and d(v) = |N(v)| denotes the degree of v. For $f \in F(G)$, we use b(f) to denote the boundary walk of f and write $f = [u_1u_2...u_n]$ if $u_1, u_2, ..., u_n$ are the vertices on b(f) enumerated in the clockwise direction. For $f = [u_1u_2...u_n]$, let $\delta(f)$ denote the minimum degree of any vertex on b(f). That is, $\delta(f) = \min\{d(u_i), i = 1, ..., n\}$. The degree of a face f, denoted by d(f), is the number of edges in its boundary walk.

For $f \in F(G)$, f is called a k-(or k^+ -, or k^- -) face if d(f) = k (or $d(f) \ge k$, or $d(f) \le k$). For $v \in V(G)$, v is called a k-(or k^+ -, or k^- -) vertex if d(v) = k (or $d(v) \ge k$, or $d(v) \le k$). If $u \in N(v)$ and d(u) = k, then u is called k-neighbor of v. Let $N_k(v) = \{x \in N(v) | d(x) = k\}$, and $n_k(v) = |N_k(v)|$.

Let *c* be an edge coloring of *G* and *v* be a vertex of *G*. Then, $C(v) = \{c(uv) : u \in N(v)\}, F_v^c(uv) = C(v) \setminus \{c(uv)\}$. Let α, β be two colors. An (α, β) -bichromatic path with respect to *c* is a path consisting of edges that are colored with α and β alternately. An (α, β) -bichromatic path which starts at the vertex *u* via an edge colored α and ends at *v* via an edge colored α is an $(\alpha, \beta)_{(u,v)}$ -bichromatic path. We use "w.l.o.g." as a shorthand for "without loss of generality".

3. Proof of Theorem 1.1

We apply a discharging procedure to prove Theorem 1.1. Discharging is a tool in a two-pronged approach to inductive proofs. It can be viewed as an amortized counting argument used to prove that a global hypothesis guarantees the existence of some desirable local configurations. In an application of the resulting structure theorem, one shows that each such local configuration cannot occur in a minimal counterexample to the desired conclusion. Such local configurations are called reducible configurations. In this section, we give some reducible configurations.

Let G be a counterexample with minimum |V(G)| + |E(G)| of Theorem 1.1. In other words, G is a connected simple planar graph without 3-cycles and intersecting 4-cycles, $\Delta = \Delta(G) \ge 8$, but $\chi'_a(G) \ge \Delta + 2$. Let C be a color set of G, $C = \{1, 2, ..., \Delta + 1\}$. Now, we discuss the structures of G.

3.1. The properties of minimal counterexample

Lemma 3.1. The graph G is 2-connected.

Proof. By contradiction, suppose that *v* is a cut vertex of *G*. Let $C_1, C_2, \ldots, C_t (t \ge 2)$ be the connected components of $G \setminus v$. For each $1 \le i \le t$, there is an acyclic $(\Delta + 1)$ -edge coloring c_i of $G_i = C_i \cup \{v\}$. We can adjust the colors in each c_i such that the colors appearing on the edges incident with *v* are all distinct. Now the union of these colorings is an acyclic $(\Delta + 1)$ -edge coloring of *G*, a contradiction. \Box

Lemma 3.2. The graph G does not contain a 2-vertex adjacent to a 3⁻-vertex.

Proof. By contradiction, let d(v) = 2, $N(v) = \{u, w\}$, $d(u) \le 3$ (See Figure 1(1)). We prove the case d(u) = 3, and d(u) = 2 can be proved in a similar way. Let $N(u) = \{v, u_1, u_2\}$, G' = G - uv. By the minimality of G, G' admits an acyclic ($\Delta + 1$)-edge coloring c. Suppose that $c(uu_i) = i$ for i = 1, 2. We consider the following two cases.

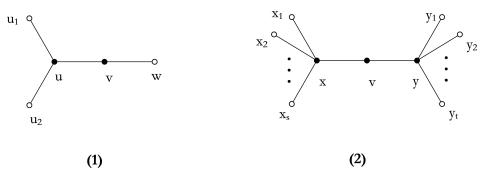


Figure 1. The configurations of Lemmas 3.2 and 3.4.

Case 3.1. $|C(u) \cap C(v)| = 0.$

Since $|C \setminus (C(u) \cup C(v))| = \Delta + 1 - 3 = \Delta - 2 > 0$, we can color uv with α for $\alpha \in C \setminus (C(u) \cup C(v))$. Therefore, *c* can be extended to be an acyclic $(\Delta + 1)$ -edge coloring of *G*, a contradiction.

Case 3.2. $|C(u) \cap C(v)| = 1$. W.l.o.g., assume that $c(vw) = c(uu_1) = 1$. If there exists a color $\gamma \in \{3, ..., \Delta + 1\}$ such that *G* contains no $(1, \gamma)_{(u,v)}$ -bichromatic path via u_1 and w, then we can color uv with γ . In this way *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. Thus, there must exist a $(1, \alpha)_{(u,v)}$ -bichromatic path via u_1 and w for each $\alpha \in \{3, 4, ..., \Delta + 1\}$. So $C(u_1) = C(w) = \{1, 3, 4, ..., \Delta + 1\}$. Now we recolor vw with 2. Similarly, there must exist a $(2, \alpha)_{(u,v)}$ -bichromatic path via u_2 and w for each $\alpha \in \{3, 4, ..., \Delta + 1\}$. Now we exchange the colors between uu_1 and uu_2 , color uv with 3, color vw with 1. Therefore, c can be extended to be an acyclic $(\Delta + 1)$ -edge coloring of *G*, a contradiction.

Next we discuss the degree sum of the neighbors of a particular vertex.

Lemma 3.3. Let $d(v) = k \in \{2, 3\}$ and $N(v) = \{v_i, 1 \le i \le k\}$. Then $\sum_{i=1}^k d(v_i) \ge \Delta + k + 1$.

Proof. By contradiction, assume that $\sum_{i=1}^{k} d(v_i) \le \Delta + k$. Let $G' = G - vv_1$, by the minimality of G, G' admits an acyclic $(\Delta + 1)$ -edge coloring c. Since the neighbors of each 2-vertex are both 4⁺-vertices, we have $3 \le d(v_i) \le \Delta + k - 6$ when $1 \le i \le 3$ and k = 3. Suppose that $c(vv_i) = i - 1$ for i = 2, ..., k. We consider the following three cases.

Case 3.3. $|C(v_1) \cap C(v)| = 0$.

Since $|C \setminus (C(v_1) \cup C(v))| = \Delta + 1 - (d(v_1) - 1) - (d(v) - 1) = \Delta + 3 - d(v_1) - d(v) \ge \Delta - d(v_1) > 0$, we can color vv_1 with α for $\alpha \in C \setminus (C(v_1) \cup C(v))$. Therefore, c can be extended to be an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

Case 3.4. $|C(v_1) \cap C(v)| = 1$. *W.l.o.g.*, assume that $1 \in C(v_1)$. (*i*) k = 2.

Since $|C \setminus (C(v_1) \cup C(v_2))| \ge \Delta + 1 - (d(v_1) - 1) - (d(v_2) - 1) = \Delta + 3 - (d(v_1) + d(v_2)) \ge \Delta + 3 - (\Delta + 2) = 1$, we can color vv_1 with β for $\beta \in C \setminus (C(v_1) \cup C(v_2))$. Therefore, c can be extended to be an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

(*ii*) k = 3.

Since $|C \setminus (C(v_1) \cup C(v) \cup C(v_2))| \ge \Delta + 1 - (d(v_1) - 1) - 1 - (d(v_2) - 1) = \Delta - (d(v_1) + d(v_2)) + 2 \ge \Delta - \Delta + 2 = 2$, we can color vv_1 with α for $\alpha \in C \setminus (C(v_1) \cup C(v) \cup C(v_2))$, c is an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

Case 3.5. $|C(v_1) \cap C(v)| = 2$. Namely, d(v) = k = 3.

Since $|C \setminus (C(v_1) \cup C(v_2) \cup C(v_3))| \ge \Delta + 1 - (d(v_1) - 1) - (d(v_2) - 1) - (d(v_3) - 1) = \Delta - (d(v_1) + d(v_2) + d(v_3)) + 4 \ge 1$, we can color vv_1 with α for $\alpha \in C \setminus (C(v_1) \cup C(v_2) \cup C(v_3))$, c is an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

For a 2-vertex, the number of 3^- -vertex and Δ -vertex of its neighbors is discussed below.

Lemma 3.4. For a 2-vertex v, let $N(v) = \{x, y\}$. Then (1) $n_2(x) \le d(x) + d(y) - \Delta - 2$; (2) $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 1$; (3) $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2$ if $d(x) < \Delta$.

Proof. Assume that d(x) = s + 1, d(y) = t + 1, $N(x) = \{v, x_1, x_2, \dots, x_s\}$, $N(y) = \{v, y_1, y_2, \dots, y_t\}$ (See Figure 1(2)). Let G' = G - vy, G' admits an acyclic $(\Delta + 1)$ -edge coloring c. Let $c(yy_i) = i$ for $1 \le i \le t$, $T = C \setminus F_x^c(vx)$. It is clear that $|T| = \Delta + 1 - s \ge 2$.

If $T \setminus F_y^c(vy) \neq \emptyset$, then we can recolor vx with α for $\alpha \in T \setminus F_y^c(vy)$, color vy with β for $\beta \in \{t + 1, ..., \Delta + 1\}(\beta \neq \alpha)$. Now *c* can be extended to be an acyclic $(\Delta + 1)$ -edge coloring of *G*, a contradiction. So $T \subseteq F_y^c(vy) = \{1, 2, ..., t\}$.

If there are $i_0 \in T$ and $j_0 \in \{t + 1, ..., \Delta + 1\}$, such that *G* contains no $(i_0, j_0)_{(v,y)}$ -bichromatic path through *x*, then we can color *vx* with i_0 , color *vy* with j_0 , *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. So *G* contains $(\alpha_0, j)_{(v,y)}$ -bichromatic path for $c(vx) = \alpha_0, \alpha_0 \in T$ and $j \in \{t+1, ..., \Delta+1\}$. This means that $\{t + 1, ..., \Delta + 1\} \subseteq F_x^c(vx)$. W.l.o.g., let $c(xx_i) = t + i$ for $1 \le i \le \Delta + 1 - t$. Now recolor c(vx) = i for any $i \in T$. Similarly, *G* contains $(i, j)_{(v,y)}$ -bichromatic path for any $j \in \{t + 1, ..., \Delta + 1\}$. So $T \subseteq F_{x_i}^c(xx_i)$, which means that $d(x_i) \ge |T| + 1$ for $1 \le i \le \Delta + 1 - t$.

(1) Since $d(x) \le \Delta$, $|T| = \Delta + 1 - s = \Delta + 1 - (d(x) - 1) = \Delta - d(x) + 2 \ge 2$. This means that $d(x_i) \ge 3$ for $1 \le i \le \Delta + 1 - t$. Therefore, $n_2(x) \le d(x) - (\Delta + 1 - t) = d(x) - \Delta - 1 + d(y) - 1 = d(x) + d(y) - \Delta - 2$.

(2) If there are at least two 3-vertices in $\{x_1, \ldots, x_{\Delta+1-t}\}$, then assume that $d(x_1) = d(x_2) = 3$. Since $T \subseteq F_{x_l}^c(xx_l)(1 \le l \le \Delta + 1 - t)$, and $d(x_1) = d(x_2) = 3$, we have $T = \{1, 2\}$. So $F_{x_1}^c(xx_1) = F_{x_2}^c(xx_2) = \{1, 2\}$. Now we exchange the colors between xx_1 and xx_2 , color vx with 1, color vy with t + 1, *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. Therefore, $n_2(x) + n_3(x) \le d(x) - (\Delta + 1 - t) + 1 = d(x) + d(y) - \Delta - 1$.

(3) If $d(x) < \Delta$, then $|T| = \Delta + 1 - s = \Delta + 1 - (d(x) - 1) = \Delta - d(x) + 2 \ge 3$. This implies that $d(x_l) \ge |T| + 1 \ge 4$ for $1 \le l \le \Delta + 1 - t$. Therefore, $n_2(x) + n_3(x) \le d(x) - (\Delta + 1 - t) = d(x) - \Delta - 1 + d(y) - 1 = d(x) + d(y) - \Delta - 2$.

AIMS Mathematics

Lemma 3.5. For 2-vertex v, let $N(v) = \{x, y\}$. If $n_2(x) = d(x) - 2$, then $n_{\Delta}(x) = 2$, $n_2(y) = 1$, $n_3(y) \le 1$, $d(y) = \Delta$.

Proof. Let $N(x) = \{v, x_1, x_2, ..., x_s\}$, $N(y) = \{v, y_1, y_2, ..., y_t\}$, $d(x_i) = 2$, $N(x_i) = \{x, x'_i\}$ for $3 \le i \le s$ (See Figure 2(3)). Observe that $n_2(x) \le d(x) + d(y) - \Delta - 2$ by Lemma 3.4. If $n_2(x) = d(x) - 2$, then $d(y) = \Delta$, which means that $t = \Delta - 1$. Let G' = G - xv, G' admits an acyclic $(\Delta + 1)$ -edge coloring c. Suppose that $c(xx_i) = i$ for $1 \le i \le s$, $T = C \setminus F_v^c(vy)$. It is clear that $|T| = \Delta + 1 - (d(y) - 1) = 2$.

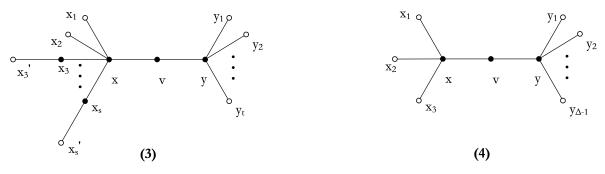


Figure 2. The configurations of Lemmas 3.5 and 3.6.

(1) $n_{\Delta}(x) = 2, n_2(y) = 1.$

We consider the following two cases.

Case 3.6. $T \setminus F_x^c(vx) \neq \emptyset$.

We can recolor vy with α *for* $\alpha \in T \setminus F_x^c(vx)$ *, color vx with* β *for* $\beta \in \{s + 1, ..., \Delta + 1\}$ *(\beta \neq \alpha). Now c can be extended to be an acyclic* ($\Delta + 1$)*-edge coloring of G, a contradiction.*

Case 3.7. $T \setminus F_x^c(vx) = \emptyset$.

That is, $T \subseteq F_x^c(vx) = \{1, 2, ..., s\}.$

(*i*) $T \cap \{3, \ldots, s\} \neq \emptyset$.

Let $\alpha \in T \cap \{3, ..., s\}$. Since $|C \setminus (C(x) \cup C(x_{\alpha}))| \ge \Delta + 1 - (d(x) - 1) - 1 = \Delta + 1 - d(x) \ge 1$, we can color vy with α , color vx with β for $\beta \in C \setminus (C(x) \cup C(x_{\alpha}))$, c can be extended to be an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

 $(ii) T \cap \{3,\ldots,s\} = \emptyset.$

That is, $T = \{1, 2\}$ and $F_y^c(vy) = \{3, 4, ..., \Delta + 1\}$. Note that $c(vy) \in \{1, 2\}$, w.l.o.g., suppose that c(vy)=1. If there is a color $\gamma \in \{s + 1, ..., \Delta + 1\}$ such that G contains no $(1, \gamma)_{(x,v)}$ -bichromatic path via x_1 and y, then we can color vx with γ . In this way G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. So there must exist a $(1, j)_{(x,v)}$ -bichromatic path via x_1 and y for each $j(j \in \{s + 1, ..., \Delta + 1\})$, which implies that $\{s + 1, ..., \Delta + 1\} \subseteq C(x_1) \cap C(y)$. Now we recolor vy with 2, and don't change the colors of the other edges, c is still an acyclic $(\Delta + 1)$ -edge coloring of G - xv. As the same argument above, we have that $\{s + 1, ..., \Delta + 1\} \subseteq C(x_2)$. If there is $i \in \{3, 4, ..., s\}$, such that G contains no $(1, i)_{(x,v)}$ bichromatic path via x_1 and y, then we can color vx with i. Don't change the colors of the other edges, and remove the color of xx_i , c is still an acyclic $(\Delta + 1)$ -edge coloring of $G - xx_i$, now we consider the color of xx_i . W.l.o.g., assume that i = 3.

If $c(x_3x'_3) = j \ge s + 1$, then $|C(x) \cup C(x_3)| \le s + 1 = d(x) \le \Delta$, we can color xx_3 with α for $\alpha \notin (C(x) \cup C(x_3))$, G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

If $c(x_3x'_3) = j \in \{1, 2\}$, then it can be seen from the above argument that for each $\alpha \in \{s+1, ..., \Delta+1\}$, there are $(i, \alpha)_{(x,v)}$ -bichromatic paths (i = 1, 2). So $G - xx_3$ contains no $(i, \alpha)_{(x,x_3)}$ -bichromatic path (i = 1, 2) for each $\alpha \in \{s + 1, ..., \Delta + 1\}$, we can color xx_3 with α , G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

If $c(x_3x'_3) = j = 3$, then we can color xx_3 with α for $\alpha \notin (C(x) \cup C(v))$ since $|C(x) \cup C(v)| \le s + 1 = d(x) < \Delta + 1$, G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

If $c(x_3x'_3) = j \in \{4, ..., s\}$, then we can recolor xx_3 with α for $\alpha \notin (C(x) \cup C(x_j))$ since $|C(x) \cup C(x_j)| \le s+1 = d(x) < \Delta+1$, *G* is acyclically edge $(\Delta+1)$ -colorable, a contradiction. Hence, there are $(1, i)_{(x,v)}$ -bichromatic paths via x_1 and y for each $i \in \{3, 4, ..., s\}$, which implies that $\{1, 3, 4, ..., s\} \subseteq C(x_1)$.

In conclusion, $C(x_1) = C(y) = \{1, 3, 4, ..., \Delta + 1\}$. Now recolor vy with 2, and don't change the colors of the other edges, c is still an acyclic $(\Delta + 1)$ -edge coloring of G - xv. As the same argument above, we have that $C(x_2) = \{2, 3, 4, ..., \Delta + 1\}$. It follows that $F_{x_1}^c(xx_1) = F_{x_2}^c(xx_2) = F_y^c(vy) = \{3, 4, ..., \Delta + 1\}$ and $\{1, 2\} \subseteq F_{y_i}^c(yy_i)$ for $1 \le i \le t$. Then $d(x_1) = d(x_2) = \Delta + 1 - 2 + 1 = \Delta$, $n_2(y) = 1$.

(2) $n_3(y) \le 1$.

By contradiction, assume that $d(y_1) = d(y_2) = 3$. Now exchange the colors between yy_1 and yy_2 , and don't change the colors of the other edges, G - xv has a new acyclic ($\Delta + 1$)-edge coloring ϕ . Let $\phi(yy_1) = \alpha$.

If $\alpha \in \{s + 1, ..., \Delta + 1\}$, then let $\phi(xv) = \alpha$. By symmetry, suppose that $\phi(vy) = 1$, *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

If $\alpha \in \{3, 4, \dots, s\}$, assume that $\alpha = 3$, then let $\phi(xv) = 3$, remove the color of xx_3 , $G - xx_3$ admits an acyclic $(\Delta + 1)$ -edge coloring ϕ' . Let $\phi'(x_3x'_3) = \beta$. It follows from the above argument that there is a $(1, \Delta)_{(x,v)}$ -bichromatic path through x_1 , so $G - xx_3$ contains no $(1, \Delta)_{(x,x_3)}$ -bichromatic path via x_1 and x'_3 . Similarly, $G - xx_3$ contains no $(2, \Delta)_{(x,x_3)}$ -bichromatic path via x_2 and x'_3 . If $\beta \in \{1, 2\}$, then let $\phi'(xx_3) = \Delta$, *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. If $\beta \in \{4, \dots, s\}$, then let $\phi'(xx_3) = \gamma$ for $\gamma \notin (\phi'(x) \cup \phi'(x_\beta))$, *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. If $\beta \ge s + 1$, then let $\phi'(xx_3) = \gamma$ for $\gamma \notin (\phi'(x) \cup \phi'(x_3))$, *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. If $\beta \ge s + 1$, then let $\phi'(xx_3) = \gamma$ for $\gamma \notin (\phi'(x) \cup \phi'(x_3))$, *G* is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. If $\beta \ge s + 1$, then let $\pi_3(y) \le 1$.

Lemma 3.6. For 2-vertex v, let $N(v) = \{x, y\}$. If d(x) = 4 and $n_2(x) + n_3(x) = 2$, then $n_{\Delta}(x) = 2$, $n_2(y) = 1, n_3(y) \le 1, d(y) = \Delta$.

Proof. Note that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2 = d(y) - \Delta + 2$ by Lemma 3.4. It is clear that $d(y) = \Delta \operatorname{since} n_2(x) + n_3(x) = 2$. Let $N(x) = \{v, x_1, x_2, x_3\}$, $N(y) = \{v, y_1, y_2, \dots, y_{\Delta-1}\}$ (See Figure 2(4)). If $n_2(x) = d(x) - 2 = 2$, then $n_{\Delta}(x) = 2$, $n_2(y) = 1$ and $n_3(y) \le 1$ by Lemma 3.5. We prove the case $n_2(x) = 1$ and $n_3(x) = 1$. Suppose that $d(x_3) = 3$. Let G' = G - xv, by the minimality of G, G' admits an acyclic ($\Delta + 1$)-edge coloring c. Assume that $c(xx_i) = i$ for $1 \le i \le 3$, $T = C \setminus F_y^c(vy)$. Clearly, $|T| = \Delta + 1 - (\Delta - 1) = 2$.

(1) $n_{\Delta}(x) = 2, n_2(y) = 1.$

We consider the following two cases.

Case 3.8. $T \setminus F_x^c(vx) \neq \emptyset$.

We can recolor vy with α for $\alpha \in T \setminus F_x^c(vx)$, color vx with β for $\beta \in \{4, \ldots, \Delta + 1\}$ ($\beta \neq \alpha$), c is an acyclic ($\Delta + 1$)-edge coloring of G, a contradiction.

Case 3.9. $T \setminus F_x^c(vx) = \emptyset$.

That is, $T \subseteq F_x^c(vx) = \{1, 2, 3\}$. *Since* $|T| = \Delta + 1 - (\Delta - 1) = 2$, $\{1, 2, 3\} \setminus T \neq \emptyset$. *As the same argument of Case 2 in Lemma 3.5, we have* $n_{\Delta}(x) = 2$, $n_2(y) = 1$ *by setting s* = 3.

(2) $n_3(y) \le 1$.

By contradiction, suppose that $d(y_1) = d(y_2) = 3$. It follows from the above argument that $F_{y_1}^c(yy_1) = F_{y_2}^c(yy_2) = \{1, 2\}$. By the symmetry, assume that c(vy) = 1, exchange the colors between yy_1 and yy_2 , G - xv has a new acyclic ($\Delta + 1$)-edge coloring ϕ . Let $\phi(yy_1) = \alpha$.

If $\alpha \in \{4, \dots, \Delta + 1\}$, then let $\phi(vx) = \alpha$, G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

If $\alpha = 3$, then let $\phi(xv) = 3$, and remove the color of xx_3 , $G - xx_3$ has an acyclic $(\Delta + 1)$ -edge coloring ϕ' . It follows from the above argument that there are $(i, \gamma)_{(x,v)}$ -bichromatic paths under c of G - xv for i = 1, 2 and $\gamma \in \{4, 5, ..., \Delta + 1\}$. So $G - xx_3$ contains no $(i, \gamma)_{(x,x_3)}$ -bichromatic path. If $|\phi'(x) \cap \phi'(x_3)| = 0$, then $|\phi'(x) \cup \phi'(x_3)| \le 3 + 2 = 5 < \Delta + 1$. Let $\phi'(xx_3) = \beta$ for $\beta \in C \setminus (\phi'(x) \cup \phi'(x_3))$, ϕ' can be extended to G, a contradiction. If $|\phi'(x) \cap \phi'(x_3)| = 1$, then suppose $1 \in \phi'(x_3)$. Let $\phi'(xx_3) = \beta$ for $\beta \in \{4, ..., \Delta + 1\} \setminus \phi'(x_3)$, ϕ' can be extended to G, a contradiction. If $|\phi'(x) \cap \phi'(x_3)| = 1$, then suppose $1 \in \phi'(x_3)$. Let $\phi'(xx_3) = \beta$ for $\beta \in \{4, ..., \Delta + 1\} \setminus \phi'(x_3)$, ϕ' can be extended to G, a contradiction. If $|\phi'(x) \cap \phi'(x_3)| = 2$, then $\phi'(x) \cap \phi'(x_3) = \{1, 2\}$, we can let $\phi'(xx_3) = \beta$ for $\beta \in \{4, ..., \Delta + 1\}$, ϕ' can be extended to G, a contradiction. This implies that $n_3(y) \le 1$.

Next we discuss the number of 3⁻-vertex in the neighbors of Δ -vertex.

Lemma 3.7. For $d(v) = \Delta$, if $n_2(v) \ge \Delta - 3$, then $n_2(v) + n_3(v) \le \Delta - 2$.

Proof. Assume that $v_4 \in N(v)$, $N(v_4) = \{v, v_4'\}$. By Lemma 3.4, $n_2(v) \le d(v) + d(v_4') - \Delta - 2 = d(v_4') - 2 \le \Delta - 2$, $n_2(v) + n_3(v) \le d(v) + d(v_4') - \Delta - 1 = d(v_4') - 1 \le \Delta - 1$; if $n_2(v) = \Delta - 2$, then $d(v_4') = \Delta$; if $n_2(v) + n_3(v) = \Delta - 1$, then $d(v_4') = \Delta$. Note that $n_{\Delta}(v) = 2$ when $n_2(v) = \Delta - 2$ by Lemma 3.5. Namely $n_3(v) = 0$, $n_2(v) + n_3(v) = \Delta - 2 + 0 = \Delta - 2$.

Otherwise $n_2(v) = \Delta - 3$. By contradiction, suppose that $n_2(v) + n_3(v) \ge \Delta - 1$. We have that $n_2(v) + n_3(v) = \Delta - 1$ since $n_2(v) + n_3(v) \le \Delta - 1$. Let $N(v) = \{v_1, v_2, \dots, v_{\Delta}\}$, $N(v_i) = \{v, x_i\}$ for $4 \le i \le \Delta$. Assume that $d(v_2) = d(v_3) = 3$ (See Figure 3(5)). Let $G' = G - vv_{\Delta}$, by the minimality of G, G' admits an acyclic ($\Delta + 1$)-edge coloring c. Let $c(vv_i) = i$ for $1 \le i \le \Delta - 1$, $T = C \setminus F_{x_{\Delta}}^c(v_{\Delta}x_{\Delta})$. Since $n_2(v) + n_3(v) = \Delta - 1$, it follows from the above argument that $d(x_{\Delta}) = d(x_{\Delta-1}) = \ldots = d(x_4) = \Delta$, $|T| = \Delta + 1 - (\Delta - 1) = 2$.

We consider the following two cases.

Case 3.10. $T \setminus C(v) \neq \emptyset$.

We can recolor $v_{\Delta}x_{\Delta}$ with α for $\alpha \in T \setminus C(v)$, color vv_{Δ} with β for $\beta \in \{\Delta, \Delta + 1\}(\beta \neq \alpha)$, c is an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

Case 3.11. $T \setminus C(v) = \emptyset$. That is, $T \subseteq C(v) = \{1, 2, ..., \Delta - 1\}$.

(*i*) $T \cap \{4, 5, \ldots, \Delta - 1\} \neq \emptyset$.

We can color $v_{\Delta}x_{\Delta}$ with i for $i \in T \cap \{4, 5, ..., \Delta - 1\}$, color vv_{Δ} with j for $j \in \{\Delta, \Delta + 1\} \setminus \{c(v_ix_i)\}$, G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

 $(ii) T \cap \{4, 5, \ldots, \Delta - 1\} = \emptyset.$

That is, $T \subseteq \{1, 2, 3\}$. Note that $c(v_{\Delta}x_{\Delta}) \in T \subseteq \{1, 2, 3\}$. When $c(v_{\Delta}x_{\Delta}) = 1$, if there exists a color $\gamma \in \{\Delta, \Delta + 1\}$, such that G contains no $(1, \gamma)_{(v,v_{\Delta})}$ -bichromatic path via x_{Δ} and v_1 , then let $c(vv_{\Delta}) = \gamma$, G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. Hence, G contains $(1, i)_{(v,v_{\Delta})}$ -bichromatic paths

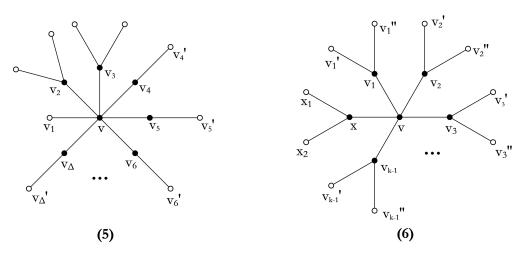


Figure 3. The configurations of Lemmas 3.7 and 3.8.

via x_{Δ} and v_1 for each $i \in \{\Delta, \Delta + 1\}$. This implies that $\{\Delta, \Delta + 1\} \subseteq C(v_1) \cap C(x_{\Delta})$. If $2 \in T$, then we can recolor $v_{\Delta}x_{\Delta}$ with 2, c is still an acyclic $(\Delta + 1)$ -edge coloring of $G - vv_{\Delta}$, the same argument shows that $C(v_2) = \{2, \Delta, \Delta + 1\}$. If $3 \in T$, then we can recolor $v_{\Delta}x_{\Delta}$ with 3, c is still an acyclic $(\Delta + 1)$ -edge coloring of $G - vv_{\Delta}$, the same argument shows that $C(v_3) = \{3, \Delta, \Delta + 1\}$. (a) $1 \notin T$. Namely, $T = \{2, 3\}$.

It follows from the above argument that $F_{v_2}^c(vv_2) = F_{v_3}^c(vv_3) = \{\Delta, \Delta + 1\}$. Now exchange the colors between vv_2 and vv_3 , we can color $v_{\Delta}x_{\Delta}$ with α for $\alpha \in T$, color vv_{Δ} with Δ , G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

(*b*) $1 \in T$. Suppose that $T = \{1, 2\}$.

It follows from the above argument that $\{\Delta, \Delta + 1\} \subseteq C(v_1)$ and $F_{v_2}^c(vv_2) = \{\Delta, \Delta + 1\}$. Now let $c(v_{\Delta}x_{\Delta}) = 2, c(vv_{\Delta}) = 7$, remove the color of vv_7 , c is still an acyclic $(\Delta + 1)$ -edge coloring of $G - vv_7$. Let $T' = C \setminus F_{x_7}^c(v_7x_7)$, it is clear that $|T'| = \Delta + 1 - (\Delta - 1) = 2$. It follows from the above argument that $T' \subseteq \{1, 2, 3\}$, and $1 \in T'$. Assume that $c(v_7x_7) = 1$. Since there is a $(1, \Delta)_{(v,v_{\Delta})}$ -bichromatic path through v_1 , $G - vv_7$ contains no $(1, \Delta)_{(v,v_7)}$ -bichromatic path via v_1 and x_7 , we can color vv_7 with Δ , G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction.

The following Lemma shows if a *k*-vertex($k \in \{4, 5, 6\}$) has no 2-neighbor, then $n_3(v) < k$.

Lemma 3.8. Let v be a k-vertex, with $k \in \{4, 5, 6\}$. If $n_2(v) = 0$, then $n_3(v) < k$.

Proof. By contradiction, suppose that $n_3(v) = k$. Let $N(v) = \{x, v_1, v_2, v_3, v_4, v_{k-1}\}$, $N(x) = \{v, x_1, x_2\}$ and $N(v_i) = \{v, v'_i, v''_i\}$ $(1 \le i \le k - 1)$ (See Figure 3(8)). Let G' = G - xv, by the minimality of G, G' admits an acyclic $(\Delta + 1)$ -edge coloring c. Let $c(vv_i) = i$ for $1 \le i \le k - 1$. We consider the following three cases.

Case 3.12. $|C(x) \cap C(v)| = 0$.

Note that $|C \setminus (C(x) \cup C(v))| = \Delta + 1 - 2 - (k - 1) = \Delta - k > 0$, we can color xv with α for $\alpha \in C \setminus (C(x) \cup C(v))$, c is an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

Case 3.13. $|C(x) \cap C(v)| = 1$.

AIMS Mathematics

W.l.o.g., assume that $c(xx_1) = c(vv_1) = 1$, $c(xx_2) = k$. If there exists a color $\gamma \in \{k + 1, ..., \Delta + 1\}$ such that G contains no $(1, \gamma)_{(x,v)}$ -bichromatic path, then we can color xv with γ . In this way G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. So there must exist $(1, \alpha)_{(x,v)}$ -bichromatic paths for each $\alpha \in \{k + 1, ..., \Delta + 1\}$, which implies that $\{k + 1, ..., \Delta + 1\} \subseteq C(x_1) \cap C(v_1)$. Thus, $d(v_1) \ge$ $\Delta + 1 - k + 1 \ge \Delta - 4 \ge 4$, a contradiction.

Case 3.14. $|C(x) \cap C(v)| = 2$.

W.l.o.g., assume that $c(xx_1) = c(vv_1) = 1$, $c(xx_2) = c(vv_2) = 2$.

(*i*) $\Delta \ge 9$.

Since $d(v_1) = d(v_2) = 3$ and $\Delta \ge 9$, we have that $\{k, \ldots, \Delta + 1\} \setminus (C(v_1) \cup C(v_2)) \ne \emptyset$. Let $\beta \in \{k, \ldots, \Delta + 1\} \setminus (C(v_1) \cup C(v_2))$. Note that G contains no $(i, \beta)_{(x,v)}$ -bichromatic path for i = 1, 2, we can color xv with β , c is an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

 $(ii) \Delta = 8.$

(*a*) $k \in \{4, 5\}.$

Since $d(v_1) = d(v_2) = 3$ and $\Delta \ge 8$, we have that $\{k, \ldots, \Delta + 1\} \setminus (C(v_1) \cup C(v_2)) \ne \emptyset$. Let $\beta \in \{k, \ldots, \Delta + 1\} \setminus (C(v_1) \cup C(v_2))$. Note that G contains no $(i,\beta)_{(x,v)}$ -bichromatic path for i = 1, 2, we can color xv with β . In this way c is an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction. (b) k = 6.

If there exists a color $\gamma \in \{6, 7, 8, 9\}$ such that G contains no $(i, \gamma)_{(x,v)}$ -bichromatic path for i = 1, 2, then we can color xv with γ . In this way G is acyclically edge $(\Delta + 1)$ -colorable, a contradiction. So $\{6, 7, 8, 9\} \subseteq (C(v_1) \cup C(v_2))$. Since $d(v_1) = d(v_2) = 3$, we have that $C(v_1) \cup C(v_2) = \{1, 2, 6, 7, 8, 9\}$ and $c(v_1v'_1) \notin C(v_2), c(v_1v''_1) \notin C(v_2)$. We can recolor vv_2 with α for $\alpha \in \{c(v_1v'_1), c(v_1v''_1)\}$, don't change the colors of the other edges, G' has a new acyclic $(\Delta + 1)$ -edge coloring c', and $|C'(x) \cap C'(v)| = 1$. By the similar argument in case 2, we can get an acyclic $(\Delta + 1)$ -edge coloring of G, a contradiction.

3.2. Discharging

Note that *G* is a minimal counterexample to Theorem 1.1, and *G* is a connected planar graph. By Euler's formula |V| + |F| - |E| = 2 and the relation $\sum_{v \in V(G)} d(v) = \sum_{f \in F(G)} d(f) = 2|E(G)|$, we can derive the identity

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8.$$

We define the initial charge function by $\omega(v) = d(v) - 4$ for $v \in V(G)$ and $\omega(f) = d(f) - 4$ for $f \in F(G)$. It follows from the identity that $\sum_{x \in V(G) \cup F(G)} \omega(x) = -8$. According to the structures of *G*, we design some discharging rules and redistribute charge such that the total amount of charge has not changed. Once the discharging is finished, a new charge function $\omega'(x)$ is produced. Next, we prove $\omega'(x) \ge 0$ for all $x \in V(G) \cup F(G)$. Therefore, we can get the following contradiction

$$0 \leq \sum_{x \in V(G) \cup F(G)} \omega'(x) = \sum_{x \in V(G) \cup F(G)} \omega(x) = -8.$$

Hence, we demonstrate that the counterexample can not exist and Theorem 1.1 is proved. Discharging rules:

(R1) Every 5⁺-face f sends $\frac{d(f)-4}{d(f)}$ to each incident vertex.

AIMS Mathematics

(R2) Every 4-vertex v sends $\frac{1}{5}$ to each adjacent 3-vertex, and then distributes the remaining extra charge evenly among all adjacent 2-vertices.

(R3) Every 5-vertex v sends $\frac{2}{5}$ to each adjacent 3-vertex, and then distributes the remaining extra charge evenly among all adjacent 2-vertices.

(R4) Every 6⁺-vertex v sends $\frac{3}{5}$ to each adjacent 3-vertex, and then distributes the remaining extra charge evenly among all adjacent 2-vertices.

In the following, we will prove that $\omega'(v) \ge 0$ for each $v \in V(G)$. Observe that $\delta(G) \ge 2$ by Lemma 3.1.

(1) d(v) = 3, $\omega(v) = -1$.

Let $N(v) = \{v_1, v_2, v_3\}$. We have that $d(v_1) + d(v_2) + d(v_3) \ge \Delta + 4 \ge 12$ by Lemma 3.3. Since the neighbors of 2-vertex are both 4⁺-vertices, then $n_2(v) = 0$, that is $d(v_i) \ge 3$ for i = 1, 2, 3, and $n_3(v) \le 2$.

If $n_3(v) = 2$, suppose that $d(v_1) = d(v_2) = 3$, then $d(v_3) \ge 6$. This implies that $\omega'(v) \ge -1 + 2 \times \frac{1}{5} + \frac{3}{5} = 0$ by R1, R4. If $n_3(v) = 1$, then either $n_4(v) = 1$, $n_{5^+}(v) = 1$ or $n_4(v) = 0$, $n_{5^+}(v) = 2$. By R1, R2, R3, R4, we have that $\omega'(v) \ge -1 + 2 \times \frac{1}{5} + \min\{\frac{1}{5} + \frac{2}{5}, 2 \times \frac{2}{5}, \frac{2}{5} + \frac{3}{5}, 2 \times \frac{3}{5}\} = 0$. If $n_3(v) = 0$, then $n_{4^+}(v) = 3$. By *R*1, *R*4, $\omega'(v) \ge -1 + 2 \times \frac{1}{5} + 3 \times \frac{1}{5} = 0$.

(2) d(v) = 4, $\omega(v) = 0$.

If $n_2(v) \neq 0$, then $n_2(v) + n_3(v) \le 2$ by Lemma 3.4.

This means that $\omega'(v) \ge 0 + 3 \times \frac{1}{5} - \frac{1}{5}n_3(v) - \frac{0 + 3 \times \frac{1}{5} - \frac{1}{5}n_3(v)}{n_2(v)} \times n_2(v) = 0$ by R1, R2.

If $n_2(v) = 0$, then $n_3(v) \le 3$ by Lemma 3.8, which implies that $\omega'(v) \ge 0 + 3 \times \frac{1}{5} - 3 \times \frac{1}{5} = 0$ by *R*1, *R*4.

(3) d(v) = 5, $\omega(v) = 1$.

If $n_2(v) \neq 0$, then $\omega'(v) \ge 1 + 4 \times \frac{1}{5} - \frac{2}{5}n_3(v) - \frac{1+4\times\frac{1}{5}-\frac{2}{5}n_3(v)}{n_2(v)} \times n_2(v) = 0$ by R1, R3. If $n_2(v) = 0$, then $n_3(v) \le 4$ by Lemma 3.8. This implies that $\omega'(v) \ge 1 + 4 \times \frac{1}{5} - 4 \times \frac{2}{5} = \frac{1}{5} > 0$ by *R*1, *R*3.

(4) d(v) = 6, $\omega(v) = 2$.

If $n_2(v) \neq 0$, then $\omega'(v) \ge 2 + 5 \times \frac{1}{5} - \frac{3}{5}n_3(v) - \frac{2+5\times\frac{1}{5} - \frac{3}{5}n_3(v)}{n_2(v)} \times n_2(v) = 0$ by R1, R4. If $n_2(v) = 0$, then $n_3(v) \le 5$ by Lemma 3.8. This implies that $\omega'(v) \ge 2 + 5 \times \frac{1}{5} - 5 \times \frac{3}{5} = 0$ by R1, R4. (5) $d(v) \ge 7$, $\omega(v) = d(v) - 4$.

If $n_2(v) \neq 0$, then $\omega'(v) \ge d(v) - 4 + \frac{1}{5} \times (d(v) - 1) - \frac{3}{5}n_3(v) - \frac{d(v) - 4 + \frac{1}{5} \times (d(v) - 1) - \frac{3}{5}n_3(v)}{n_2(v)} \times n_2(v) = 0$ by *R*1, *R*4.

If $n_2(v) = 0$, then $\omega'(v) \ge d(v) - 4 + \frac{1}{5} \times (d(v) - 1) - \frac{3}{5}n_3(v) \ge \frac{6}{5}d(v) - \frac{21}{5} - \frac{3}{5}d(v) = \frac{3}{5}d(v) - \frac{21}{5} \ge 0$ by *R*1, *R*4.

(6) $d(v) = 2, \omega(v) = -2.$

For convenience, let $\tau(u \rightarrow v)$ denote the charge transferred out of u into v according to the above rules, $u, v \in V(G)$. Let $N(v) = \{x, y\}$, then $n_2(x) \le d(x) - 2$, $n_2(y) \le d(y) - 2$ by Lemma 3.4.

(6.1) If one of vertices in $\{x, y\}$, such as x, has $n_2(x)=d(x)-2$, then $n_{\Delta}(x)=2$, $n_2(y)=1$, $n_3(y) \leq 1$ and $d(y)=\Delta$ by Lemma 3.5. By R1 and R4, we have that $\tau(y \rightarrow v) \geq \frac{\omega(y)+\frac{1}{5}\times(d(y)-1)-\frac{3}{5}n_3(y)}{n_3(y)} \geq \frac{\omega(y)+\frac{1}{5}\times(d(y)-1)-\frac{3}{5}n_3(y)}{n_3(y)}$ $\frac{d(y)-4+\frac{1}{5}d(y)-\frac{1}{5}-1\times\frac{3}{5}}{1} = \frac{6}{5}d(y) - \frac{24}{5} = \frac{6}{5}\times(\Delta-4) \ge \frac{24}{5}.$ This implies that $\omega'(v) \ge -2 + \frac{1}{5} + \frac{24}{5} = 3 > 0$ by R1. (6.2) $n_2(x) \le d(x) - 3$, $n_2(y) \le d(y) - 3$. Suppose that $d(x) \le d(y)$. $(6.2.1) d(x) \ge 9.$

Observe that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 1$ by Lemma 3.4. Note that $\tau(x \to y) \ge d(x) + d(y) + d(y) + \Delta - 1$

 $\frac{\omega(x) + \frac{1}{5} \times (d(x) - 1) - \frac{3}{5}n_3(x)}{n_2(x)} \ge \frac{d(x) - 4 + \frac{1}{5}d(x) - \frac{1}{5} - \frac{3}{5} \times (d(x) - 1 - n_2(x))}{n_2(x)} = \frac{\frac{3}{5}d(x) - \frac{18}{5} + \frac{3}{5}n_2(x)}{n_2(x)} = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{d(x) - 3}) = \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 6}{n_2(x)}) = \frac{3}{5} \times (1$

Similarly, $\tau(y \to v) \ge \frac{3}{5} \times (2 - \frac{3}{d(x)-3})$. Since $d(x) \ge 9$, $d(x) \le d(y)$, we have $\tau(x \to v) \ge \frac{9}{10}$, $\tau(y \to v) \ge \frac{9}{10}$. This implies that $\omega'(v) \ge -2 + \frac{1}{5} + 2 \times \frac{9}{10} = 0$ by *R*1. (6.2.2) d(x) = 8, then $n_2(x) \le d(x) - 3 = 5$.

(a)
$$\Delta \ge 9$$
.

Observe that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2 \le d(x) - 2$ by Lemma 3.4. Note that $\tau(x \to v) \ge \frac{\omega(x) + \frac{1}{5} \times (d(x) - 1) - \frac{3}{5}n_3(x)}{n_2(x)} \ge \frac{d(x) - 4 + \frac{1}{5} \times (d(x) - 1) - \frac{3}{5} \times (d(x) - 2 - n_2(x))}{n_2(x)} = \frac{3}{5} \times (1 + \frac{d(x) - 5}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{d(x) - 5}{d(x) - 3}) = \frac{3}{5} \times (2 - \frac{2}{d(x) - 3}) = \frac{24}{25}$ by *R*1, *R*4.

If $d(y) = d(x) < \Delta$, then we have $\tau(y \to v) \ge \frac{3}{5} \times (1 + \frac{3}{n_2(y)}) \ge \frac{3}{5} \times (1 + \frac{3}{5}) = \frac{24}{25}$ by the similar argument above. This implies that $\omega'(v) \ge -2 + \frac{1}{5} + 2 \times \frac{24}{25} = \frac{3}{25} > 0$ by *R*4.

If $d(y) \ge 9$, then we have $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 1 \le d(y) - 2$, $n_2(y) \le d(y) - 3$ by Lemma 3.4. This means that $\tau(y \to v) \ge \frac{3}{5} \times (1 + \frac{d(y) - 5}{n_2(y)}) \ge \frac{3}{5} \times (2 - \frac{2}{d(y) - 3})$ by R1 and R4. $\tau(y \to v) \ge 1$ since $d(y) \ge 9$. So $\omega'(v) \ge -2 + \frac{1}{5} + \frac{24}{25} + 1 = \frac{2}{25} > 0$ by R4. (b) $\Delta = 8$.

Now we have $d(x) = d(y) = \Delta = 8$. Observe that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 1 \le d(x) - 1 = 7$ by Lemma 3.4. If $n_2(x) \le 4$, then $\tau(x \to v) \ge \frac{3}{5} \times (1 + \frac{2d(x) - 14}{n_2(x)}) \ge \frac{3}{5} \times (1 + \frac{2}{4}) = \frac{9}{10}$ by R1, R4. Similarly, if $n_2(y) \le 4$, then $\tau(y \to v) \ge \frac{9}{10}$. If $n_2(x) \ge 5$, then we have $n_2(x) = 5$ due to $n_2(x) \le d(x) - 3 = 5$. Observe that $n_2(x) + n_3(x) \le \Delta - 2 = 6$ by Lemma 3.7. This implies that $\tau(x \to v) \ge \frac{3}{5} \times (1 + \frac{2d(x) - 13}{n_2(x)}) = \frac{3}{5} \times (1 + \frac{3}{5}) = \frac{24}{25}$ by R1, R4. Similarly, if $n_2(y) \le 5$, then $\tau(y \to v) \ge \frac{24}{25}$. Hence, $\omega'(v) \ge -2 + \frac{1}{5} + \min\{2 \times \frac{9}{10}, 2 \times \frac{24}{25}, \frac{9}{10} + \frac{24}{25}\} = 0$ by R1. (6.2.3) d(x) = 7, then $n_2(x) \le d(x) - 3 = 4$.

Observe that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2 \le 5$ by Lemma 3.4. Note that $\tau(x \to v) \ge \frac{3}{5} \times (1 + \frac{2d(x) - 12}{n_2(x)}) \ge \frac{9}{10}$ by R1, R4.

If d(y) = 7, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 2 = 12 - \Delta \le 4$, $n_2(y) \le d(y) - 3 = 4$ by Lemma 3.4. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (4 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{2d(y) - 11}{n_2(y)}) \ge \frac{3}{5} \times (1 + \frac{3}{4}) = \frac{21}{20}$ by R1, R4. We have that $\omega'(v) \ge -2 + \frac{1}{5} + \frac{9}{10} + \frac{21}{20} = \frac{3}{20} > 0$ by R1.

If $d(y) \ge 8$, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 1 \le d(y) - 2$, $n_2(y) \le d(y) - 3$ by Lemma 3.4.

Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (d(y) - 2 - n_2(y))}{n_2(y)} \ge \frac{3}{5} \times (1 + \frac{d(y) - 5}{n_2(y)}) \ge \frac{3}{5} \times (2 - \frac{2}{d(y) - 3})$ by R1, R4. Since $d(y) \ge 8$, $\tau(y \to v) \ge \frac{24}{25}$, we have that $\omega'(v) \ge -2 + \frac{1}{5} + \frac{9}{10} + \frac{24}{25} = \frac{3}{50} > 0$ by R1.

(6.2.4) d(x) = 6, then $n_2(x) \le d(x) - 3 = 3$.

By Lemma 3.4, we have that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2 \le 4$. Note that $\tau(x \to v) \ge \frac{3}{5} \times (1 + \frac{2d(x) - 11}{n_2(x)}) \ge \frac{4}{5}$ by *R*1, *R*4.

If d(y) = 6, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 2 = 10 - \Delta \le 2$ by Lemma 3.4. So $n_2(y) \le 2$. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (2 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{2d(y) - 9}{n_2(y)}) \ge \frac{3}{5} \times (1 + \frac{3}{2}) = \frac{3}{2}$ by R1, R4. This means that $\omega'(v) \ge -2 + \frac{1}{5} + \frac{4}{5} + \frac{3}{2} = \frac{1}{2} > 0$ by R1.

If d(y) = 7, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 2 = 11 - \Delta \le 3$ by Lemma 3.4. So $n_2(y) \le 3$. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (3 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{2d(y) - 10}{n_2(y)}) \ge \frac{3}{5} \times (1 + \frac{4}{3}) = \frac{7}{5}$ by R1, R4. This means that $\omega'(v) \ge -2 + \frac{1}{5} + \frac{4}{5} + \frac{7}{5} = \frac{2}{5} > 0$ by R1.

AIMS Mathematics

If $d(y) \ge 8$, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 1 \le d(y) - 3$, $n_2(y) \le d(y) - 3$ by Lemma 3.4.

Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (d(y) - 3 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{d(y) - 4}{n_2(y)}) \ge \frac{3}{5} \times (2 - \frac{1}{d(y) - 3})$ by R1, R4. Since $d(y) \ge 8$, $\tau(y \to v) \ge \frac{27}{25}$, we have that $\omega'(v) \ge -2 + \frac{1}{5} + \frac{4}{5} + \frac{27}{25} = \frac{2}{25} > 0$ by R1. (6.2.5) d(x) = 5, then $n_2(x) \le d(x) - 3 = 2$.

By Lemma 3.4, we have that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2 \le 3$. Note that $\tau(x \to y) \ge d(x) + d(y) + d(y) + d(y) \le d(x) + d(y) \le d(y)$ $\frac{\omega(x) + \frac{1}{5} \times (d(x) - 1) - \frac{2}{5}n_3(x)}{n_2(x)} \ge \frac{1 + 4 \times \frac{1}{5} - \frac{2}{5} \times (3 - n_2(x))}{n_2(x)} = \frac{2}{5} + \frac{3}{5} \times \frac{1}{n_2(x)} \ge \frac{2}{5} + \frac{3}{5} \times \frac{1}{2} = \frac{7}{10} \text{ by } R1, R3. \text{ Observe that } d(x) + d(y) \ge \Delta + 3 \text{ by Lemma 3.3, so } d(y) \ge \Delta + 3 - d(x) \ge 6.$

If d(y) = 6, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 2 = 9 - \Delta \le 1$ by Lemma 3.4, which means that $n_2(y) = 1$, $n_3(y) = 0$. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} = \frac{2 + 5 \times \frac{1}{5} - 0 \times \frac{3}{5}}{1} = 3$ by R1, R4. So $\omega'(v) \ge -2 + \frac{1}{5} + \frac{7}{10} + 3 = \frac{19}{10} > 0$ by *R*1.

If d(y) = 7, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 2 = 10 - \Delta \le 2$ by Lemma 3.4. So $n_2(y) \le 2$. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (2 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{5}{n_2(y)}) \ge \frac{3}{5} \times (1 + \frac{5}{2}) = \frac{21}{10}$ by R1, R4. Hence, $\omega'(v) \ge -2 + \frac{1}{5} + \frac{7}{10} + \frac{21}{10} = 1 > 0$ by R1.

If $d(y) \ge 8$, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 1 \le d(y) - 4$ by Lemma 3.4. So $n_2(y) \le d(y) - 4$. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 4 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{d(y) - 3}{n_2(y)}) \ge \frac{3}{5} \times (2 + \frac{1}{d(y) - 4})$ by R1, R4. Observe that $\tau(y \to v) > \frac{6}{5}$ since $d(y) \ge 8$. Then $\omega'(v) > -2 + \frac{1}{5} + \frac{7}{10} + \frac{6}{5} = \frac{1}{10} > 0$ by *R*1.

(6.2.6) d(x) = 4

By Lemma 3.4, we have that $n_2(x) + n_3(x) \le d(x) + d(y) - \Delta - 2 \le 2$. (a) $n_2(x) + n_3(x) = 2$.

By Lemma 3.6, we have that $n_{\Delta}(x) = 2$, $n_2(y) = 1$, $n_3(y) \le 1$, and $d(y) = \Delta$. Note that $\tau(y \rightarrow z) = 0$. $v) \geq \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{1} \geq \frac{d(y) - 4 + \frac{1}{5}d(y) - \frac{1}{5} - 1 \times \frac{3}{5}}{1} = \frac{6}{5}d(y) - \frac{24}{5} = \frac{6}{5}(\Delta - 4) \geq \frac{24}{5}$ by R1, R4. So $\omega'(v) \geq \frac{1}{5}d(y) = \frac{1}{5}d(y) + \frac{1}{5}d($ $-2 + \frac{1}{5} + \frac{24}{5} = 3 > 0$ by *R*1.

(b) $n_2(x) + n_3(x) \le 1$. That is $n_2(x) = 1$, $n_3(x) = 0$. Note that $\tau(x \to v) \ge \frac{\omega(x) + \frac{1}{5} \times (d(x) - 1) - \frac{1}{5}n_3(x)}{n_2(x)} \ge \frac{0 + 3 \times \frac{1}{5} - 0 \times \frac{1}{5}}{1} = \frac{3}{5}$ by R1, R2. Observe that $d(x) + d(y) \ge \Delta + 3$ by Lemma 3.3, so $d(y) \ge \Delta + 3 - d(x) \ge 7$.

If d(y) = 7, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 2 = 9 - \Delta \le 1$ by Lemma 3.4, which means that $n_2(y) = 1$, $n_3(y) = 0$. Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} = \frac{3 + 6 \times \frac{1}{5} - 0 \times \frac{3}{5}}{1} = \frac{21}{5}$ by R1, R4. So $\omega'(v) \ge -2 + \frac{1}{5} + \frac{3}{5} + \frac{21}{5} = 3 > 0$ by *R*1.

If $d(y) \ge 8$, then we have that $n_2(y) + n_3(y) \le d(x) + d(y) - \Delta - 1 \le d(y) - 5$ by Lemma 3.4. Hence $n_2(\mathbf{y}) \le d(\mathbf{y}) - 5.$

Note that $\tau(y \to v) \ge \frac{\omega(y) + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5}n_3(y)}{n_2(y)} \ge \frac{d(y) - 4 + \frac{1}{5} \times (d(y) - 1) - \frac{3}{5} \times (d(y) - 5 - n_2(y))}{n_2(y)} = \frac{3}{5} \times (1 + \frac{d(y) - 2}{n_2(y)}) \ge \frac{3}{5} \times (2 + \frac{3}{d(y) - 5})$ by *R*1, *R*4. We have that $\tau(y \to v) > \frac{6}{5}$ since $d(y) \ge 8$. Hence, $\omega'(v) > -2 + \frac{1}{5} + \frac{3}{5} + \frac{6}{5} = 0$ by *R*1. After R1 - R4, we get $\omega'(v) \ge 0$, for all $v \in V(G)$. For all $f \in F(G)$, if d(f) = 4, then $\omega'(f) = \omega(f) = d(f) - 4 = 0$. If $d(f) \ge 5$, then we have $\omega'(f) = d(f) - 4 - \frac{d(f) - 4}{d(f)} \times d(f) = 0$ by R4.

In summary, we get the following contradictory formula:

$$-8 = \sum_{x \in V(G) \cup F(G)} \omega(x) = \sum_{x \in V(G) \cup F(G)} \omega'(x) \ge 0.$$

The above contradiction indicates that G does not exist, so Theorem 1.1 is true.

AIMS Mathematics

4. Conclusions

In this paper, we consider the acyclic chromatic index of planar graphs without 3-cycles and intersecting 4-cycles and proved that such graphs have $\chi'_{a}(G) \leq \Delta + 1$ if $\Delta(G) \geq 8$. A natural problem in context of our main result is the following:

What is the optimal constant *c* such that $\chi'_{a}(G) \leq \Delta(G) + 1$ for every planar graph *G* with $g(G) \geq c$?

Acknowledgments

This work was supported by National Natural Science Foundations of China (Grant Nos. 11771403 and 11901243)

Conflict of interest

The authors declare no conflicts of interest.

References

- 1. N. Alon, C. McDiarmid, B. Reed, Acyclic coloring of graphs, *Random Struct. Algor.*, **2** (1991), 277–288. http://dx.doi.org/10.1002/rsa.3240020303
- 2. M. Basavaraju, L. Chandran, N. Cohen, F. Havet, T. Mülle, Acyclic edge-coloring of planar graphs, *SIAM J. Discrete Math.*, **25** (2011), 463–478. http://dx.doi.org/10.1137/090776676
- 3. J. Fiamčik, The acyclic chromatic class of a graph(Russian), Math. Slovaca, 28 (1978), 139–145.
- 4. P. Fialho, B. de Lima, A. Procacci, A new bound on the acyclic edge chromatic number, *Discrect Math.*, **343** (2020), 112037. http://dx.doi.org/10.1016/j.disc.2020.112037
- 5. A. Fiedorowicz, Acyclic edge colouring of plane graphs, *Discrete Appl. Math.*, **160** (2012), 1513–1523. http://dx.doi.org/10.1016/j.dam.2012.02.018
- 6. J. Hou, W. Wang, X. Zhang, Acyclic edge coloring of planar graphs with girth at least 5, *Discrete Appl. Math.*, **161** (2013), 2958–2967. http://dx.doi.org/10.1016/j.dam.2013.06.013
- 7. L. Kirousis, J. Livieratos, The acyclic chromatic index is less than the double of the max degree, arXiv:1901.07856v6. http://dx.doi.org/10.48550/arXiv.1901.07856
- M. Molloy, B. Reed, Further algorithmic aspects of the local lemma, *Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Comouting*, 1998, 524–529. http://dx.doi.org/10.1145/276698.276866
- 9. W. Wang, Q. Shu, Y. Wang, A new upper bound on the acyclic chromatic indices of planar graphs, *Eur. J. Combin.*, **34** (2013), 338–354. http://dx.doi.org/10.1016/j.ejc.2012.07.008
- 10. T. Wang, Y. Zhang, Further result on acyclic chromatic index of planar graphs, *Discrete Appl. Math.*, **201** (2016), 228–247. http://dx.doi.org/10.1016/j.dam.2015.07.015
- 11. Q. Shu, W. Wang, Y. Wang, Acyclic chromatic indices of planar graphs with girth at least 4, *J. Graph Theory*, **73** (2013), 386–399. http://dx.doi.org/10.1002/jgt.21683

- 12. Q. Shu, Y. Chen, S. Han, G. Lin, E. Miyano, A. Zhang, Acyclic edge coloring conjecture is true on planar graphs without intersecting triangles, *Theor. Comput. Sci.*, **882** (2021), 77–108. http://dx.doi.org/j.tcs.2021.06.017
- 13. Y. Wang, P. Sheng, Improved upper bound for acyclic chromatic index of planar graphs without 4-cycles, *J. Comb. Optim.*, **27** (2014), 519–529. http://dx.doi.org/10.1007/s10878-012-9524-5
- 14. W. Wang, Q. Shu, Y. Wang, Acyclic edge coloring of planar graphs without 4-cycles, J. Comb. Optim., 25 (2013), 562–586. http://dx.doi.org/10.1007/s10878-012-9474-y

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)